JPH0449750B2 - - Google Patents

Info

Publication number
JPH0449750B2
JPH0449750B2 JP59101708A JP10170884A JPH0449750B2 JP H0449750 B2 JPH0449750 B2 JP H0449750B2 JP 59101708 A JP59101708 A JP 59101708A JP 10170884 A JP10170884 A JP 10170884A JP H0449750 B2 JPH0449750 B2 JP H0449750B2
Authority
JP
Japan
Prior art keywords
electrolyte
plate
ceramic
separator
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59101708A
Other languages
Japanese (ja)
Other versions
JPS60246570A (en
Inventor
Yoshio Iwase
Hideo Okada
Shigeru Okabe
Masahito Takeuchi
Koki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59101708A priority Critical patent/JPS60246570A/en
Publication of JPS60246570A publication Critical patent/JPS60246570A/en
Publication of JPH0449750B2 publication Critical patent/JPH0449750B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電解質板から電解液、ガスの漏洩がな
い溶融炭酸塩型燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a molten carbonate fuel cell in which electrolyte and gas do not leak from electrolyte plates.

〔発明の背景〕[Background of the invention]

燃料電池は化石燃料から電気エネルギーへの変
換率が高く、公害発生や騒音が少ないので、最近
開発が盛んに行なわれている。中でも溶融炭酸塩
型燃料電池は高効率のため特に関心が集められて
いる。
Fuel cells have been actively developed recently because they have a high conversion rate from fossil fuels to electrical energy and generate less pollution and noise. Among these, molten carbonate fuel cells are of particular interest because of their high efficiency.

従来、溶融炭酸塩型燃料電池は負電極板と正電
極板との間に電解質板を設け、前記電解質板に電
解質を保持させた構造である。しかし両電極板の
間に挾まれている電解質板の周縁端部をシールす
ることがないので電解質の漏洩が生じる。そのた
め電池の高温(650℃)の作動時で電解質である
溶融炭酸塩が長時間の使用中に漏洩し、電解質板
のピンホールやクラツクが起り、燃料ガス、酸化
ガス、生成ガスが混合しクロスオーバ現象が生
じ、電池の性能が低下する原因になる。其故、電
解質板から電解液の漏洩を防止し電池の性能を改
善することが要望されている。
Conventionally, a molten carbonate fuel cell has a structure in which an electrolyte plate is provided between a negative electrode plate and a positive electrode plate, and the electrolyte is held in the electrolyte plate. However, since the peripheral edge of the electrolyte plate sandwiched between the two electrode plates is not sealed, electrolyte leakage occurs. Therefore, when the battery is operated at high temperatures (650℃), molten carbonate, which is the electrolyte, leaks during long-term use, causing pinholes and cracks in the electrolyte plate, and fuel gas, oxidizing gas, and generated gas mix and cross. An overheating phenomenon occurs, causing a decline in battery performance. Therefore, it is desired to prevent leakage of electrolyte from the electrolyte plate and improve battery performance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は電解質板の周縁端部にセラミツ
クシール部を設けて電解質及びガスの漏洩を防止
した溶融炭酸塩型燃料電池を提供することにあ
る。
An object of the present invention is to provide a molten carbonate fuel cell in which a ceramic seal is provided at the peripheral edge of an electrolyte plate to prevent leakage of electrolyte and gas.

〔発明の概要〕[Summary of the invention]

本発明は、外側にセパレータを取り付けた負電
極板と外側にセパレータを取り付た正電極板との
間に電解質を保持した電解質板を挾んだ燃料電池
において、前記正負電極板の外側に該正負電極板
よりも大きいセパレータが取り付けられ、前記電
解質板の周縁端部の〓間がセラミツクシール材で
かつ該セラミツクシール材が該セパレータと接合
されることによつてシールされている溶融炭酸塩
型燃料電池である。
The present invention provides a fuel cell in which an electrolyte plate holding an electrolyte is sandwiched between a negative electrode plate having a separator attached to the outside and a positive electrode plate having a separator attached to the outside. A molten carbonate type in which a separator larger than the positive and negative electrode plates is attached, and the space between the peripheral edges of the electrolyte plate is sealed by a ceramic sealing material and the ceramic sealing material is joined to the separator. It is a fuel cell.

尚、通常燃料電池は両電極板の外側にセパレー
タが取り付けられて単位電池とし、この単位電池
が数多く重ねられスタツクとして使用される。本
発明におけるセパレータの取り付けは負電極板及
び正電極板の外側に電極板より少し大きいセパレ
ータが各々取り付けられ、また負電極板と正電極
板との間に電解質板が挾まれているので、両セパ
レータの間と電解質板の周縁端部により〓間が生
じ、その〓間をセラミツクシール材で接合するこ
とによりなされる。
Normally, a fuel cell has a separator attached to the outside of both electrode plates to form a unit cell, and a large number of these unit cells are stacked and used as a stack. In the attachment of the separators in the present invention, a separator slightly larger than the electrode plates is attached to the outside of the negative electrode plate and the positive electrode plate, and an electrolyte plate is sandwiched between the negative electrode plate and the positive electrode plate. A gap is created between the separators and the peripheral edge of the electrolyte plate, and this gap is formed by joining the gap with a ceramic sealing material.

電解質として炭酸塩が使用され、例えば炭酸カ
リ、炭酸リチウム、炭酸ソーダ等がある。
Carbonates are used as electrolytes, such as potassium carbonate, lithium carbonate, and soda carbonate.

セラミツクの材質は電池作動時の温度650℃程
度で変化しないような耐熱性であり、且つ溶融炭
酸塩に対して耐食性である材質のものが使用され
る。例えばα−アルミナ及び/又はγ−リチウム
アルミネート若しくは酸化ジルコニウム等で耐熱
性、耐アルカリ性に優れている。
The ceramic material used is heat resistant so that it does not change at a temperature of about 650° C. during battery operation, and is corrosion resistant to molten carbonate. For example, α-alumina and/or γ-lithium aluminate, zirconium oxide, etc. have excellent heat resistance and alkali resistance.

セラミツクでシールする方法は、一般にペース
ト法、拡散接合法、及び物理蒸着等で行なう。
Ceramic sealing is generally performed by a paste method, a diffusion bonding method, a physical vapor deposition method, or the like.

ペースト法はアルミナ等のセラミツクと無機ポ
リマーを主成分とする耐熱性無機接着剤からなる
セラミツクペーストを電解質板の周縁端部に塗布
し、加熱硬化してセパレータと接合一体化してシ
ールする方法である。拡散接合法はセラミツクシ
ール部をあらかじめ例えば四角い枠型に成形し、
このセラミツク枠型をセパレータに拡散接合によ
り接合する方法である。物理蒸着法はイオンプレ
ーテイングによりセラミツクを金属セパレータに
接合する方法である。これらの方法により電解質
板の周縁端部及び両セパレータの〓間を充分にセ
ラミツクでシールできる。なお、電解質板の周縁
端部をセラミツクシールする例が特開昭58−
87774号公報に示されているが、電極板の部分で
シールしているので反応ガスが電極板の細孔を通
して電池外部へ漏洩するのを防止することはでき
ない。また電極板の細孔を通して電解質が電池外
部へ流出するおそれもある。
The paste method is a method in which a ceramic paste made of ceramic such as alumina and a heat-resistant inorganic adhesive whose main components are an inorganic polymer is applied to the peripheral edge of the electrolyte plate, heated and cured, and integrated with the separator for sealing. . In the diffusion bonding method, the ceramic seal part is formed into a square frame shape in advance,
In this method, this ceramic frame mold is bonded to a separator by diffusion bonding. Physical vapor deposition is a method of bonding ceramic to metal separators by ion plating. By these methods, the peripheral edge of the electrolyte plate and the space between the two separators can be sufficiently sealed with ceramic. An example of sealing the peripheral edge of an electrolyte plate with ceramics is disclosed in Japanese Patent Application Laid-Open No. 1983-
Although disclosed in Japanese Patent No. 87774, since the electrode plate is sealed, it is not possible to prevent the reaction gas from leaking to the outside of the battery through the pores of the electrode plate. There is also a possibility that the electrolyte may leak out of the battery through the pores of the electrode plate.

〔発明の実施例〕[Embodiments of the invention]

実施例 1 本発明の溶融炭酸塩型燃料電池の構成の概略の
断面図を第1図に示す。上下の2枚の電極板2,
2′は夫々セパレータ1,1′に取り付けられ、そ
の両電極板2,2′の間に電解質板3が挾まれ、
電解質板3の周縁端部にセラミツクシール部4が
接合した構造の燃料電池である。
Example 1 A schematic cross-sectional view of the structure of a molten carbonate fuel cell according to the present invention is shown in FIG. Two upper and lower electrode plates 2,
2' are attached to separators 1 and 1', respectively, and an electrolyte plate 3 is sandwiched between the two electrode plates 2 and 2'.
This fuel cell has a structure in which a ceramic seal part 4 is joined to the peripheral edge of an electrolyte plate 3.

次に燃料電池の製作方法について述べる。電解
質板3は、α−アルミナ粉末:水酸化リチウム=
1:2(モル比)の混合物を550℃で焼成しγ−リ
チウムアルミネートを合成し電解質保持材とし
た。次にこの電解質保持材55重量部に電解質とし
て炭酸リチウム:炭酸カリ=62:38(モル比)の
混合物45重量部を添加し、プレス成形した後、真
空炉で480℃で2時間焼成し、大きさ110mm平方、
厚さ3mmの電解質板を作製した。また、2枚の電
極板2,2′は何れを負又は正電極としてもよい
が、負電極板はニツケル多孔質焼結体、正電極板
はニツケルにコバルトを5atom%を添加した酸化
物焼結体であり、大きさ110mm平方のものを使用
した。
Next, the method for manufacturing the fuel cell will be described. The electrolyte plate 3 is made of α-alumina powder: lithium hydroxide=
A mixture of 1:2 (mole ratio) was fired at 550°C to synthesize γ-lithium aluminate, which was used as an electrolyte holding material. Next, 45 parts by weight of a mixture of lithium carbonate and potassium carbonate = 62:38 (molar ratio) was added as an electrolyte to 55 parts by weight of this electrolyte holding material, and after press-forming, it was fired at 480°C for 2 hours in a vacuum furnace. Size 110mm square,
An electrolyte plate with a thickness of 3 mm was prepared. In addition, either of the two electrode plates 2, 2' may be used as a negative or positive electrode, but the negative electrode plate is made of porous sintered nickel, and the positive electrode plate is made of sintered oxide made of nickel with 5 atom% of cobalt added. A solid body with a size of 110 mm square was used.

電極板2より少し大きいセパレータ1に電極板
2の外側を挿入して一体化したものの上に上記の
電解質板3を設置した。次にα−アルミナとγ−
リチウムアルミネート(20:80モル比)とのセラ
ミツク及び無機ポリマーを主成分とする無機接着
剤からなるセラミツクペーストを電解質板3の周
縁端部(セパレータと電解質板を重ねるとセラミ
ツクシール部4に相当する)に塗布し、上側の電
極板2′とセパレータ1′を上記と同様に一体化し
たものを電解質板3の上に設置し、加熱によりセ
ラミツクペーストを硬化させて電解質板3の周縁
端部をセラミツクでシールした。
The electrolyte plate 3 was placed on a separator 1 that was slightly larger than the electrode plate 2 and integrated with the electrode plate 2 by inserting the outer side thereof. Next, α-alumina and γ-
A ceramic paste consisting of ceramic with lithium aluminate (20:80 molar ratio) and an inorganic adhesive mainly composed of an inorganic polymer is applied to the peripheral edge of the electrolyte plate 3 (corresponding to the ceramic seal part 4 when the separator and electrolyte plate are stacked) The upper electrode plate 2' and separator 1' are integrated in the same manner as above and placed on top of the electrolyte plate 3. The ceramic paste is hardened by heating and the peripheral edge of the electrolyte plate 3 is coated. was sealed with ceramic.

得られた溶融炭酸塩型燃料電池を単位電池とし
て連続作動実験を行なつた。実験条件は反応温度
650℃、負電極ガス組成は80%H2−20%CO2、正
電極ガス組成は15%O2−30%CO2−55%N2であ
り、実験結果を第2図に示す。第2図は燃料電池
の時間と電池電圧の関係を示し、実線1(−〇
−)は本発明のセラミツクシール部のある場合、
点線2(−△−)はセラミツクシール部のない場
合であつた。50mA/cm2の負荷電流で作動を開始
したが、何れも上昇傾向を示したので、60時間以
降は100mA/cm2で作動させた。セラミツクシー
ル部を設けた場合の実線1は400時間以上電圧低
下はみられなかつたが、セラミツクシール部を設
けない場合の点線2は作動開始後200時間後から
急激に電圧が低下を始め、250時間後に電池電圧
が得られなくなつた。セラミツクシール部を設け
ない場合の電池出力の低下は電解質の漏洩による
クロスオーバ現象の為と考えられ、セラミツクシ
ール部を設けたことによる電解質漏洩防止の効果
は明瞭であつた。
Continuous operation experiments were conducted using the obtained molten carbonate fuel cell as a unit cell. Experimental conditions are reaction temperature
The temperature was 650°C, the negative electrode gas composition was 80% H 2 -20% CO 2 , and the positive electrode gas composition was 15% O 2 -30% CO 2 -55% N 2 . The experimental results are shown in FIG. Fig. 2 shows the relationship between fuel cell time and battery voltage, and solid line 1 (-〇-) indicates the relationship between the time and battery voltage of the fuel cell.
Dotted line 2 (-Δ-) was the case without the ceramic seal portion. Operation was started with a load current of 50 mA/cm 2 , but since both showed an upward trend, operation was continued at 100 mA/cm 2 after 60 hours. Solid line 1 shows no voltage drop for more than 400 hours when a ceramic seal is provided, but dotted line 2 shows a sudden drop in voltage after 200 hours after the start of operation and 250 hours. After some time, battery voltage could no longer be obtained. The decrease in battery output when the ceramic seal was not provided was thought to be due to a crossover phenomenon due to electrolyte leakage, and the effect of providing the ceramic seal in preventing electrolyte leakage was clear.

また、セラミツクとしてα−アルミナと酸化ジ
ルコニウムとの混合物を使用し、上記と同様にし
て溶融炭酸塩型燃料電池を製作したが、電解質漏
洩がなく電池の寿命は400時間以上であつた。
In addition, a molten carbonate fuel cell was fabricated in the same manner as above using a mixture of α-alumina and zirconium oxide as the ceramic, but there was no electrolyte leakage and the cell life was over 400 hours.

尚、大型燃料電池を製作する場合は大型の電解
質板が必要になる。大型の電解質板は粉末又は繊
維状のγ−リチウムアルミネートの混合物からド
クターブレード法又はフイルタープレス法で電解
質マトリツクス(保持材)を作り、これに炭酸リ
チウムと炭酸カリの混合物を含浸して作ることが
できた。
In addition, when manufacturing a large-sized fuel cell, a large electrolyte plate is required. Large electrolyte plates are made by making an electrolyte matrix (retention material) from a mixture of powdered or fibrous γ-lithium aluminate using the doctor blade method or filter press method, and impregnating this with a mixture of lithium carbonate and potassium carbonate. was completed.

実施例 2 電極板にセパレータを取り付けたものの周縁
で、電極板よりはみ出したセパレータ部分にセラ
ミツク枠(内寸112mm平方、外寸142mm平方、厚さ
2mm)を拡散接合により接合し、そのセラミツク
枠内に実施例1と同様の電解質板(110mm平方、
厚さ3mm)を設置し、この電解質板の上に電極板
にセパレータを取り付けたものを設置し、高温で
加圧して上下のセパレータの間の隙間をセラミツ
クでシールした。この時、セラミツク枠の厚さを
電解質板の厚さより薄くしたのは、高温加圧によ
り電解質板が圧縮されるからであつた。尚、負電
極板、正電極板は実施例1と同様のものを使用し
た。この得られた溶融炭酸塩型燃料電池を連続作
動実験したところ、電解質漏洩はなく電力出力は
400時間以上であつた。
Example 2 A ceramic frame (inner dimension 112 mm square, outer dimension 142 mm square, thickness 2 mm) was bonded by diffusion bonding to the separator part that protruded from the electrode plate at the periphery of the separator attached to the electrode plate, and the inside of the ceramic frame was An electrolyte plate similar to Example 1 (110 mm square,
An electrode plate with a separator attached was placed on top of this electrolyte plate, and the gap between the upper and lower separators was sealed with ceramic by applying pressure at high temperature. At this time, the reason why the thickness of the ceramic frame was made thinner than that of the electrolyte plate was because the electrolyte plate would be compressed by high-temperature pressurization. Note that the same negative electrode plate and positive electrode plate as in Example 1 were used. Continuous operation experiments of this molten carbonate fuel cell revealed that there was no electrolyte leakage and the power output was
It took over 400 hours.

〔発明の効果〕〔Effect of the invention〕

上記から明らかなように、本発明の溶融炭酸塩
型燃料電池は電解質板の周縁端部がセラミツクシ
ール材をセパレータと接合することによつてシー
ルされているので、電解質板から電解質の漏洩及
び反応ガスの漏洩が防止され電池性能を向上する
ことができる。またクロスオーバ現象がなく、電
池の長寿命化をはかることができる。また、セラ
ミツクシールを設けることにより電解質板の補強
となり機械的強度が増大する。
As is clear from the above, in the molten carbonate fuel cell of the present invention, the peripheral edge of the electrolyte plate is sealed by joining a ceramic sealing material to the separator, so that leakage of electrolyte from the electrolyte plate and reaction are prevented. Gas leakage is prevented and battery performance can be improved. Furthermore, there is no crossover phenomenon, and the life of the battery can be extended. Further, by providing a ceramic seal, the electrolyte plate is reinforced and its mechanical strength is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の溶融炭酸塩型燃料電池の構成
を示した断面図であり、第2図は時間と電池電圧
の関係で、実線1は本発明のセラミツクシール部
がある場合、点線2はセラミツクシール部がない
場合を示す図である。 1,1′…セパレータ、2,2′…電極板、3…
電解質板、4…セラミツクシール部。
FIG. 1 is a cross-sectional view showing the structure of the molten carbonate fuel cell of the present invention, and FIG. 2 shows the relationship between time and cell voltage. 2 is a diagram showing a case where there is no ceramic seal portion. 1, 1'... Separator, 2, 2'... Electrode plate, 3...
Electrolyte plate, 4...ceramic seal part.

Claims (1)

【特許請求の範囲】[Claims] 1 外側にセパレータを取り付けた負電極板と外
側にセパレータを取り付けた正電極板との間に電
解質を保持した電解質板を挾んだ燃料電池におい
て、前記正負電極板の外側に該正負電極板よりも
大きいセパレータが取り付けられ、前記電解質板
の周縁端部の〓間がセラミツクシール材でかつ該
セラミツクシール材が該セパレータと接合される
ことによつてシールされていることを特徴とする
溶融炭酸塩型燃料電池。
1. In a fuel cell in which an electrolyte plate holding an electrolyte is sandwiched between a negative electrode plate with a separator attached to the outside and a positive electrode plate with a separator attached to the outside, A molten carbonate characterized in that a large separator is attached to the electrolyte plate, and a space between the peripheral edges of the electrolyte plate is sealed by a ceramic sealing material and the ceramic sealing material is joined to the separator. type fuel cell.
JP59101708A 1984-05-22 1984-05-22 Fused carbonate fuel cell Granted JPS60246570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59101708A JPS60246570A (en) 1984-05-22 1984-05-22 Fused carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59101708A JPS60246570A (en) 1984-05-22 1984-05-22 Fused carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS60246570A JPS60246570A (en) 1985-12-06
JPH0449750B2 true JPH0449750B2 (en) 1992-08-12

Family

ID=14307804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59101708A Granted JPS60246570A (en) 1984-05-22 1984-05-22 Fused carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPS60246570A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178454A (en) * 1987-01-20 1988-07-22 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPH0652659B2 (en) * 1987-10-02 1994-07-06 株式会社日立製作所 Molten carbonate fuel cell
JPH0652660B2 (en) * 1987-10-02 1994-07-06 株式会社日立製作所 Molten carbonate fuel cell
KR100812105B1 (en) 2006-08-28 2008-03-12 한국과학기술연구원 Sealing composite for flat solid oxide fuel cell stack having high breaking-resistance and the fabrication method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887774A (en) * 1981-11-20 1983-05-25 Toshiba Corp Formation of electrolyte layer for fused carbonate fuel battery
JPS59128776A (en) * 1983-01-13 1984-07-24 Matsushita Electric Ind Co Ltd Molten salt battery
JPS6091567A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Fuel cell
JPS60180066A (en) * 1984-02-27 1985-09-13 Toshiba Corp Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887774A (en) * 1981-11-20 1983-05-25 Toshiba Corp Formation of electrolyte layer for fused carbonate fuel battery
JPS59128776A (en) * 1983-01-13 1984-07-24 Matsushita Electric Ind Co Ltd Molten salt battery
JPS6091567A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Fuel cell
JPS60180066A (en) * 1984-02-27 1985-09-13 Toshiba Corp Fuel cell

Also Published As

Publication number Publication date
JPS60246570A (en) 1985-12-06

Similar Documents

Publication Publication Date Title
JP3495654B2 (en) Cell tube seal structure
US4542079A (en) Fuel cell
JP7183529B2 (en) LAMINATED GREEN SHEET, ALL-SOLID SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
JP2995604B2 (en) Gas seal material for solid electrolyte fuel cells
JPH0449750B2 (en)
JP3550231B2 (en) Plate stack type solid oxide fuel cell and method of manufacturing the same
JP2004039573A (en) Sealing material for low-temperature operation solid oxide fuel cell
JP3238087B2 (en) Solid oxide fuel cell
JP2999653B2 (en) Solid electrolyte fuel cell
JP2771578B2 (en) Solid electrolyte fuel cell
JPH09115530A (en) Solid electrolytic fuel cell having mechanical seal structure
JPH039589B2 (en)
JP2944097B2 (en) Molten carbonate fuel cell
JPH07123046B2 (en) Molten carbonate fuel cell
JP3285856B2 (en) Solid oxide fuel cell
JPH0714591A (en) Gas seal structure of solid electrolytic fuel cell
JPH0766822B2 (en) Method for manufacturing electrode support plate in molten carbonate fuel cell
JPS63133457A (en) Fuel cell of molten carbonate
KR100215422B1 (en) Method of manufacturing material supporting electrolyte for mcfc
JPS62131479A (en) Molten carbonate fuel cell
JPS60180067A (en) Molten carbonate type fuel cell and its manufacturing method
JPH036624B2 (en)
JP2997518B2 (en) Molten carbonate fuel cell
JPH0412467A (en) High-temperature type fuel cell
JPH0230067A (en) Manufacture of fused carbonate fuel battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term