JPH0799695B2 - Method for manufacturing molten carbonate fuel cell - Google Patents

Method for manufacturing molten carbonate fuel cell

Info

Publication number
JPH0799695B2
JPH0799695B2 JP60163152A JP16315285A JPH0799695B2 JP H0799695 B2 JPH0799695 B2 JP H0799695B2 JP 60163152 A JP60163152 A JP 60163152A JP 16315285 A JP16315285 A JP 16315285A JP H0799695 B2 JPH0799695 B2 JP H0799695B2
Authority
JP
Japan
Prior art keywords
layer
electrolyte layer
carbonate
gas diffusion
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60163152A
Other languages
Japanese (ja)
Other versions
JPS6224566A (en
Inventor
篤夫 宗内
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60163152A priority Critical patent/JPH0799695B2/en
Publication of JPS6224566A publication Critical patent/JPS6224566A/en
Publication of JPH0799695B2 publication Critical patent/JPH0799695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、特性に優れ大形化が可能で、かつ製作性に優
れた溶融炭酸塩型燃料電池の製造方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a molten carbonate fuel cell, which has excellent characteristics, can be made large in size, and has excellent manufacturability.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、開発が進められている溶融炭酸塩型燃料電池は、
炭酸塩からなる電解質を高温下で溶融状態にし電極反応
を生起させるもので、リン酸型、固体電解質型等の他の
燃料電池に比べ電極反応が起り易く、発電熱効率が高い
うえ、高価な貴金属触媒を必要としない等の特長を有し
ている。
Molten carbonate fuel cells, which are under development in recent years,
Electrolytic reaction of carbonates in an molten state at high temperature to cause electrode reaction. Electrode reaction is more likely to occur compared to other fuel cells such as phosphoric acid type and solid electrolyte type, high heat generation efficiency, and expensive precious metal. It has features such as no need for a catalyst.

ところで、このような溶融炭酸塩型燃料電池では1つの
燃料電池で得られる起電力が1Vと低いため、高出力の発
電プラントを構成するには、複数の単位電池を直列に積
層して燃料電池本体を構成し、各単位電池の加算出力を
得るようにしなければならない。したがって、この種の
燃料電池は次のように構成される。
By the way, in such a molten carbonate fuel cell, the electromotive force obtained by one fuel cell is as low as 1 V. Therefore, in order to construct a high output power plant, a plurality of unit cells are stacked in series to form a fuel cell. The main body must be configured to obtain the added output of each unit battery. Therefore, this type of fuel cell is configured as follows.

すなわち、各単位電池は一対のガス拡散電極板、すなわ
ち燃料極および酸化剤極と、これらの間に介在されたア
ルカリ炭酸塩からなる電解質層とで構成される。これら
各単位電池は、単位電池間の電気的な接続機能と、各電
極板への反応ガスの通路を形成する機能とを兼備えたセ
パレータを介して積層される。
That is, each unit cell is composed of a pair of gas diffusion electrode plates, that is, a fuel electrode and an oxidizer electrode, and an electrolyte layer made of an alkali carbonate interposed therebetween. Each of these unit batteries is laminated via a separator that has both an electrical connection function between the unit batteries and a function of forming a passage of a reaction gas to each electrode plate.

燃料電池本体の4つの側面には、反応ガスの分配、回収
機能を有するマニホールドが当てがわれ、これらマニホ
ールドのうちの一つに酸化剤ガスを供給するとともに隣
接するマニホールドに燃料ガスを供給し、単位電池の両
面に両ガスを例えば直交するように通流させる。そし
て、燃料極において、 H2+CO3 2-→H2O+CO2+2e- なる反応を、また酸化剤極において、 1/2O2+CO2+2e-→CO3 2- なる反応を生起せしめ、直流出力を得た後、それぞれの
対向するマニホールドからガスを排出させるようにして
いる。
A manifold having a function of distributing and collecting a reaction gas is applied to four side surfaces of the fuel cell main body, and an oxidant gas is supplied to one of the manifolds and a fuel gas is supplied to an adjacent manifold, Both gases are caused to flow on both sides of the unit cell so as to cross each other, for example. Then, a reaction of H 2 + CO 3 2- → H 2 O + CO 2 + 2e occurs at the fuel electrode and a reaction of 1 / 2O 2 + CO 2 + 2e → CO 3 2− occurs at the oxidizer electrode, and the DC output is generated. Then, the gas is exhausted from each of the opposing manifolds.

ところで、電解質層両側を通流する反応ガスの交差混合
防止という点からは、電解質層がち密な薄板であること
望ましい。気孔を多く含んでいると反応ガスは上記気孔
を介して交差してしまうからである。このような点か
ら、従来は電解質層として電解質保持用の骨材と炭酸塩
とを混合し、400℃〜500℃、200〜500kg/cm2の条件でホ
ットプレスして得た、いわゆる電解質タイルと称される
ち密な板状体を用いるようにしていた。この電解質層
は、気孔率が5vol%以下と極めて少ないため、溶融状態
の炭酸塩によって反応ガスを完全に分離でき、反応ガス
の交差混合が防止できる。
By the way, from the viewpoint of preventing cross-mixing of the reaction gases flowing on both sides of the electrolyte layer, it is desirable that the electrolyte layer is a dense thin plate. This is because, if a large number of pores are included, the reaction gas will cross through the pores. From such a point, conventionally, a so-called electrolyte tile obtained by mixing an aggregate for retaining an electrolyte and a carbonate as an electrolyte layer and hot-pressing under the conditions of 400 ° C to 500 ° C and 200 to 500 kg / cm 2 is used. It was called a dense plate-like body. Since this electrolyte layer has an extremely low porosity of 5 vol% or less, the reaction gas can be completely separated by the molten carbonate, and cross-mixing of the reaction gas can be prevented.

しかしながら、上記の如く形成した電解質層は機械的強
度に劣り、電解質層の大きさを数10cm角以上にすると、
組立時に生じる僅かな歪みによっても電解質層にひび割
れが発生し易く、また組立後においても電池の熱サイク
ルに起因して電解質層にひび割れが発生することがあ
り、結局、反応ガスの交差混合を防止することができな
い問題があった。また、ホットプレスによって電解質層
を成形するには、単位体積当りの付与圧力を高くとる必
要があるため、大形のプレス装置を使用しなければなら
ず、設備費の増加は免れ得ない。しかも、ホットプレス
の場合、骨材と炭酸塩との混合体の加熱に時間がかかる
うえ、プレス加工時に急激な機械的衝撃を与えられない
ので、1枚当りの生産速度を高めることが困難であり、
極めて生産性が悪いという問題があった。
However, the electrolyte layer formed as described above is inferior in mechanical strength, and when the size of the electrolyte layer is several tens of cm square or more,
Cracks easily occur in the electrolyte layer due to slight strain generated during assembly, and cracks may occur in the electrolyte layer even after assembly due to the thermal cycle of the battery, which eventually prevents cross-mixing of reaction gases. There was a problem I could not do. Further, in order to mold the electrolyte layer by hot pressing, it is necessary to increase the applied pressure per unit volume, so a large-sized pressing device must be used, and an increase in equipment cost cannot be avoided. Moreover, in the case of hot pressing, it takes time to heat the mixture of the aggregate and the carbonate, and it is difficult to increase the production speed per sheet because a rapid mechanical impact cannot be applied during the pressing. Yes,
There was a problem of extremely poor productivity.

かといって、低温低圧で電解質層を成形すれば、前述し
たように、電解質層に例えば10vol%〜50vol%という多
くの気孔を含んでしまい、反応ガスの交差混合を生じて
良好な特性が得られない。
However, if the electrolyte layer is formed at low temperature and low pressure, as described above, the electrolyte layer will contain many pores of, for example, 10 vol% to 50 vol%, and cross-mixing of the reaction gases will occur, resulting in good characteristics. I can't.

〔発明の目的〕[Object of the Invention]

本発明は、上記の事情に基づきなされたもので、組立時
の僅かな歪みや、組立後における熱サイクルに起因し
て、たとえ電解質層にひび割れが発生した場合であって
も、反応ガスの交差混合の防止に寄与でき、また製作上
有利な方法である低温低圧で製造した電解質層を用いて
も、なんら電池性能の低下を来すことがない溶融炭酸塩
型燃料電池の製造方法を提供することを目的としてい
る。
The present invention has been made based on the above circumstances, and even if cracks occur in the electrolyte layer due to slight distortion at the time of assembly or thermal cycle after assembly, the reaction gas crosses. Provided is a method for producing a molten carbonate fuel cell, which can contribute to prevention of mixing, and which does not cause any deterioration in cell performance even if an electrolyte layer produced at low temperature and low pressure, which is an advantageous method for production, is used. Is intended.

〔発明の概要〕[Outline of Invention]

本発明に係る溶融炭酸塩型燃料電池の製造方法では、混
合炭酸塩とセラミック微粉末および繊維とを主成分とし
て有機バインダーを用いて気孔率10〜50Vol%の電解質
層を形成する工程と、多孔質体で形成された基体の一方
の面部に平均空孔径が1μm以下の微細孔層を形成して
二層構成の燃料ガス拡散電極を得る工程と、この工程に
よって得られた燃料ガス拡散電極の前記微細孔層の表面
に混合炭酸塩を塗布した後に加熱して上記混合炭酸塩を
上記微細孔層に含浸する工程と、前記電解質層の一方の
表面に前記微細孔層を接触させて前記燃料ガス拡散電極
を配置するとともに上記電解質層の他方の表面に酸化剤
ガス拡散電極を接触配置して単位セルを組立てる工程と
を具備してなることを特徴としている。
In the method for producing a molten carbonate fuel cell according to the present invention, a step of forming an electrolyte layer having a porosity of 10 to 50 Vol% using an organic binder containing mixed carbonate, ceramic fine powder, and fibers as main components, and porosity. A step of forming a two-layered fuel gas diffusion electrode by forming a fine pore layer having an average pore diameter of 1 μm or less on one surface portion of a substrate formed of a porous body; Applying a mixed carbonate to the surface of the microporous layer and then heating it to impregnate the mixed carbonate into the microporous layer; and contacting the microporous layer on one surface of the electrolyte layer with the fuel And arranging a gas diffusion electrode and arranging an oxidant gas diffusion electrode in contact with the other surface of the electrolyte layer to assemble a unit cell.

〔発明の効果〕〔The invention's effect〕

本発明に係る製造方法によれば、多孔質体で形成された
基体の一方の面部に平均空孔径が1μm以下の微細孔層
を形成して二層構造の燃料ガス拡散電極を得た後、微細
孔層の表面に混合炭酸塩を塗布し、加熱して混合炭酸塩
を微細孔層に含浸している。この場合、微細孔層に混合
炭酸塩が確実に、かつ均一に含浸されたか否かを確認す
ることは極めて容易で、また均一に含浸される条件を作
り出すことも簡単である。そして、混合炭酸塩の含浸さ
れた微細孔層が電解質層の一方の面に接触するように燃
料ガス拡散電極を組込むようにしている。したがって、
微細孔層内に表面張力によって均一な混合炭酸塩層を確
実に形成させることができ、この微細孔層が反応ガスの
透過防止層として作用するので、たとえ組立時の歪み
や、組立後における熱サイクルに起因して、電解質層に
ひび割れが発生した場合であっても、ひび割れに左右さ
れることなく、反応ガスの交差混合は殆ど発生しなくな
り、電池性能は良好なものとなる。
According to the manufacturing method of the present invention, a microporous layer having an average pore diameter of 1 μm or less is formed on one surface of a substrate formed of a porous body to obtain a fuel gas diffusion electrode having a two-layer structure, The mixed carbonate is applied to the surface of the microporous layer and heated to impregnate the microcarbon layer with the mixed carbonate. In this case, it is extremely easy to confirm whether or not the mixed carbonate is impregnated into the microporous layer surely and uniformly, and it is also easy to create the condition for uniform impregnation. Then, the fuel gas diffusion electrode is incorporated so that the microporous layer impregnated with the mixed carbonate contacts one surface of the electrolyte layer. Therefore,
A uniform mixed carbonate layer can be reliably formed in the microporous layer due to the surface tension, and this microporous layer acts as a reaction gas permeation preventive layer. Even if cracks occur in the electrolyte layer due to the cycle, cross-mixing of the reaction gas hardly occurs without being affected by the cracks, and the battery performance becomes good.

このような製造方法であると、電解質層を特にち密な構
造にしなくても良いので、ホットプレスによって電解質
層を形成する必要がなくなる。したがって、電解質層に
有機バインダーを用い、これによって混合炭酸塩電解質
とセラミック微粉末および繊維とを結合させることが可
能である。この場合には、ホットプレスによる結合と異
なり、電解質層を200℃以下の低温低圧で形成すること
ができる。このため、1枚当りの電解質層の加工速度を
高めることができる。
With such a manufacturing method, the electrolyte layer does not have to have a particularly dense structure, and thus it is not necessary to form the electrolyte layer by hot pressing. Therefore, it is possible to use an organic binder in the electrolyte layer, which allows the mixed carbonate electrolyte to bind to the ceramic fine powder and fibers. In this case, unlike the bonding by hot pressing, the electrolyte layer can be formed at a low temperature and low pressure of 200 ° C. or lower. Therefore, the processing speed of one electrolyte layer can be increased.

〔発明の実施例〕Example of Invention

<実施例> 比表面積29m2/gのβ−リチウムアルミネート粉末35g
と、混合炭酸塩60gとをアセトンを溶媒としてボールミ
ルにより十分混合し、次にリチウムアルミネート繊維5g
を加え、さらに1時間混合した。次に有機バインダーで
あるポリエチレンを20g加えて1時間混合した。しかる
後アセトンを除去して電解質混合剤を製作した。この電
解質混合剤を金型に充填して、160℃、100kgの低温低圧
条件で成形し、薄板状の電解質層を得た。得られた電解
質層の気孔率は35%であった。
<Example> 35 g of β-lithium aluminate powder having a specific surface area of 29 m 2 / g
And 60 g of mixed carbonate with a ball mill using acetone as a solvent, and then 5 g of lithium aluminate fiber
Was added and mixed for an additional 1 hour. Next, 20 g of polyethylene, which is an organic binder, was added and mixed for 1 hour. Then, acetone was removed to prepare an electrolyte mixture. This electrolyte mixture was filled in a mold and molded under low temperature and low pressure conditions of 160 ° C. and 100 kg to obtain a thin plate-like electrolyte layer. The porosity of the obtained electrolyte layer was 35%.

次に、燃料極(燃料ガス拡散電極)を以下のように形成
した。すなわち、気孔率65%、平均細孔径4.5μmのニ
ッケル−10w%Cr粉末多孔質体を基体として用い、これ
に平均粒径0.8μmの微細ニッケル粉末を吸引塗布し、8
20℃で1時間、水素気流中で焼結処理を施し、平均細孔
径0.8μmの微細孔層を形成した。この多孔質体に、混
合炭酸塩(Li2CO3(62mol%)−K2CO3(38mol%))を1
cm2当り55mgとなる重量だけ塗布し、600℃に昇温して多
孔質体に含浸させた。なお、この含浸は二酸化炭素雰囲
気中にて行なった。
Next, a fuel electrode (fuel gas diffusion electrode) was formed as follows. That is, a nickel-10w% Cr powder porous body having a porosity of 65% and an average pore diameter of 4.5 µm was used as a substrate, and fine nickel powder having an average particle diameter of 0.8 µm was suction-coated onto the porous body.
Sintering treatment was performed in a hydrogen stream at 20 ° C. for 1 hour to form a fine pore layer having an average pore diameter of 0.8 μm. 1% mixed carbonate (Li 2 CO 3 (62mol%)-K 2 CO 3 (38mol%)) was added to this porous body.
A weight of 55 mg per cm 2 was applied, and the temperature was raised to 600 ° C. to impregnate the porous body. The impregnation was performed in a carbon dioxide atmosphere.

さらに、気孔率70%、平均孔径13μmのニッケル多孔質
体を酸化剤極(酸化剤ガス拡散電極)として用意した。
Further, a nickel porous body having a porosity of 70% and an average pore diameter of 13 μm was prepared as an oxidant electrode (oxidant gas diffusion electrode).

そして、第1図に示すように上記電解質層1の両面に燃
料極2および酸化剤極3を配置して、単セルを構成し
た。なお、図中4は燃料極基体を、また5はこの上面に
形成された微細孔層5をそれぞれ示している。
Then, as shown in FIG. 1, the fuel electrode 2 and the oxidant electrode 3 were arranged on both surfaces of the electrolyte layer 1 to form a single cell. In the figure, 4 indicates a fuel electrode substrate, and 5 indicates a microporous layer 5 formed on the upper surface thereof.

このようにして得られた単セルの150mA/cm2におけるセ
ル電圧を調べたところ、第2図に示すような結果を得
た。第2図においてa1は開路時のセル電圧、a2は150mA/
cm2通流下におけるセル電圧である。なお、図中b1,b2は
比較のため、従来の燃料極を使用した場合の上記と同様
な条件下でのセル電圧である。この図から明らかなよう
に、本実施例の単セルは従来のものに比べて高い出力電
圧が得られ、その経時特性も良好であることが確認でき
た。
When the cell voltage of the single cell thus obtained at 150 mA / cm 2 was examined, the results shown in FIG. 2 were obtained. In Fig. 2, a1 is the cell voltage at open circuit and a2 is 150mA /
It is the cell voltage under flowing cm 2 . For comparison, b1 and b2 in the figure are cell voltages under the same conditions as above when a conventional fuel electrode is used. As is clear from this figure, it was confirmed that the single cell of the present example obtained a higher output voltage than the conventional one and the time-dependent characteristics thereof were also favorable.

また、上記本実施例に係る燃料電池と従来例の燃料電池
の反応ガスの交差混合量(酸化剤極側出口ガスに含まれ
る水素量)の経時変化を調べたところ、第3図に示す結
果を得た。この図から明らかなように、本実施例に係る
単セルでは、交差混合量も従来例のセルに比べて非常に
小さい。これは本実施例のものでは基体表面に微細孔層
が形成されており、ここに炭酸塩を含有しているので、
微細孔内に炭酸塩が保持されて、これが反応ガス透過防
止層となっているからである。
Further, the change over time in the cross-mixing amount (the amount of hydrogen contained in the oxidant electrode side outlet gas) of the reaction gas of the fuel cell according to this example and the fuel cell of the conventional example was examined, and the results shown in FIG. 3 were obtained. Got As is clear from this figure, in the single cell according to the present embodiment, the cross mixing amount is also much smaller than that of the conventional cell. This is because the microporous layer is formed on the surface of the substrate in this example and contains the carbonate,
This is because carbonate is retained in the fine pores and this serves as a reaction gas permeation preventive layer.

以上のように、多孔質体で形成された基体の一方の面部
に平均空孔径が1μm以下の微細孔層を形成して二層構
成の燃料ガス拡散電極を得た後、微細孔層の表面に混合
炭酸塩を塗布し、加熱して混合炭酸塩を微細孔層に含浸
している。そして、混合炭酸塩の含浸された微細孔層が
電解質層の一方の面に接触するように燃料ガス拡散電極
を組込むようにしている。したがって、微細孔層内に表
面張力によって均一な混合炭酸塩層を確実に形成させる
ことができ、この含浸混合炭酸塩によって反応ガスの透
過防止層を形成できるので、たとえ組立時の歪みや、組
立後における熱サイクルに起因して、電解質層にひび割
れが発生した場合であっても、ひび割れに左右されるこ
となく、反応ガスの交差混合を防止できることになる。
また、低温低圧条件下で形成された電解質層を用いてい
るので、加工性に優れ、しかも特性の良好な燃料電池が
得られる。
As described above, after the fine gas layer having an average pore diameter of 1 μm or less is formed on one surface of the substrate formed of a porous body to obtain a fuel gas diffusion electrode having a two-layer structure, the surface of the fine hole layer is formed. The mixed carbonate is applied to and heated to impregnate the microporous layer with the mixed carbonate. Then, the fuel gas diffusion electrode is incorporated so that the microporous layer impregnated with the mixed carbonate contacts one surface of the electrolyte layer. Therefore, a uniform mixed carbonate layer can be reliably formed in the fine pore layer by the surface tension, and a reaction gas permeation preventive layer can be formed by the impregnated mixed carbonate layer. Even if a crack is generated in the electrolyte layer due to the subsequent heat cycle, cross-mixing of the reaction gas can be prevented without being affected by the crack.
Further, since the electrolyte layer formed under the low temperature and low pressure condition is used, a fuel cell having excellent workability and excellent characteristics can be obtained.

なお、本発明は上述した実施例に限定されるものではな
い。
The present invention is not limited to the above embodiment.

すなわち、上記実施例では微細孔層の孔径が0.8μmの
ものを示したが、この孔径に限定されるものではない。
しかし、孔径が1μmを超えるものでは、交差混合量を
示す泡出力が小さくなるため、1μm以下が望ましい。
また、微細孔層に溶融炭酸塩を含浸させる際には、燃料
極の反りの発生を防止するため、加圧するようにしても
良い。
That is, although the pore diameter of the fine pore layer is 0.8 μm in the above-mentioned embodiment, the pore diameter is not limited to this.
However, when the pore diameter exceeds 1 μm, the foam output indicating the cross-mixing amount becomes small, so 1 μm or less is desirable.
Further, when impregnating the molten carbonate into the microporous layer, pressure may be applied to prevent warping of the fuel electrode.

また、上述した実施例では混合炭酸塩を1cm2当り55mgと
したが、燃料極の微細孔層を満たす重量以上の含浸量で
あればよい。この量としては燃料極の全細孔容量の5%
以上を満たす炭酸塩重量が最低必要となるであろう。
Further, in the above-mentioned examples, the mixed carbonate was set to 55 mg per cm 2 , but the impregnation amount may be at least the weight that fills the fine pore layer of the fuel electrode. This amount is 5% of the total pore volume of the fuel electrode
A minimum carbonate weight satisfying the above will be required.

なお、上述した実施例では燃料極としてニッケルとクロ
ムの混合物を使用したが、ニッケル−コバルト合金、銅
等を使用しても良い。
In addition, although the mixture of nickel and chromium is used as the fuel electrode in the above-described embodiment, nickel-cobalt alloy, copper, or the like may be used.

また、電解質層に使用されるセラミック微粉末および繊
維は、特にリチウムアルミネートに限定されるものでは
なく、たとえばセラミック繊維としてジルコニア、アル
ミナ、ジルコン酸リチウム、チタン酸リチウム、窒化ホ
ウ素等、また、セラミック微粉末としてストロンチウム
チタネート、酸化セシウムなどを用いても良い。また、
有機バイダーとしては、ポニビニルブチラール、ポリエ
チレン、シリコンゴム、ポリエチレングリコール、ポリ
メタクリル酸メチルなどでも良く、非水溶媒としてはC2
〜C6までのアルコール、トルエン、アセトンなどを用い
ても良い。
Further, the fine ceramic powder and fibers used for the electrolyte layer are not particularly limited to lithium aluminate, for example, as ceramic fibers zirconia, alumina, lithium zirconate, lithium titanate, boron nitride, etc., and ceramics. You may use strontium titanate, cesium oxide, etc. as a fine powder. Also,
As the organic binder, ponyvinyl butyral, polyethylene, silicone rubber, polyethylene glycol, polymethyl methacrylate, etc. may be used, and as the non-aqueous solvent, C 2
Alcohol up -C 6, toluene, or the like may be used acetone.

また、使用される混合炭酸塩としては、以下に示すもの
を用いることができる。
As the mixed carbonate used, those shown below can be used.

Li2CO3/K2CO3 Li2CO3/K2CO3/Na2CO3 Na2CO3/K2CO3 Li2CO3/K2CO3/SrCO3 Li2CO3/K2CO3/CaCO3 このように、本発明はその要旨を逸脱しない範囲で種々
変更して実施することができる。
Li 2 CO 3 / K 2 CO 3 Li 2 CO 3 / K 2 CO 3 / Na 2 CO 3 Na 2 CO 3 / K 2 CO 3 Li 2 CO 3 / K 2 CO 3 / SrCO 3 Li 2 CO 3 / K 2 CO 3 / CaCO 3 As described above, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る溶融炭酸塩型燃料電池
の単位電池の一部を示す断面図、第2図は同単位電池の
電池電圧の経時的特性を従来のものと比較して示す特性
図、第3図は酸化剤極出口ガスに含まれる水素濃度の経
時的変化を従来のものと比較して示す特性図である。 1……電解質層、2……燃料極、3……酸化剤極、4…
…燃料極基体、5……微細孔層、a,a1,a2……本発明の
一実施例の特性、b,b1,b2……比較例の特性。
FIG. 1 is a cross-sectional view showing a part of a unit cell of a molten carbonate fuel cell according to an embodiment of the present invention, and FIG. 2 compares the time-dependent characteristics of the cell voltage of the unit cell with those of a conventional one. FIG. 3 is a characteristic diagram showing the change over time in the concentration of hydrogen contained in the oxidant electrode outlet gas in comparison with the conventional one. 1 ... Electrolyte layer, 2 ... Fuel electrode, 3 ... Oxidizer electrode, 4 ...
... fuel electrode substrate, 5 ... microporous layer, a, a1, a2 ... characteristics of one embodiment of the present invention, b, b1, b2 ... characteristics of a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】混合炭酸塩とセラミック微粉末および繊維
とを主成分として有機バインダーを用いて気孔率10〜50
Vol%の電解質層を形成する工程と、多孔質体で形成さ
れた基体の一方の面部に平均空孔径が1μm以下の微細
孔層を形成して二層構成の燃料ガス拡散電極を得る工程
と、この工程によって得られた燃料ガス拡散電極の前記
微細孔層の表面に混合炭酸塩を塗布した後に加熱して上
記混合炭酸塩を上記微細孔層を含浸する工程と、前記電
解質層の一方の表面に前記微細孔層を接触させて前記燃
料ガス拡散電極を配置するとともに上記電解質層の他方
の表面に酸化剤ガス拡散電極を接触配置して単位セルを
組立てる工程とを具備してなることを特徴とする溶融炭
酸塩型燃料電池の製造方法。
1. A porosity of 10-50 using an organic binder containing mixed carbonate, ceramic fine powder and fibers as main components.
A step of forming a vol% electrolyte layer, and a step of forming a microporous layer having an average pore diameter of 1 μm or less on one surface of a substrate formed of a porous body to obtain a fuel gas diffusion electrode having a two-layer structure. A step of applying a mixed carbonate to the surface of the fine pore layer of the fuel gas diffusion electrode obtained by this step and then heating the mixed carbonate to impregnate the fine pore layer with the mixed carbonate, and one of the electrolyte layers Assembling the unit cell by contacting the surface of the microporous layer with the fuel gas diffusion electrode and arranging the other surface of the electrolyte layer with the oxidant gas diffusion electrode. A method for producing a molten carbonate fuel cell, which is characterized.
JP60163152A 1985-07-24 1985-07-24 Method for manufacturing molten carbonate fuel cell Expired - Fee Related JPH0799695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60163152A JPH0799695B2 (en) 1985-07-24 1985-07-24 Method for manufacturing molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60163152A JPH0799695B2 (en) 1985-07-24 1985-07-24 Method for manufacturing molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS6224566A JPS6224566A (en) 1987-02-02
JPH0799695B2 true JPH0799695B2 (en) 1995-10-25

Family

ID=15768211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60163152A Expired - Fee Related JPH0799695B2 (en) 1985-07-24 1985-07-24 Method for manufacturing molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0799695B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123047B2 (en) * 1986-01-17 1995-12-25 株式会社日立製作所 Method for manufacturing molten carbonate fuel cell
JPH0821414B2 (en) * 1986-09-30 1996-03-04 株式会社東芝 Method for producing molten carbonate fuel cell laminate
US4992341A (en) * 1988-10-21 1991-02-12 The United States Of America As Represented By The United States Department Of Energy Fabrication of dual porosity electrode structure
JPH0638913Y2 (en) * 1989-12-19 1994-10-12 清水建設株式会社 Seawater purification wave-breaking structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404267A (en) * 1982-04-26 1983-09-13 General Electric Company Anode composite for molten carbonate fuel cell
JPS60101876A (en) * 1983-11-08 1985-06-05 Agency Of Ind Science & Technol Manufacture method of fused carbonate salts type fuel cell

Also Published As

Publication number Publication date
JPS6224566A (en) 1987-02-02

Similar Documents

Publication Publication Date Title
US7951509B2 (en) Compliant cathode contact materials
US5171646A (en) Fuel cell system including porous, panel type support and process for producing the same
KR100733801B1 (en) Method of fabricating an assembly comprising an anode-supported electrolyte, and ceramic cell comprising such an assembly
JP5727086B1 (en) Fuel cell structure and fuel cell stack structure
JP2003132914A (en) Interconnect of high performance ceramic fuel cell having integrated flowpath and making method for the same
CN111146445A (en) Fuel cell, fuel cell stack, and method for manufacturing the same
KR101937919B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell by tape lamination, Fuel Cell Stack and Fuel Cell Power Generation System manufactured by using the cell for fuel cell
JPH0799695B2 (en) Method for manufacturing molten carbonate fuel cell
JP4815815B2 (en) Single-chamber solid oxide fuel cell
KR20120037175A (en) A fuel cell and a manufacturing metheod thereof
JP7245036B2 (en) Fuel cell stack and manufacturing method thereof
JP2016038984A (en) Solid oxide electrochemical device
JP4130135B2 (en) Surface treatment method for current collecting member
CN111244498B (en) Fuel cell and fuel cell stack
JP2002075406A (en) Fuel battery cell unit and manufacturing method
KR101883401B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JP2006503415A (en) Electrolyte for thin film fuel cell and method for producing the same
JPH05151979A (en) Solid electrolyte fuel cell
JPH1021930A (en) Fuel electrode of solid electrolyte type fuel cell
JP2015164094A (en) Manifold, stack structure of fuel battery and method of manufacturing the same
JP4576971B2 (en) Solid oxide fuel cell substrate and method for producing the same
JPH0982336A (en) Hollow flat board-shaped electrode substrate and manufacture thereof
JPS61225772A (en) Manufacture of molten carbonate fuel cell
JPS5927466A (en) Fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees