JP3707155B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP3707155B2
JP3707155B2 JP26187596A JP26187596A JP3707155B2 JP 3707155 B2 JP3707155 B2 JP 3707155B2 JP 26187596 A JP26187596 A JP 26187596A JP 26187596 A JP26187596 A JP 26187596A JP 3707155 B2 JP3707155 B2 JP 3707155B2
Authority
JP
Japan
Prior art keywords
separator
solid electrolyte
bonding agent
electrolyte membrane
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26187596A
Other languages
Japanese (ja)
Other versions
JPH10106596A (en
Inventor
化冰 周
浩明 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP26187596A priority Critical patent/JP3707155B2/en
Publication of JPH10106596A publication Critical patent/JPH10106596A/en
Application granted granted Critical
Publication of JP3707155B2 publication Critical patent/JP3707155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質膜とセパレータのガスシール部が接合剤で接合された固体電解質型燃料電池に関する。
【0002】
【従来の技術】
平板型の固体電解質型燃料電池は、図1に示すように、電池の最小単位としてのセル1が、三層膜2aとそれを両側から挟むセパレータ3a,3bにより構成されている。三層膜2aは、燃料極4、固体電解質膜5及び空気極6の各層からなり、外部から供給される燃料ガス(水素)及び酸化ガス(空気)と反応を起こし、電気を発生する。この固体電解質膜5の材料には、一般にイットリア安定化ジルコニア(YSZ)が用いられる。
【0003】
三層膜2a,2bは、直列に接続、積層されて大きな電圧を得るが、セパレータ3a,3bが電子伝導体として三層膜2aと三層膜2bを仕切り、また、燃料極4に入る燃料ガス(水素)と空気極6に入る酸化ガス(空気)とが混じるのを防いでいる。このようなセパレータの材料には、一般にランタンクロマイト(LaCrO3 )系セラミックが用いられる。
【0004】
セパレータ3a,3bの両面には、それぞれ面に沿って互いに直角方向に一連の溝7a,7b,7c,7dが設けられ、燃料極4側は燃料ガス(水素)が、また、空気極6側は酸化ガス(空気)が通る流路になっている。
【0005】
そして、セパレータ3aの溝7bに平行な端縁部8a,8b、及びセパレータ3bの溝7cに平行な端縁部8c,8dが、三層膜2aを構成する固体電解質膜5の端縁部9a,9b及び9d,9cとそれぞれ接合される部分については、燃料ガス(水素)と酸化ガス(空気)を隔離して、ガスが混じるのを防ぐ必要がある。
【0006】
すなわち、このセパレ−タと固体電解質膜の接合部に、接合のために中間層を配する場合、その部材に必要とされる特性は、▲1▼緻密でガスを通さないこと、▲2▼酸化と還元のいずれの雰囲気においても安定であること、▲3▼熱膨張係数が被接合部の材料と近いこと、等が挙げられる。
【0007】
このため、従来は、イットリア安定化ジルコニア(YSZ)からなる固体電解質膜と、ランタンクロマイト(LaCrO3 )系セラミックからなるセパレータを、それぞれ別個に焼結させた後、両者の接合部にガスシール用ガラス系酸化物接合剤(ペースト)を中間層として介在させ接合していた。
【0008】
【発明が解決しようとする課題】
しかしながら、このガスシール用ガラス系酸化物接合剤に通常含まれているSiは、セパレータのランタンクロマイト(LaCrO3 )系セラミックの劣化を促進させるという問題があった。
【0009】
一般に、ランタンクロマイト(LaCrO3 )の焼結には1800℃の高温を必要とするため、これにCaまたはSrの酸化物を添加して、焼結温度を1600℃以下に低下させている。その際、添加したCaまたはSrの酸化物はLaCrO3 と反応し、CaCrO4 またはSrCrO4 が生じている。
【0010】
ところが、ガラス系酸化物の接合剤を用いて固体電解質とセパレータを接合する場合、ガラス中に含まれているSiO2 は、例えば前記CaCrO4 と反応して、機械的に脆いCa2 SiO4 が生成し、これがランタンクロマイト(LaCrO3 )焼結体を劣化させる原因になっていた。
【0011】
一方、これとは別に、セパレータ本体には、MgAl2 4 (スピネル)とMgOとを混合して緻密焼結した電気絶縁性の焼結体を用い、また、セパレータの電子流路にはランタンクロマイト(LaCrO3 )系焼結体を用いてこれらを組み合わせ、セパレータを構成する方法がある(特開平5−74470号公報)。この方法は、MgAl2 4 とMgOの混合割合を制御することによって、熱膨張係数を容易に調整でき、また、MgAl2 4 とMgOとの混合物は、ランタンクロマイト(LaCrO3 )系セラミックを大きく劣化させることがない。
【0012】
この場合、MgAl2 4 /MgO焼結体は、固体電解質膜とランタンクロマイト系(LaCrO3 )セラミックの接合において、その中間層として働いていると考えられる。しかしながら、この方法は、あらかじめ焼結されたMgAl24 /MgOセラミックを用いるので、接合形状に制約がある。
【0013】
そこで、本発明の目的は、イットリア安定化ジルコニア(YSZ)やランタンクロマイト(LaCrO3 )系セラミックを劣化させることなく、固体電解質膜とセパレータが良好に接合される固体電解質型燃料電池を提供することにある。
【0014】
【課題を解決するための手段】
本発明は、請求項1において、固体電解質型燃料電池は、固体電解質膜とセパレータとが、MgAl 2 4 、MgO及びCr 2 3 を5/95≦Cr 2 3 /(MgAl 2 4 +MgO)≦20/80の重量比で含む非ガラス系の無機酸化物接合剤で接合されていることを特徴とする。
【0017】
このように、本発明は、固体電解質膜とセパレータを、Siを含まない非ガラス系の無機酸化物接合剤、例えば、MgAl2 4 /MgOの混合物からなる接合剤を用いて焼結接合するため、Siによるセパレータのランタンクロマイト系セラミックへの影響がなく、セラミックの劣化がない。
【0018】
さらに、接合剤中にCrを一定の比率で存在させることにより、接合剤の焼結性が向上し、より緻密な接合を行うことができる。
【0019】
【発明の実施の形態】
次に、本発明の実施の形態を実施例に基づき説明する。
【0020】
始めに、イットリア安定化ジルコニア(YSZ)の粉末に、バインダー(ブチラール系樹脂)及び溶剤(トルエン及びエタノール)を所定量加え、これを混合してスラリーとした。そして、このスラリーからドクターブレード法で厚み約50μmの固体電解質膜用セラミックグリーンシートを作製した。
【0021】
次に、燃料極を作製するため、酸化ニッケル(NiO)とイットリア安定化ジルコニア(YSZ)の粉末を重量比6:4で混合したものに、バインダー(ブチラール系樹脂)と溶剤(トルエン及びエタノール)を所定量加えて混合し、スラリー化した。そして、このスラリーからドクターブレード法により、厚み約50μmの燃料極用セラミックグリーンシートを作製した。
【0022】
また、空気極を作製するため、Srを添加したランタンマンガナイト((La,Sr)MnO3 )の粉末に、バインダー(ブチラール系樹脂)と溶剤(トルエン及びエタノール)を所定量加えて混合し、スラリー化した。そして、このスラリーからドクターブレード法により、厚さ約50μmの空気極用セラミックグリーンシートを得た。
【0023】
そして、固体電解質膜用セラミックグリ−ンシートを数枚重ねたものの表裏面に、セパレータと接合される部分を残して、空気極用及び燃料極用のセラミックグリーンシート各1枚を配置して熱圧着し、空気極、燃料極及び固体電解質膜からなる三層膜のセラミックグリーンシート圧着体とした。
【0024】
続いて、この圧着体を1300℃の温度で2時間焼成し、三層膜のセラミック焼結体を得た。
【0025】
一方、セパレータは、Caを添加したランタンクロマイト((La,Ca)CrO3 )粉末を用いて鋳込み成形法で成形し、これを焼成して相対密度95%以上の焼結体として得た。なお、相対密度とは、理論密度を100としたときの実際密度をパーセントで表したものである。
【0026】
次に、接合剤を作製するために、まず、スピネル(MgAl2 4 )と酸化マグネシウム(MgO)の重量比が55/45の混合粉末を準備した。
【0027】
そして、酸化クロム(Cr2 3 )と先に準備したスピネルと酸化マグネシウムの混合物(MgAl2 4 +MgO)を、表1に示す割合(重量比:0/100〜25/75)で混合したものに、ワニスを添加してペースト状の接合剤を作製した。
【0028】
【表1】

Figure 0003707155
【0029】
次に、一対の前記ランタンクロマイト系焼結体のセパレータと前記三層膜の固体電解質膜とを、両者の接合部に前記接合剤を介して圧着した。
【0030】
このようにして構成した三層膜のセラミック積層体とセパレータからなる圧着体を、1300℃で2時間焼成した。
【0031】
また、比較のため、ガラス系酸化物の接合剤を作成するため、SiO2 系ガラスを準備し、これにワニスを添加してペースト状のガラス系酸化物接合剤を作製した。
【0032】
そして、一対の前記ランタンクロマイト系焼結体のセパレータと前記三層膜の固体電解質膜とを、両者の接合部にガラス系酸化物接合剤(SiO2 系ガラス接合剤)を介して圧着し、この圧着体を、1200℃で2時間焼成してセルを得た。
【0033】
図2はこのようにして得られたセルの側面図であり、(a)は燃料ガス(水素)が供給される側から、また、(b)は酸化ガス(空気)が供給される側からみた、セルの側面図である。同図において、3a,3bはセパレータ、4は燃料極、5は固体電解質膜、6は空気極、11a,11b,12c,12dは接合剤を示している。
【0034】
以上、得られたセルについて、イットリア安定化ジルコニア(YSZ)からなる固体電解質膜とランタンクロマイト(LaCrO3 )系セラミックからなるセパレータとの接合部を観察し、ガスシール部の接合剤の焼結性及び固体電解質膜とセパレータとの接合状態を確認した。
【0035】
また、このときの接合剤の相対密度を求めるために次のようにした。すなわち、Cr2 3 と(MgAl2 4 +MgO)を、表1に示す割合(重量比:0/100〜25/75)で混合したものに、バインダー(ブチラール系樹脂)と溶剤(トルエン及びエタノール)を加えてスラリーとし、ドクターブレード法でセラミックグリーンシートに成形した。そして、このセラミックグリーンシートを数枚重ねた成形体を、前述の固体電解質膜とセパレータを接合剤を介して焼成した同じ温度条件、時間で焼成し、得られた焼結体の密度を測定し、相対密度を求めた。
【0036】
さらに、接合後のセパレータのランタンクロマイト(LaCrO3 )系セラミックの劣化について、接合した3層膜とLaCrO3 焼結体との複合体を還元雰囲気中で熱処理し、Ca2 SiO4 が生成してひび割れが発生したかどうかを確認して劣化のありなしを評価した。
【0037】
以上の評価結果を表1に示す。
【0038】
表1からわかるように、試料No.1ないし試料No.6に用いた接合剤は、Siを含まないMgAl2 4 +MgOやMgAl2 4 +MgO+Cr2 3の非ガラス系無機酸化物からなり、この接合剤を用いた場合、ランタンクロマイト(LaCrO3 )系セラミックに劣化が見られなかった。
【0039】
また、前記非ガラス系無機酸化物の接合剤にCrを添加したものは、Cr23 と(MgAl24 +MgO)の比率が、5/95≦Cr23 /(MgAl24 +MgO)≦20/80の範囲において、接合剤の相対密度が高く、接合剤の焼結性、固体電解質膜とセパレータとの接合状態とも良好であり、範囲外において、固体電解質膜とセパレータとの接合状態は不良であった。
【0040】
なお、本実施例では、接合剤にペースト状のものを用いたが、Cr2 3 と (MgAl2 4 +MgO)との混合物に、バインダー(ブチラール系樹脂)と溶剤(トルエン及びエタノール)を加えてスラリーとし、ドクターブレード法でセラミックグリーンシートに成形したものを用いても同様の効果が得られる。
【0042】
【発明の効果】
以上の説明で明らかなように、本発明によれば、三層膜の固体電解質膜とセパレータの接合において、接合剤を緻密に焼結させることができるため、固体電解質膜とセパレータとの接合がより強固なものとなる。
【0043】
また、この接合剤は従来のガラス系接合剤と異なり、セパレータに用いるランタンクロマイト系セラミックの劣化を促進させない。
【0044】
したがって、固体電解質膜のイットリア安定化ジルコニア(YSZ)とセパレータのランタンクロマイト(LaCrO3 )系セラミックの接合部のガスシール性がより向上し、燃料電池の運転時の気密性、温度の対する信頼性及び耐久性に優れた固体電解質型燃料電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る固体電解質型燃料電池のセル構造を示す分解斜視図である。
【図2】(a)本発明に係る固体電解質型燃料電池のセルのガスシール部の構造を示す燃料ガス(水素)の供給側から見た側面図である。
(b)本発明に係る固体電解質型燃料電池のセルのガスシール部の構造を示す酸化ガス(空気)の供給側から見た側面図である。
【符号の説明】
1 セル
2a,2b 3層膜
3a,3b セパレータ
4 燃料極
5 固体電解質膜
6 空気極
7a,7b,7c,7d 溝
8a,8b,8c,8d セパレータの端縁部
9a,9b,9c,9d 固体電解質膜の端縁部
11a,11b,12c,12d 接合剤[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid oxide fuel cell in which a solid electrolyte membrane and a gas seal portion of a separator are joined with a joining agent.
[0002]
[Prior art]
As shown in FIG. 1, in the flat solid electrolyte fuel cell, a cell 1 as a minimum unit of the battery is composed of a three-layer film 2a and separators 3a and 3b sandwiching it from both sides. The three-layer membrane 2a is composed of a fuel electrode 4, a solid electrolyte membrane 5, and an air electrode 6, and reacts with fuel gas (hydrogen) and oxidizing gas (air) supplied from the outside to generate electricity. Generally, yttria-stabilized zirconia (YSZ) is used as the material of the solid electrolyte membrane 5.
[0003]
The three-layer membranes 2a and 2b are connected and stacked in series to obtain a large voltage, but the separators 3a and 3b partition the three-layer membrane 2a and the three-layer membrane 2b as electronic conductors, and also enter the fuel electrode 4 Mixing of gas (hydrogen) and oxidizing gas (air) entering the air electrode 6 is prevented. As a material for such a separator, lanthanum chromite (LaCrO 3 ) ceramic is generally used.
[0004]
A series of grooves 7a, 7b, 7c, and 7d are provided on both surfaces of the separators 3a and 3b at right angles to each other along the surfaces. The fuel electrode 4 side contains fuel gas (hydrogen) and the air electrode 6 side. Is a flow path through which oxidizing gas (air) passes.
[0005]
The edge portions 8a and 8b parallel to the groove 7b of the separator 3a and the edge portions 8c and 8d parallel to the groove 7c of the separator 3b are the edge portions 9a of the solid electrolyte membrane 5 constituting the three-layer film 2a. , 9b and 9d, 9c, it is necessary to isolate the fuel gas (hydrogen) and the oxidizing gas (air) to prevent the gas from mixing.
[0006]
That is, when an intermediate layer is disposed for joining at the joint between the separator and the solid electrolyte membrane, the characteristics required for the member are: (1) dense and gas-free; (2) For example, it is stable in both oxidation and reduction atmospheres, and (3) the thermal expansion coefficient is close to the material of the bonded portion.
[0007]
For this reason, conventionally, a solid electrolyte membrane made of yttria-stabilized zirconia (YSZ) and a separator made of lanthanum chromite (LaCrO 3 ) ceramic are separately sintered, and then used for gas sealing at the joint between the two. A glass-based oxide bonding agent (paste) was interposed as an intermediate layer for bonding.
[0008]
[Problems to be solved by the invention]
However, Si normally contained in the glass-based oxide bonding agent for gas sealing has a problem of promoting the deterioration of the separator lanthanum chromite (LaCrO 3 ) -based ceramic.
[0009]
Generally, since sintering of lanthanum chromite (LaCrO 3 ) requires a high temperature of 1800 ° C., an oxide of Ca or Sr is added thereto to lower the sintering temperature to 1600 ° C. or lower. At that time, the added Ca or Sr oxide reacts with LaCrO 3 to produce CaCrO 4 or SrCrO 4 .
[0010]
However, when a solid electrolyte and a separator are bonded using a glass-based oxide bonding agent, SiO 2 contained in the glass reacts with, for example, the CaCrO 4 to form a mechanically brittle Ca 2 SiO 4. This was a cause of deterioration of the lanthanum chromite (LaCrO 3 ) sintered body.
[0011]
On the other hand, an electrically insulating sintered body obtained by mixing and sintering MgAl 2 O 4 (spinel) and MgO is used for the separator main body, and lanthanum is used for the electron channel of the separator. There is a method in which a separator is formed by combining these using a chromite (LaCrO 3 ) sintered body (Japanese Patent Laid-Open No. 5-74470). This method, by controlling the mixing ratio of MgAl 2 O 4 and MgO, the thermal expansion coefficient can be easily adjusted, also, a mixture of MgAl 2 O 4 and MgO is lanthanum chromite (LaCrO 3) ceramic There is no significant deterioration.
[0012]
In this case, the MgAl 2 O 4 / MgO sintered body is considered to function as an intermediate layer in joining the solid electrolyte membrane and the lanthanum chromite (LaCrO 3 ) ceramic. However, this method uses a pre-sintered MgAl 2 O 4 / MgO ceramic, so there is a limitation on the joint shape.
[0013]
Accordingly, an object of the present invention is to provide a solid oxide fuel cell in which a solid electrolyte membrane and a separator are satisfactorily bonded without deteriorating yttria stabilized zirconia (YSZ) or lanthanum chromite (LaCrO 3 ) ceramic. It is in.
[0014]
[Means for Solving the Problems]
According to the present invention, in the solid oxide fuel cell according to claim 1, the solid electrolyte membrane and the separator are made of MgAl 2 O 4 , MgO, and Cr 2 O 3 with 5/95 ≦ Cr 2 O 3. / (MgAl 2 O 4 It is characterized by being bonded with a non-glass inorganic oxide bonding agent including a weight ratio of + MgO) ≦ 20/80 .
[0017]
Thus, in the present invention, the solid electrolyte membrane and the separator are sintered and bonded using a non-glass inorganic oxide bonding agent not containing Si, for example, a bonding agent made of a mixture of MgAl 2 O 4 / MgO. Therefore, there is no influence on the lanthanum chromite ceramic of the separator by Si, and there is no deterioration of the ceramic.
[0018]
Furthermore, by allowing Cr to be present in the bonding agent at a certain ratio, the sintering property of the bonding agent is improved, and more precise bonding can be performed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described based on examples.
[0020]
First, a predetermined amount of a binder (butyral resin) and a solvent (toluene and ethanol) were added to yttria-stabilized zirconia (YSZ) powder, and these were mixed to form a slurry. Then, a ceramic green sheet for a solid electrolyte membrane having a thickness of about 50 μm was produced from this slurry by a doctor blade method.
[0021]
Next, in order to fabricate the fuel electrode, nickel oxide (NiO) and yttria-stabilized zirconia (YSZ) powder mixed at a weight ratio of 6: 4, a binder (butyral resin) and a solvent (toluene and ethanol) A predetermined amount of was added and mixed to form a slurry. Then, a ceramic green sheet for a fuel electrode having a thickness of about 50 μm was produced from this slurry by a doctor blade method.
[0022]
In order to produce an air electrode, a predetermined amount of a binder (butyral resin) and a solvent (toluene and ethanol) are added to and mixed with a powder of lanthanum manganite ((La, Sr) MnO 3 ) to which Sr is added, Slurried. A ceramic green sheet for an air electrode having a thickness of about 50 μm was obtained from this slurry by a doctor blade method.
[0023]
The ceramic green sheets for the solid electrolyte membrane are stacked, and one ceramic green sheet for the air electrode and one for the fuel electrode is placed on the front and back surfaces of the stacked ceramic green sheets for thermo-compression bonding. A three-layer ceramic green sheet pressure-bonded body composed of an air electrode, a fuel electrode, and a solid electrolyte membrane was obtained.
[0024]
Subsequently, this pressure-bonded body was fired at a temperature of 1300 ° C. for 2 hours to obtain a three-layer ceramic sintered body.
[0025]
On the other hand, the separator was molded by a cast molding method using lanthanum chromite ((La, Ca) CrO 3 ) powder added with Ca, and fired to obtain a sintered body having a relative density of 95% or more. The relative density is the actual density expressed as a percentage when the theoretical density is 100.
[0026]
Next, in order to produce a bonding agent, first, a mixed powder having a weight ratio of spinel (MgAl 2 O 4 ) and magnesium oxide (MgO) of 55/45 was prepared.
[0027]
Then, a mixture of spinel and magnesium oxide were prepared earlier and chromium oxide (Cr 2 O 3) a (MgAl 2 O 4 + MgO) , the proportion shown in Table 1 (weight ratio: 0 / 100-25 / 75) was mixed with A varnish was added to the product to prepare a paste-like bonding agent.
[0028]
[Table 1]
Figure 0003707155
[0029]
Next, a pair of separators of the lanthanum chromite-based sintered body and the solid electrolyte membrane of the three-layer membrane were pressure-bonded to the joint portion between them via the bonding agent.
[0030]
The pressure-bonded body composed of the three-layer ceramic laminate and the separator thus constructed was fired at 1300 ° C. for 2 hours.
[0031]
For comparison, in order to prepare a glass-based oxide bonding agent, SiO 2 -based glass was prepared, and varnish was added thereto to prepare a paste-like glass-based oxide bonding agent.
[0032]
And a pair of the separator of the lanthanum chromite sintered body and the solid electrolyte membrane of the three-layer film are pressure-bonded to a joint portion between both via a glass-based oxide bonding agent (SiO 2 -based glass bonding agent), This pressure-bonded body was fired at 1200 ° C. for 2 hours to obtain a cell.
[0033]
FIG. 2 is a side view of the cell thus obtained. (A) is from the side where the fuel gas (hydrogen) is supplied, and (b) is from the side where the oxidizing gas (air) is supplied. It is the side view of the cell seen. In the figure, 3a and 3b are separators, 4 is a fuel electrode, 5 is a solid electrolyte membrane, 6 is an air electrode, and 11a, 11b, 12c and 12d are bonding agents.
[0034]
As described above, with respect to the obtained cell, the bonding portion between the solid electrolyte membrane made of yttria-stabilized zirconia (YSZ) and the separator made of lanthanum chromite (LaCrO 3 ) ceramic was observed, and the sinterability of the bonding agent in the gas seal portion And the joining state of the solid electrolyte membrane and the separator was confirmed.
[0035]
Moreover, in order to obtain | require the relative density of the bonding agent at this time, it did as follows. That is, to a mixture of Cr 2 O 3 and (MgAl 2 O 4 + MgO) at a ratio shown in Table 1 (weight ratio: 0/100 to 25/75), a binder (butyral resin) and a solvent (toluene and Ethanol) was added to form a slurry, which was formed into a ceramic green sheet by the doctor blade method. Then, the molded body in which several ceramic green sheets are stacked is fired at the same temperature condition and time in which the solid electrolyte membrane and the separator are fired through the bonding agent, and the density of the obtained sintered body is measured. The relative density was determined.
[0036]
Further, regarding the deterioration of the lanthanum chromite (LaCrO 3 ) -based ceramic of the separator after joining, a composite of the joined three-layer film and the LaCrO 3 sintered body was heat-treated in a reducing atmosphere, and Ca 2 SiO 4 was produced. It was confirmed whether cracks occurred or not and evaluated for deterioration.
[0037]
The above evaluation results are shown in Table 1.
[0038]
As can be seen from Table 1, sample no. 1 to sample no. The bonding agent used in 6 is made of a non-glass inorganic oxide such as MgAl 2 O 4 + MgO or MgAl 2 O 4 + MgO + Cr 2 O 3 that does not contain Si. When this bonding agent is used, lanthanum chromite (LaCrO 3 ) No deterioration was found in the ceramic.
[0039]
In addition, when the non-glass inorganic oxide bonding agent is added with Cr, the ratio of Cr 2 O 3 and (MgAl 2 O 4 + MgO) is 5/95 ≦ Cr 2 O 3 / (MgAl 2 O 4). + MgO) in the range of ≦ 20/80, high relative density of the bonding agent, sintering properties of the bonding agent, was good with bonding state between the solid electrolyte membrane and the separator, the outside, and a solid electrolyte membrane and the separator The bonding state of was poor.
[0040]
In this example, a paste was used as the bonding agent, but a binder (butyral resin) and a solvent (toluene and ethanol) were added to a mixture of Cr 2 O 3 and (MgAl 2 O 4 + MgO). In addition, the same effect can be obtained by using a slurry formed into a ceramic green sheet by the doctor blade method.
[0042]
【The invention's effect】
As is clear from the above description, according to the present invention, since the bonding agent can be densely sintered in the joining of the three-layer membrane solid electrolyte membrane and the separator, the joining of the solid electrolyte membrane and the separator can be performed. It will be stronger.
[0043]
Moreover, this bonding agent does not promote deterioration of the lanthanum chromite ceramic used for the separator, unlike the conventional glass bonding agent.
[0044]
Therefore, the gas sealing performance of the joint portion between the yttria-stabilized zirconia (YSZ) of the solid electrolyte membrane and the lanthanum chromite (LaCrO 3 ) -based ceramic of the separator is further improved, and the airtightness during operation of the fuel cell and the reliability with respect to the temperature are improved. In addition, a solid oxide fuel cell having excellent durability can be provided.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a cell structure of a solid oxide fuel cell according to the present invention.
FIG. 2A is a side view showing a structure of a gas seal part of a cell of a solid oxide fuel cell according to the present invention as viewed from a fuel gas (hydrogen) supply side.
(B) It is the side view seen from the supply side of oxidizing gas (air) which shows the structure of the gas seal part of the cell of the solid oxide fuel cell which concerns on this invention.
[Explanation of symbols]
1 Cell 2a, 2b Three-layer membrane 3a, 3b Separator 4 Fuel electrode 5 Solid electrolyte membrane 6 Air electrode 7a, 7b, 7c, 7d Groove 8a, 8b, 8c, 8d Separator edges 9a, 9b, 9c, 9d Solid Electrolyte membrane edge portions 11a, 11b, 12c, 12d

Claims (1)

固体電解質膜とセパレータとが、
MgAl 2 4 、MgO及びCr 2 3 を次の重量比で含む非ガラス系無機酸化物接合剤で接合されていることを特徴とする固体電解質型燃料電池。
5/95≦Cr 2 3 /(MgAl 2 4 +MgO)≦20/80
Solid electrolyte membrane and the separator,
A solid oxide fuel cell characterized in that it is bonded with a non-glass inorganic oxide bonding agent containing MgAl 2 O 4 , MgO and Cr 2 O 3 in the following weight ratio.
5/95 ≦ Cr 2 O 3 / (MgAl 2 O 4 + MgO) ≦ 20/80
JP26187596A 1996-10-02 1996-10-02 Solid oxide fuel cell Expired - Fee Related JP3707155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26187596A JP3707155B2 (en) 1996-10-02 1996-10-02 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26187596A JP3707155B2 (en) 1996-10-02 1996-10-02 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH10106596A JPH10106596A (en) 1998-04-24
JP3707155B2 true JP3707155B2 (en) 2005-10-19

Family

ID=17367981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26187596A Expired - Fee Related JP3707155B2 (en) 1996-10-02 1996-10-02 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3707155B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640906B2 (en) * 2002-12-26 2011-03-02 日本特殊陶業株式会社 Laminated body and solid oxide fuel cell
JP2009135051A (en) * 2007-11-30 2009-06-18 Korea Advanced Inst Of Sci Technol Joining structure between end cell and separator of solid oxide fuel cell
JP2013258157A (en) * 2013-08-26 2013-12-26 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell

Also Published As

Publication number Publication date
JPH10106596A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
US5342705A (en) Monolithic fuel cell having a multilayer interconnect
US5356730A (en) Monolithic fuel cell having improved interconnect layer
US7645535B2 (en) Method and materials for bonding electrodes to interconnect layers in solid oxide fuel cell stacks
US20080268323A1 (en) Sealed Joint Structure for Electrochemical Device
US8962218B2 (en) Electrically conductive fuel cell contact material
JP5313726B2 (en) Solid oxide fuel cell and interconnector for the cell
WO2008023805A1 (en) Fuel battery cell, fuel battery cell stack, and fuel battery
JP5188069B2 (en) Fuel cell and cell stack and fuel cell
WO1992007393A1 (en) Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
JP3456378B2 (en) Solid oxide fuel cell
JP4912576B2 (en) Fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
WO2014208730A1 (en) Cell, cell stacker, module, and module storage device
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP3707155B2 (en) Solid oxide fuel cell
JP4828104B2 (en) Fuel cell
JP5362605B2 (en) Solid oxide fuel cell
JP3550231B2 (en) Plate stack type solid oxide fuel cell and method of manufacturing the same
JPH10106608A (en) Solid electrolyte fuel cell and manufacture thereof
JPH05275106A (en) Solid electrolyte fuel cell
JP2774227B2 (en) Method for joining solid oxide fuel cell stack
JP4721500B2 (en) Solid oxide fuel cell and method for producing the same
JP3355075B2 (en) Solid oxide fuel cell
JP3503853B2 (en) Laminated composite, method for producing the same, separator containing the same, and solid oxide fuel cell using the separator
JP3810186B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees