JP3550231B2 - Plate stack type solid oxide fuel cell and method of manufacturing the same - Google Patents

Plate stack type solid oxide fuel cell and method of manufacturing the same Download PDF

Info

Publication number
JP3550231B2
JP3550231B2 JP28321895A JP28321895A JP3550231B2 JP 3550231 B2 JP3550231 B2 JP 3550231B2 JP 28321895 A JP28321895 A JP 28321895A JP 28321895 A JP28321895 A JP 28321895A JP 3550231 B2 JP3550231 B2 JP 3550231B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell
oxide fuel
solid oxide
gas separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28321895A
Other languages
Japanese (ja)
Other versions
JPH09129251A (en
Inventor
政明 泉
直之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP28321895A priority Critical patent/JP3550231B2/en
Publication of JPH09129251A publication Critical patent/JPH09129251A/en
Application granted granted Critical
Publication of JP3550231B2 publication Critical patent/JP3550231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は平板積層型の固体電解質型燃料電池及びその製造方法に係り、特に、ZrO 系固体電解質を介して燃料極と空気極とを配置してなる平板型セルと、MgO及びMgAl を主成分とするガスセパレータとを交互に積層してなる平板積層型の固体電解質型燃料電池及びその製造方法に関する。
【0002】
【従来の技術】
平板積層型の固体電解質型燃料電池は、図1に示すようにセル5、集電板2,4及びガスセパレータ3を交互に積層した構造である。この固体電解質型燃料電池1の繰り返し最小ユニットは、図2に示す通りであり、セル5は、ZrO 系セラミックスよりなる電解質5aと、その両面に設けられた電極5b又は電極を厚くした構造の集電体とで構成されている。電極5bは電解質5aの全面を覆わず、セル5の周縁部は電解質5a部分が露出した構造である。電極5bのうち、燃料ガス側の電極は、NiとZrO 系セラミックスとのサーメットで構成され、また、空気側の電極はランタン及びマンガンを主成分とするペロブスカイト構造のセラミックスで構成されている。
【0003】
一方、ガスセパレータ3は、MgO及びMgAl を主成分とするセパレータ本体6、積層用枠体7及びガス流通用枠体8と、セパレータ本体6に対し接合されたランタンクロマイト製電子流路材9とで構成されている。積層用枠体7は細帯形状のものである。ガス流通用枠体8は、細帯形状部8aに対し円盤形状部8bを接合したものである。
【0004】
固体電解質型燃料電池1の作動に当り、ガスは、ガスセパレータ3のガス流通用枠体8を通りセル5の全面に供給されるが、その際、ガスセパレータ3の側面のガスシール枠体7からのガス漏れを防ぐ必要がある。このガス漏れ防止のための、ガスセパレータ3のガスシール枠体7とセル5の周縁部とのガスシール法として、従来、セル5(周縁の電解質5の露出面)とガスセパレータ3(ガスシール枠体7)との間に、ガラスを主成分とする接合材料を介在させ、発電時の約1000℃の高温下でガラスを溶融させることによりガスシールを達成していた。
【0005】
【発明が解決しようとする課題】
セル5とガスセパレータ3とをガラス系材料で接着してガスシールする場合、以下のような問題点がある。
【0006】
▲1▼ 高い接着強度が得られず、このため、固体電解質型燃料電池の積層構造が崩れないようにある程度の強さで常に電池を拘束する必要がある。
▲2▼ ガラス材料は、1000℃の長期使用において、成分が蒸発したり、非晶質から結晶質に変化したりして、材料の変質が生じ、安定した特性が得られない。
▲3▼ 数回のヒートサイクルに曝されると、十分なガスシール性を保つことができなくなる。
【0007】
本発明は、上記従来の問題点を解決し、固体電解質型燃料電池を構成するセルと、MgO及びMgAl を主成分とするガスセパレータとを、強固に接合し、約1000℃の長期使用においても安定したガスシール性と耐ヒートサイクル性を有する固体電解質型燃料電池及びこのような固体電解質型燃料電池を製造する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の固体電解質型燃料電池は、ZrO系固体電解質を介して燃料極と空気極とを配置してなる平板型セルと、MgO及びMgAlを主成分とするガスセパレータとを交互に積層してなる固体電解質型燃料電池において、前記セルの固体電解質とガスセパレータとは、MgO、MgAl及びZrOを主成分とする接合材層を介して接合されていることを特徴とする。
【0009】
このような固体電解質型燃料電池は、本発明の方法に従って、接合材粉末を含むスラリーをガスセパレータ及びセルの被接合面に塗布してガスセパレータとセルとを重ね合せ、加圧下、焼成することにより、或いは、ガスセパレータ及びセルの被接合面間に接合材のグリーンシートを介してガスセパレータとセルとを重ね合せ、加圧下、焼成することにより製造される。
【0010】
本発明においては、接合時の焼成中に、ガスセパレータとセルの被接合面間のスラリー又はグリーンシートに含まれているセラミックス粉末の焼結が進み、セルとガスセパレータとを強固に接着すると共に、接合層自身も緻密になり、セルとガスセパレータとはこの緻密な接合層を介して強固に接合される。
【0011】
本発明では、セルとガスセパレータとを接合する接合層は元々高温において安定なセラミックス材料よりなるため、ガラス材料のような燃料電池運転中の変質は生じにくい。しかも、このセラミックス材料には、セルの電解質構成材料であるZrO とガスセパレータの構成材料であるMgO及びMgAl を含んでいるため、セル及びガスセパレータの両方に対して良好な親和性を有しており、接合部の熱膨張係数は、セル及びガスセパレータの熱膨張係数とも良く一致する。
【0012】
以上の効果により、高い接合強度とガスシール性、更に耐ヒートサイクル性にも優れた固体電解質型燃料電池を提供できる。
【0013】
なお、本発明において、接合材は、MgO20〜40重量%、MgAl 25〜55重量%及びZrO 5〜50重量%を含むことが好ましく、また、場合により、CaO0.2〜20重量%及び/又はY 0.5〜15重量%を含んでいても良い。
【0014】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0015】
本発明においては、図1,2に示すようなMgO及びMgAl を主成分とするスピネル系セラミックス焼結体製のガスセパレータ3の枠体7,8(円盤形状部8b)と、セル5のZrO 系セラミックス焼結体製電解質5aとの接合に当り、MgO、MgAl 及びZrO を主成分とする接合材、好ましくは、MgO20〜40重量%、MgAl 25〜55重量%及びZrO 5〜50重量%を含み、場合により、更に、CaO0.2〜20重量%及び/又はY 0.5〜15重量%を含む接合材を用いる。
【0016】
接合材のMgO、MgAl 及びZrO 組成は、MgO及びMgAl を主成分とするガスセパレータ及びZrO 系電解質に対する熱膨張係数を適正にすると共に、良好な親和性を得るために上記範囲とするのが好ましい。
【0017】
更に、CaO0.2〜20重量%を含有する場合には、接合材の焼結を促進する効果が得られ、また、Y を含有する場合にも同様の効果が得られる。
【0018】
このような接合材でガスセパレータとセルとを接合するには、例えば、粒径数μm以下の、MgO、MgAl 及びZrO の各粉末、場合により更に、CaO及び/又はY 粉末を所定割合で混合し、得られたセラミックス混合粉末に、ポリビニルブチラール等の結合剤、ジブチルフタレート等の可塑剤、ノニオン系界面活性剤等の分散剤、エタノール等の溶媒等を添加して、例えば、下記配合のスラリーとしたものを、被接合面にスプレー等により乾燥後の塗布量で0.01〜0.1g/cm となるように塗布して被接合面同志を当接し、その後乾燥した後、0.1〜0.5kg/cm 程度の加圧下、1200〜1500℃の温度で焼成する。
【0019】
接合用スラリー配合
セラミックス混合粉末:100重量部
結合剤:5〜20重量部
可塑剤:5〜20重量部
分散剤:0.5〜3重量部
溶 媒:100〜200ml
或いは、上記接合用スラリーを、ドクターブレード装置等で厚さ数十〜数百μmのシートに成形したグリーンシートを用い、このグリーンシートを被接合面間に介在させて、上記と同様に加圧下焼成することにより製造することもできる。
【0020】
なお、本発明において、接合されるガスセパレータの枠体は、MgO及びMgAl を主成分とするセラミックス焼成体よりなるが、具体的なセラミックス組成は次の通りである。
【0021】
スピネル系セラミックス焼成体組成(重量%)
MgO:42
MgAl :58
また、セルの電解質を構成するZrO 系セラミックスは、通常、Y 安定化ZrO (YSZ)であり、例えば、次のような組成が主に採用される。
【0022】
YSZ焼結体組成(mol%)
ZrO :92
:8
【0023】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0024】
実施例1
粒径5μm以下のMgO、MgAl 及びZrO の各粉末、場合により更にCaO、Y の粉末を表1の割合で秤量し、この粉末100gに対して、バインダー(ポリビニルブチラール)12g、可塑剤(ジブチルフタレート)10g、分散剤(ノニオン系界面活性剤)0.5gを溶媒(トルエン/エタノール)100mlに溶かした溶液と該粉末とを十分混練してスラリー化した。この接合用スラリーを、MgO−MgAl 系セラミックス焼結体製ガスセパレータ枠体(組成:MgO:42重量%,MgAl :58%)とセルのYSZ焼結体製電解質(組成:ZrO =92mol%,Y =8mol%)の各々の被接合面に刷毛塗りし(乾燥後の塗布量0.02g/cm )、図2に示す如く、各部材を貼り合せ、乾燥後、0.3kg/cm の加圧下、1400℃の温度で1時間焼成して接合を行った。
【0025】
得られた接合体を接合部を含むように切断して4点曲げ試験を行って、接合部の強度を調べたところ、本発明の組成範囲内のものは、いずれも表1に示す如く、高い接合強度が得られたことが確認された。
【0026】
また、各接合部のガスシール性能を調べたところ、表1に示す如く、本発明の組成範囲内のものは、実用上十分な性能が得られた。
【0027】
更に、本発明組成の接合材を用いた接合体について、燃料電池作動温度の1000℃に4回曝したが、強度の低下及びガス透過量の増加はなく、耐ヒートサイクル性にも優れた良好な接合体であることが確認された。
【0028】
なお、No. 6〜9は本発明の好適組成をはずれるものであるが、No. 7の条件では、接合が不可能であり、No. 6,8,9の条件では、接合強度及びガス透過量がかなり劣るものであった。
【0029】
【表1】

Figure 0003550231
【0030】
【発明の効果】
以上詳述した通り、本発明の固体電解質型燃料電池及びその製造方法によれば、セルと、MgO及びMgAl を主成分とするガスセパレータとを強固に接合して、約1000℃の長期使用においても安定したガスシール性と耐ヒートサイクル性を有する固体電解質型燃料電池を提供することができる。
【図面の簡単な説明】
【図1】固体電解質型燃料電池の一実施例を示す分解斜視図である。
【図2】ガスセパレータとセルの構成を示す分解斜視図である。
【符号の説明】
1 固体電解質型燃料電池
2,4 集電板
3 ガスセパレータ
5 セル
6 セパレータ本体
7 積層用枠体
8 ガス流通用枠体
9 電子流路材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flat plate type solid electrolyte fuel cell and a method of manufacturing the same, and more particularly, to a flat plate type cell in which a fuel electrode and an air electrode are arranged via a ZrO 2 -based solid electrolyte, and MgO and MgAl 2 O The present invention relates to a flat-plate stacked solid oxide fuel cell obtained by alternately stacking gas separators containing 4 as a main component and a method of manufacturing the same.
[0002]
[Prior art]
As shown in FIG. 1, the flat-plate stacked solid oxide fuel cell has a structure in which cells 5, current collectors 2, 4 and gas separators 3 are alternately stacked. The minimum unit of repetition of the solid oxide fuel cell 1 is as shown in FIG. 2, and the cell 5 has a structure in which an electrolyte 5a made of ZrO 2 ceramic and electrodes 5b or electrodes provided on both surfaces thereof are thickened. And a current collector. The electrode 5b does not cover the entire surface of the electrolyte 5a, and the periphery of the cell 5 has a structure in which the portion of the electrolyte 5a is exposed. Of the electrodes 5b, the electrode on the fuel gas side is made of a cermet of Ni and ZrO 2 -based ceramics, and the electrode on the air side is made of a perovskite-structured ceramic mainly containing lanthanum and manganese.
[0003]
On the other hand, the gas separator 3 includes a separator body 6 mainly composed of MgO and MgAl 2 O 4 , a laminating frame 7 and a gas flowing frame 8, and a lanthanum chromite electronic flow passage joined to the separator body 6. And material 9. The laminating frame 7 has a narrow band shape. The gas distribution frame 8 is formed by joining a disk-shaped portion 8b to a narrow band-shaped portion 8a.
[0004]
In the operation of the solid oxide fuel cell 1, gas is supplied to the entire surface of the cell 5 through the gas distribution frame 8 of the gas separator 3. At this time, the gas seal frame 7 on the side of the gas separator 3 is supplied. It is necessary to prevent gas leakage from As a gas sealing method between the gas seal frame 7 of the gas separator 3 and the peripheral portion of the cell 5 to prevent this gas leakage, conventionally, the cell 5 (the exposed surface of the electrolyte 5 at the peripheral edge) and the gas separator 3 (the gas seal A gas seal is achieved by interposing a bonding material mainly composed of glass between the frame 7) and melting the glass at a high temperature of about 1000 ° C. during power generation.
[0005]
[Problems to be solved by the invention]
When the cell 5 and the gas separator 3 are gas-sealed by bonding with a glass-based material, there are the following problems.
[0006]
{Circle around (1)} A high adhesive strength cannot be obtained, and therefore, it is necessary to always restrain the cell with a certain strength so that the laminated structure of the solid oxide fuel cell does not collapse.
{Circle around (2)} When the glass material is used at 1000 ° C. for a long period of time, the components evaporate or change from amorphous to crystalline, resulting in deterioration of the material, and stable characteristics cannot be obtained.
{Circle around (3)} When exposed to several heat cycles, sufficient gas sealing properties cannot be maintained.
[0007]
The present invention solves the above-mentioned conventional problems, and tightly joins a cell constituting a solid oxide fuel cell and a gas separator mainly composed of MgO and MgAl 2 O 4 to a long term of about 1000 ° C. An object of the present invention is to provide a solid oxide fuel cell having stable gas sealing properties and heat cycle resistance even in use, and a method for manufacturing such a solid oxide fuel cell.
[0008]
[Means for Solving the Problems]
The solid oxide fuel cell of the present invention alternates between a flat plate cell in which a fuel electrode and an air electrode are arranged via a ZrO 2 -based solid electrolyte, and a gas separator mainly composed of MgO and MgAl 2 O 4. Wherein the solid electrolyte and the gas separator of the cell are joined via a joining material layer mainly composed of MgO, MgAl 2 O 4 and ZrO 2. And
[0009]
According to the method of the present invention, such a solid oxide fuel cell is obtained by applying a slurry containing a bonding material powder to a surface to be bonded of a gas separator and a cell, stacking the gas separator and the cell, and firing under pressure. Alternatively, the gas separator and the cell are overlapped between the surfaces to be joined of the gas separator and the cell via a green sheet of a bonding material, and then fired under pressure.
[0010]
In the present invention, during firing at the time of joining, sintering of the ceramic powder contained in the slurry or green sheet between the gas separator and the surface to be joined of the cell proceeds, and the cell and the gas separator are firmly adhered. Also, the bonding layer itself becomes dense, and the cell and the gas separator are firmly bonded via this dense bonding layer.
[0011]
In the present invention, since the bonding layer for bonding the cell and the gas separator is originally made of a ceramic material that is stable at a high temperature, deterioration such as a glass material during operation of the fuel cell hardly occurs. In addition, since this ceramic material contains ZrO 2 which is an electrolyte constituent material of the cell and MgO and MgAl 2 O 4 which are constituent materials of the gas separator, it has a good affinity for both the cell and the gas separator. , And the thermal expansion coefficient of the joint part also matches well with the thermal expansion coefficients of the cell and the gas separator.
[0012]
By the above effects, it is possible to provide a solid oxide fuel cell excellent in high bonding strength, gas sealing property and heat cycle resistance.
[0013]
In the present invention, the bonding material, MgO20~40 wt%, preferably contains MgAl 2 O 4 25 to 55% by weight and ZrO 2 5 to 50 wt%, and optionally, CaO0.2~20 weight % and / or Y 2 O 3 may contain 0.5 to 15 wt%.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0015]
In the present invention, as shown in FIGS. 1 and 2 , frames 7 and 8 (disc-shaped portions 8b) of a gas separator 3 made of a sintered body of spinel ceramics containing MgO and MgAl 2 O 4 as main components, 5 in bonding with the electrolyte 5a made of a ZrO 2 -based ceramic sintered body, a bonding material containing MgO, MgAl 2 O 4 and ZrO 2 as main components, preferably 20 to 40% by weight of MgO and 25 to 25% of MgAl 2 O 4 comprises 55 wt% and ZrO 2 5 to 50 wt%, optionally, further using CaO0.2~20% by weight and / or Y 2 O 3 bonding agent containing 0.5 to 15 wt%.
[0016]
The composition of MgO, MgAl 2 O 4 and ZrO 2 of the bonding material is to make the thermal expansion coefficient appropriate for the gas separator and the ZrO 2 based electrolyte containing MgO and MgAl 2 O 4 as main components and to obtain good affinity. It is preferable to set the above range.
[0017]
Furthermore, when CaO is contained in an amount of 0.2 to 20% by weight, the effect of accelerating the sintering of the joining material is obtained, and when Y 2 O 3 is contained, the same effect is obtained.
[0018]
In order to join the gas separator and the cell with such a joining material, for example, powders of MgO, MgAl 2 O 4 and ZrO 2 having a particle size of several μm or less, and optionally further CaO and / or Y 2 O 3 powders are mixed in a predetermined ratio, and a binder such as polyvinyl butyral, a plasticizer such as dibutyl phthalate, a dispersant such as a nonionic surfactant, a solvent such as ethanol are added to the obtained ceramic mixed powder. For example, a slurry having the following composition is applied to the surfaces to be joined by spraying or the like so that the coating amount after drying is 0.01 to 0.1 g / cm 2, and the surfaces to be joined are brought into contact with each other, Then, after drying, baking is performed at a temperature of 1200 to 1500 ° C. under a pressure of about 0.1 to 0.5 kg / cm 2 .
[0019]
Mixing of slurry for joining Ceramic mixed powder: 100 parts by weight Binder: 5 to 20 parts by weight Plasticizer: 5 to 20 parts by weight Dispersant: 0.5 to 3 parts by weight Solvent: 100 to 200 ml
Alternatively, a green sheet obtained by forming the bonding slurry into a sheet having a thickness of several tens to several hundreds μm by a doctor blade device or the like is used, and the green sheet is interposed between the surfaces to be bonded, and is pressed under the same pressure as described above. It can also be manufactured by firing.
[0020]
In the present invention, the frame body of the gas separator to be joined is made of a fired ceramic body containing MgO and MgAl 2 O 4 as main components. The specific ceramic composition is as follows.
[0021]
Composition of sintered body of spinel ceramics (% by weight)
MgO: 42
MgAl 2 O 4 : 58
The ZrO 2 -based ceramic constituting the electrolyte of the cell is usually Y 2 O 3 -stabilized ZrO 2 (YSZ). For example, the following composition is mainly employed.
[0022]
YSZ sintered body composition (mol%)
ZrO 2 : 92
Y 2 O 3 : 8
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0024]
Example 1
Powders of MgO, MgAl 2 O 4 and ZrO 2 having a particle size of 5 μm or less, and optionally powders of CaO and Y 2 O 3 were weighed at the ratio shown in Table 1, and 100 g of this powder was weighed with respect to a binder (polyvinyl butyral). A solution in which 12 g, 10 g of a plasticizer (dibutyl phthalate), and 0.5 g of a dispersant (nonionic surfactant) were dissolved in 100 ml of a solvent (toluene / ethanol) was sufficiently kneaded with the powder to form a slurry. This joining slurry is mixed with a gas separator frame (composition: MgO: 42% by weight, MgAl 2 O 4 : 58%) made of a MgO—MgAl 2 O 4 ceramic sintered body and a YSZ sintered body electrolyte (composition) of a cell. : ZrO 2 = 92 mol%, Y 2 O 3 = 8 mol%) on each surface to be joined with a brush (application amount after drying 0.02 g / cm 2 ), and as shown in FIG. After drying, firing was performed at a temperature of 1400 ° C. for 1 hour under a pressure of 0.3 kg / cm 2 to perform bonding.
[0025]
The obtained joined body was cut so as to include the joined portion, and a four-point bending test was performed to check the strength of the joined portion. It was confirmed that high joining strength was obtained.
[0026]
In addition, when the gas sealing performance of each joint was examined, as shown in Table 1, those having a composition within the range of the present invention exhibited sufficient performance for practical use.
[0027]
Further, the bonded body using the bonding material of the present invention was exposed to a fuel cell operating temperature of 1000 ° C. four times, but there was no decrease in strength and no increase in gas permeation, and the heat cycle resistance was excellent. It was confirmed that it was a conjugate.
[0028]
In addition, No. Nos. 6 to 9 deviate from the preferred composition of the present invention. Under the condition of No. 7, joining was impossible, Under the conditions of 6, 8, and 9, the bonding strength and the gas permeation amount were considerably inferior.
[0029]
[Table 1]
Figure 0003550231
[0030]
【The invention's effect】
As described in detail above, according to the solid oxide fuel cell and the method for manufacturing the same of the present invention, the cell and the gas separator containing MgO and MgAl 2 O 4 as the main components are firmly joined, A solid oxide fuel cell having stable gas sealing properties and heat cycle resistance even in long-term use can be provided.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing one embodiment of a solid oxide fuel cell.
FIG. 2 is an exploded perspective view showing a configuration of a gas separator and a cell.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 solid oxide fuel cells 2, 4 current collector 3 gas separator 5 cell 6 separator body 7 stacking frame 8 gas distribution frame 9 electron flow path material

Claims (5)

ZrO系固体電解質を介して燃料極と空気極とを配置してなる平板型セルと、MgO及びMgAlを主成分とするガスセパレータとを交互に積層してなる固体電解質型燃料電池において、前記セルの固体電解質とガスセパレータとは、MgO、MgAl及びZrOを主成分とする接合材層を介して接合されていることを特徴とする平板積層型の固体電解質型燃料電池。A solid electrolyte fuel cell in which a flat plate cell in which a fuel electrode and an air electrode are arranged via a ZrO 2 -based solid electrolyte and a gas separator containing MgO and MgAl 2 O 4 as main components are alternately stacked. Wherein the solid electrolyte of the cell and the gas separator are joined via a joining material layer mainly composed of MgO, MgAl 2 O 4 and ZrO 2 , wherein the solid electrolyte is a flat plate type solid electrolyte fuel. battery. 請求項1の固体電解質型燃料電池において、前記接合材は、MgO20〜40重量%、MgAl 25〜55重量%及びZrO 5〜50重量%を含むことを特徴とする平板積層型の固体電解質型燃料電池。In the solid electrolyte type fuel cell according to claim 1, wherein the bonding material, MgO20~40 wt%, of the flat plate laminate which comprises a MgAl 2 O 4 25 to 55% by weight and ZrO 2 5 to 50 wt% Solid oxide fuel cell. 請求項2の固体電解質型燃料電池において、前記接合材は、更に、CaO0.2〜20重量%及び/又はY 0.5〜15重量%を含むことを特徴とする平板積層型の固体電解質型燃料電池。In the solid electrolyte type fuel cell according to claim 2, wherein the bonding material is further a flat plate laminate which comprises a CaO0.2~20% by weight and / or Y 2 O 3 0.5 to 15 wt% Solid oxide fuel cell. 請求項1ないし3のいずれか1項に記載の固体電解質型燃料電池を製造する方法であって、接合材粉末を含むスラリーをガスセパレータ及びセルの被接合面に塗布してガスセパレータとセルとを重ね合せ、加圧下で焼成することを特徴とする平板積層型の固体電解質型燃料電池の製造方法。A method for manufacturing a solid oxide fuel cell according to any one of claims 1 to 3, wherein a slurry containing a bonding material powder is applied to a surface to be bonded of the gas separator and the cell, and the gas separator and the cell are formed. Are laminated and fired under pressure to produce a flat-plate type solid oxide fuel cell. 請求項1ないし3のいずれか1項に記載の固体電解質型燃料電池を製造する方法であって、ガスセパレータ及びセルの被接合面間に接合材のグリーンシートを介してガスセパレータとセルとを重ね合せ、加圧下で焼成することを特徴とする平板積層型の固体電解質型燃料電池の製造方法。A method for producing a solid oxide fuel cell according to any one of claims 1 to 3, wherein the gas separator and the cell are interposed between the surfaces to be joined of the gas separator and the cell via a green sheet of a bonding material. A method for producing a flat-plate stacked solid oxide fuel cell, comprising stacking and firing under pressure.
JP28321895A 1995-10-31 1995-10-31 Plate stack type solid oxide fuel cell and method of manufacturing the same Expired - Fee Related JP3550231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28321895A JP3550231B2 (en) 1995-10-31 1995-10-31 Plate stack type solid oxide fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28321895A JP3550231B2 (en) 1995-10-31 1995-10-31 Plate stack type solid oxide fuel cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09129251A JPH09129251A (en) 1997-05-16
JP3550231B2 true JP3550231B2 (en) 2004-08-04

Family

ID=17662636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28321895A Expired - Fee Related JP3550231B2 (en) 1995-10-31 1995-10-31 Plate stack type solid oxide fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3550231B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001284479B2 (en) 2000-09-08 2005-05-12 Nippon Steel Corporation Ceramic/metal composite article, composite structure for transporting oxide ion, and composite article having sealing property
JP4640906B2 (en) * 2002-12-26 2011-03-02 日本特殊陶業株式会社 Laminated body and solid oxide fuel cell
US7625648B2 (en) 2006-08-22 2009-12-01 Praxair Technology, Inc. Electrochemical cell assembly
KR101579308B1 (en) 2008-02-25 2015-12-21 가부시키가이샤 노리타케 캄파니 리미티드 Ceramic product and ceramic member bonding method
JP5269621B2 (en) * 2009-01-07 2013-08-21 株式会社ノリタケカンパニーリミテド Oxygen ion conduction module and conductive bonding material
JP4864170B1 (en) * 2011-08-29 2012-02-01 日本碍子株式会社 Solid oxide fuel cell
JP4864171B1 (en) * 2011-08-29 2012-02-01 日本碍子株式会社 Solid oxide fuel cell
JP2013258157A (en) * 2013-08-26 2013-12-26 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell

Also Published As

Publication number Publication date
JPH09129251A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
JP5231569B2 (en) Multilayer glass-ceramic seal for fuel cells
JP5451653B2 (en) Gas seal material
KR20070051709A (en) Method and materials for bonding electrodes to interconnect layers in solid oxide fuel cell stacks
JP2527876B2 (en) Method for manufacturing solid oxide fuel cell
JP2008226666A (en) Manufacturing method of solid electrolyte structure for all-solid battery, and manufacturing method of all-solid battery
JP3495654B2 (en) Cell tube seal structure
JP3550231B2 (en) Plate stack type solid oxide fuel cell and method of manufacturing the same
JP2995604B2 (en) Gas seal material for solid electrolyte fuel cells
JPH01197972A (en) Plate shaped solid electrolyte type fuel cell
JP2774227B2 (en) Method for joining solid oxide fuel cell stack
JP3238087B2 (en) Solid oxide fuel cell
JPH09306514A (en) Manufacture of solid electrolyte fuel cell
JP3169694B2 (en) Sealing material for solid oxide fuel cell and sealing method
JP2000243405A (en) Manufacture of solid electrolyte fuel cell
JPH04342439A (en) Sealing material for solid electrolytic type fuel cell and method for sealing
JP3707155B2 (en) Solid oxide fuel cell
JP3185360B2 (en) Joint structure between yttrium stabilized zirconia
JP3355075B2 (en) Solid oxide fuel cell
JP3285856B2 (en) Solid oxide fuel cell
JP3355078B2 (en) Solid oxide fuel cell
JP3070432B2 (en) Solid oxide fuel cell
JP3285779B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3116504B2 (en) Solid oxide fuel cell
JPH0388273A (en) Plane plate type solid electrolyte fuel cell
JP3281814B2 (en) Solid oxide fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees