JPS6091567A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6091567A
JPS6091567A JP58199023A JP19902383A JPS6091567A JP S6091567 A JPS6091567 A JP S6091567A JP 58199023 A JP58199023 A JP 58199023A JP 19902383 A JP19902383 A JP 19902383A JP S6091567 A JPS6091567 A JP S6091567A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolyte plate
density
ceramic
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58199023A
Other languages
Japanese (ja)
Inventor
Yasutaka Komatsu
小松 康孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58199023A priority Critical patent/JPS6091567A/en
Publication of JPS6091567A publication Critical patent/JPS6091567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the electrolyte-holding ability of an electrolyte plate by preventing any leakage of an electrolyte from the periphery of a porous ceramic electrolyte plate by surrounding it with a high density ceramic member. CONSTITUTION:An electrolyte plate has a complex structure consisting of a porous ceramic electrolyte plate 1 and a high-density ceramic frame 8 surrounding the electrolyte plate 1. The outer dimensions of the ceramic frame 8 are equal to those of a separator 4. Since the electrolyte plate 1 is exposed owing to the ceramic frame 8, an electrolyte does not leak outside the cell. In this fuel cell, the area touching the electrolyte plate 1 as usual is used as wet seal section 7 for gas sealing and the outer area touching the ceramic frame 8 is used for sealing the electrolyte.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は溶融炭酸塩型燃料電池において、電解質板の性
能の向上に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improving the performance of electrolyte plates in molten carbonate fuel cells.

〔発明の背景〕[Background of the invention]

燃料111&は発電効率が高く規模や立地の制約が少な
いという利点があり、特に溶融炭酸塩型はリン酸型と比
べて、より高効率で高価な触媒を必袂とせずCOも燃料
として使える等の長所をもっている。
Fuel 111& has the advantage of high power generation efficiency and fewer restrictions on scale and location.In particular, compared to phosphoric acid type, molten carbonate type has higher efficiency, does not require expensive catalysts, and can use CO as a fuel. It has the advantages of

従来のセル構造を添付図を参照して説明する。A conventional cell structure will be explained with reference to the attached drawings.

第1図は積層されたセルの一部の構造を示し、第2図は
単セルの断面を示している。
FIG. 1 shows the structure of a part of a stacked cell, and FIG. 2 shows a cross section of a single cell.

セル構造体は、中央に炭酸塩寛解質1を有し、それを挾
んで上下にアノード2とカソード3、さらにそれらt挾
むセパレータ4からなっている。
The cell structure has a carbonate toxin 1 in the center, an anode 2 and a cathode 3 on the top and bottom sandwiching it, and a separator 4 sandwiching them.

発電は次の機構で行なわれる。つまり燃料ガス(H2や
CO等)及び空気はそれぞれセパソータ上下面に刻まれ
た燃料流路5及び9気流路6の溝を通って、アノード2
及びカソード3内に拡散して、電解質と接触し、アノー
ド2側では燃料の酸化反応が行なわれ、カソード3側で
は酸素の還元反応が行なわれる。ここで電解質はイオン
しか通さないので、炭酸イオンが電解質中をカソード3
からアノード2へ移動し、電子は外部回路と集電板とし
ての使用も持つセパレータ4を通ってアノード2からカ
ソーード3へ移動することで、外部に11L流を取り出
すことができるようになっている。
Power generation is performed by the following mechanism. In other words, fuel gas (H2, CO, etc.) and air pass through the grooves of fuel flow passages 5 and 9 and air flow passages 6 carved on the upper and lower surfaces of the separator, respectively, and pass through the anode 2.
The fuel diffuses into the cathode 3 and comes into contact with the electrolyte, and an oxidation reaction of the fuel takes place on the anode 2 side, while a reduction reaction of oxygen takes place on the cathode 3 side. Since the electrolyte only allows ions to pass through, the carbonate ions pass through the electrolyte to the cathode 3.
The electrons move from the anode 2 to the cathode 3 through the external circuit and the separator 4, which also serves as a current collector plate, making it possible to take out the 11L flow to the outside. .

また、電解質板1は外寸がセパノー夕4と等しく、さら
にアノード2とカソード3に接している他、外周部でセ
パノー夕4とも接しており、この電解質板1とセパノー
夕4との接触部分(ウェットシール部)7に寛解質液が
浸み出してウェットシールを形成し、ガスの漏′11.
1に防ぐ構造となっている。
Further, the electrolyte plate 1 has the same outer dimensions as the separator 4, and is in contact with the anode 2 and the cathode 3, as well as the separator 4 at the outer periphery, and the contact portion between the electrolyte plate 1 and the separator 4 (Wet seal part) The laxative fluid seeps into 7 and forms a wet seal, causing gas leakage'11.
It has a structure that prevents

このような構造では、電解質板である多孔質セラミツタ
板1の外周部が露出しているため、浸透した電解質が外
周部から逃げてしまい、電解質の保持量が減少してゆき
、それに伴って内部抵抗が増加し、セル特性の低下をま
ねき、セルの寿命ヲ短かくする原因の一つとなっている
。さらに電解質板1は多孔質であるため、強度が弱く電
池の締め付けや、電池の作動停止の繰り返しに伴うヒー
トサイクル等によって、気孔率の変化や形状の変化、割
れ等の問題もあった。
In such a structure, since the outer periphery of the porous ceramic plate 1, which is an electrolyte plate, is exposed, the permeated electrolyte escapes from the outer periphery, reducing the amount of electrolyte retained, and as a result, the internal This increases resistance, which leads to deterioration of cell characteristics and is one of the causes of shortening cell life. Further, since the electrolyte plate 1 is porous, it has low strength and has problems such as changes in porosity, changes in shape, and cracks due to tightening of the battery and heat cycles caused by repeated stoppages of battery operation.

〔発明の目的〕[Purpose of the invention]

本発明σ′醒解質の外周部からのリークを防ぎ、電解質
保持性の商い電解質板を提供することKある。
It is an object of the present invention to provide an electrolyte plate that prevents leakage of σ' dissolved solute from the outer periphery and retains electrolyte.

〔発明の概要〕[Summary of the invention]

電解質板外周部からの電解質のリークの原因は電解質の
浸透した多孔質な電解質板が、外部に露出していること
にある。その解決法としては、電解質板の露出している
外周部を、電解質を通さない物)Xにすればよい。その
ために外周部の材料を作動温度(600〜700℃)に
おいて安定であり、熱膨張しに<<、さらに耐腐食性の
すぐれた高密度セラミックとした。
The cause of electrolyte leakage from the outer periphery of the electrolyte plate is that the porous electrolyte plate permeated with electrolyte is exposed to the outside. As a solution to this problem, the exposed outer periphery of the electrolyte plate may be made of material (X) that does not allow the electrolyte to pass through. To this end, the material for the outer circumference is a high-density ceramic that is stable at operating temperatures (600 to 700°C), has good thermal expansion properties, and has excellent corrosion resistance.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を添付図を参照して説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第3図は本発明の一実施例である電解質板であり、内部
は多孔質セラミックの電解質板1で、外周部に高密度セ
ラミック枠8という複合構造になっている。
FIG. 3 shows an electrolyte plate according to an embodiment of the present invention, which has a composite structure including an electrolyte plate 1 made of porous ceramic inside and a high-density ceramic frame 8 on the outer periphery.

第4図は、多孔質セラミックの電解′X板1と高密度セ
ラミック枠8を組み合わせて単セルに組み込んだときの
実施例である。
FIG. 4 shows an embodiment in which a porous ceramic electrolytic plate 1 and a high-density ceramic frame 8 are combined into a single cell.

この高密度セラミック枠8の外寸はセパレータ4の外寸
と等しくなっており、多孔質セラミックの電解質板1と
組み合わされたセパノー夕4に挾1れることにより、高
密度セラミック枠8が外界と接し多孔質セラミックの電
解質板1は露出しなくなり電解質が外部に漏れない構造
となる。
The outer dimensions of this high-density ceramic frame 8 are equal to the outer dimensions of the separator 4, and by being sandwiched between the separator 4 combined with the porous ceramic electrolyte plate 1, the high-density ceramic frame 8 is isolated from the outside world. The contacting porous ceramic electrolyte plate 1 is no longer exposed, resulting in a structure in which the electrolyte does not leak to the outside.

ここで高密度セラミック粋の幅はセパノー夕4の電解J
l押える部分の幅より狭くしており、このセパレータ4
の電解質を押える部分において、多孔質セラミックの電
解質板と接している部分を従来通りにウェットシール部
7としてガスのシールに用い、高密度セラミック枠8と
接している外側部分を電解質のシールに用いる構造にな
っている。また、高密度セラミック枠8は強度的に弱い
多孔質セラミックの電解質板1の補強材としての効果も
あり、電池の締め付けによる電解質板1の厚さの減少等
は、高密度セラミック枠8が締め付は荷重を支えること
によって防ぎ、適切な電解質板厚さ全維持できる。
Here, the width of the high-density ceramic material is Sepano 4 electrolytic J
This separator 4 is narrower than the width of the holding part.
In the part that holds down the electrolyte, the part that is in contact with the porous ceramic electrolyte plate is used as the conventional wet seal part 7 for gas sealing, and the outer part that is in contact with the high-density ceramic frame 8 is used for electrolyte sealing. It has a structure. In addition, the high-density ceramic frame 8 has the effect of reinforcing the porous ceramic electrolyte plate 1, which is weak in strength. Coating can be prevented by supporting the load and proper electrolyte plate thickness can be maintained throughout.

第5図は本発明の他の実施例であり、前述の高密度セラ
ミック枠8と多孔質セラミックの電解質板1との分割構
造に対して、多孔質の電解質板1の外周部の密度上外側
に向かって漸次尚くしてゆくといった密度変化部9を設
けるという一体構造としたものである。密度変化部9の
外周は十分密度が高く、電解質がほとんど浸透しなくな
っているので、電解質の外周部からの漏n6防ぐことが
できる。この場合も同様に密度変化部9の幅を、セパレ
ータの電解質板を押える部分の幅より狭くすることで、
ウェットシール部7全形成し、ガスシール効果も持たせ
る構造になっている。
FIG. 5 shows another embodiment of the present invention, in which, in contrast to the above-described divided structure of the high-density ceramic frame 8 and the porous ceramic electrolyte plate 1, the density of the outer peripheral part of the porous electrolyte plate 1 is It has an integrated structure in which a density changing section 9 is provided that gradually becomes lower toward the end. Since the outer periphery of the density changing portion 9 has a sufficiently high density and almost no electrolyte permeates therein, leakage n6 of the electrolyte from the outer periphery can be prevented. In this case as well, by making the width of the density changing part 9 narrower than the width of the part of the separator that presses the electrolyte plate,
The wet seal part 7 is completely formed and has a structure that also provides a gas sealing effect.

一体講造にすることによって、セルの組み立てが簡単に
なり、また密度変化部9でセラミックの密腿が徐々に変
わることから、熱変形による応力集中も少なくなり、電
解質板の強度的信頼性も高くなる。
The integrated structure simplifies cell assembly, and since the density of the ceramic gradually changes in the density changing section 9, stress concentration due to thermal deformation is reduced, increasing the strength and reliability of the electrolyte plate. It gets expensive.

〔発明の効果〕〔Effect of the invention〕

前記のように、多孔質セラミックの電解質板の外周s’
i高密度セラミックにすることによって、電解質の外周
部からのリークを防止し、電解質板の電解質保持能力ヲ
筒め、さらに高密度セラミック部は多孔質電解質板の補
強にもなり、それらのことからセル寿命を延長する効果
がある。
As mentioned above, the outer circumference s' of the porous ceramic electrolyte plate
iBy using high-density ceramic, leakage of electrolyte from the outer periphery is prevented and the electrolyte retention capacity of the electrolyte plate is increased.Furthermore, the high-density ceramic part also serves as reinforcement for the porous electrolyte plate. It has the effect of extending cell life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の積層セル構造図、第2図は従来の単セル
の断面図、第3図は本発明の電解質板の構造図、第4図
は分割構造とした電解質板の実施例断面1g1第5図は
一体構造とした電解質板の実施例断面図である。 1・・・電解質板(多孔質部)、2・・・アノード、3
・・・カソード、4・・・セパレータ、5・・・燃料流
路、6・・・全気流路、7・・・ウェットシール部、8
・・・高密度セラミック枠、9・・・電解質板(密度変
化部)。 代理人 弁理士 高橋明夫 第2閃
Fig. 1 is a structural diagram of a conventional laminated cell, Fig. 2 is a cross-sectional view of a conventional single cell, Fig. 3 is a structural diagram of an electrolyte plate of the present invention, and Fig. 4 is a cross-section of an example of an electrolyte plate with a split structure. 1g1 FIG. 5 is a cross-sectional view of an embodiment of an electrolyte plate having an integral structure. 1... Electrolyte plate (porous part), 2... Anode, 3
...Cathode, 4...Separator, 5...Fuel flow path, 6...All air flow path, 7...Wet seal portion, 8
... High-density ceramic frame, 9... Electrolyte plate (density changing part). Agent Patent Attorney Akio Takahashi 2nd Sen

Claims (1)

【特許請求の範囲】 1、溶融炭酸塩型燃料電池における、電解質を保持する
役割りの多孔質セラミンク製の電解質板Vこおいて、そ
の外周部を高密度化し、内部と外部で密度の異なるセラ
ミックからなる電解質板を有することを特徴とする燃料
電池。 2、特許請求の範囲第1項において、電解質板外周部の
セラミック密度を、内部の多孔質から外周部に近づくに
従って徐々に高密度化した電解質板を有することを特徴
とする燃料電池。 3、特許請求の範囲第1項において、電解質板の高密度
な外周部と多孔質の内部とを切離した構造の電解質板を
有することを特徴とする燃料電池。 4、特許請求の範囲第2項第3項において、電解質板外
周部の高密度化する開始点及び高密度な外周部と多孔質
内部との境界点は、セパソータ接触内端より外側にある
ことを特徴とする燃料′1池。
[Claims] 1. In a molten carbonate fuel cell, an electrolyte plate V made of porous ceramic that serves to hold an electrolyte is made with a high density on its outer periphery, and the density is different between the inside and outside. A fuel cell characterized by having an electrolyte plate made of ceramic. 2. A fuel cell according to claim 1, characterized in that the electrolyte plate has an electrolyte plate in which the ceramic density at the outer circumferential portion of the electrolyte plate is gradually increased from the porous interior toward the outer circumferential portion. 3. A fuel cell according to claim 1, characterized by having an electrolyte plate having a structure in which a high-density outer peripheral portion and a porous interior of the electrolyte plate are separated. 4. In claim 2, item 3, the starting point of the densification of the outer periphery of the electrolyte plate and the boundary point between the high-density outer periphery and the porous interior are located outside of the inner edge of contact with the separator. A fuel pond characterized by:
JP58199023A 1983-10-26 1983-10-26 Fuel cell Pending JPS6091567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199023A JPS6091567A (en) 1983-10-26 1983-10-26 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199023A JPS6091567A (en) 1983-10-26 1983-10-26 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6091567A true JPS6091567A (en) 1985-05-22

Family

ID=16400833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199023A Pending JPS6091567A (en) 1983-10-26 1983-10-26 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6091567A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097554A (en) * 1983-11-01 1985-05-31 Agency Of Ind Science & Technol Molten carbonate fuel cell
JPS60246570A (en) * 1984-05-22 1985-12-06 Agency Of Ind Science & Technol Fused carbonate fuel cell
JPS61147464A (en) * 1984-12-20 1986-07-05 Mitsui Kensaku Toishi Kk Electrolytic tile for fused salt type fuel cell
JPS62295360A (en) * 1986-06-13 1987-12-22 Hitachi Ltd Fuel cell
JPS63318076A (en) * 1987-06-19 1988-12-26 Sanyo Electric Co Ltd Electrolyte plate for molten carbonate fuel cell
JPH01313857A (en) * 1988-06-14 1989-12-19 Sanyo Electric Co Ltd Manufacture of electrolyte holder for fuel cell
US4891279A (en) * 1985-04-15 1990-01-02 Great Lakes Carbon Corporation Fuel cell plate separator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097554A (en) * 1983-11-01 1985-05-31 Agency Of Ind Science & Technol Molten carbonate fuel cell
JPH0222504B2 (en) * 1983-11-01 1990-05-18 Kogyo Gijutsuin
JPS60246570A (en) * 1984-05-22 1985-12-06 Agency Of Ind Science & Technol Fused carbonate fuel cell
JPH0449750B2 (en) * 1984-05-22 1992-08-12 Kogyo Gijutsuin
JPS61147464A (en) * 1984-12-20 1986-07-05 Mitsui Kensaku Toishi Kk Electrolytic tile for fused salt type fuel cell
JPH0451947B2 (en) * 1984-12-20 1992-08-20 Mitsui Kensaku Toishi Kk
US4891279A (en) * 1985-04-15 1990-01-02 Great Lakes Carbon Corporation Fuel cell plate separator
JPS62295360A (en) * 1986-06-13 1987-12-22 Hitachi Ltd Fuel cell
JPS63318076A (en) * 1987-06-19 1988-12-26 Sanyo Electric Co Ltd Electrolyte plate for molten carbonate fuel cell
JPH01313857A (en) * 1988-06-14 1989-12-19 Sanyo Electric Co Ltd Manufacture of electrolyte holder for fuel cell

Similar Documents

Publication Publication Date Title
US6692860B2 (en) Fuel cell comprising dual seal assembly
US3861959A (en) Batteries composed of fuel cells
US6444346B1 (en) Fuel cells stack
CA2020641A1 (en) Integral edge seals for phosphoric acid fuel cells
JP2005203159A (en) Fuel cell
JPS6091567A (en) Fuel cell
JPS61216257A (en) Separator for fuel cell
US7572538B2 (en) Fuel cell
US7566509B2 (en) Tubular fuel cell and method of producing the same
US20040219417A1 (en) Seal construction for a fuel cell electrolyser and process for making a fuel cell with same
US3206332A (en) Electrolytic cell structure
JP4529393B2 (en) Solid oxide fuel cell
JPH10199555A (en) Gas sealing structure of solid electrolyte fuel cell
JP4773055B2 (en) FUEL CELL STACK, SEPARATOR INTERMEDIATE AND SEPARATOR MANUFACTURING METHOD
JPH0218551B2 (en)
JP2008293808A (en) Separator and fuel cell
JPS61148766A (en) Fused carbonate type fuel cell
JP2000012053A (en) Solid high-polymer electrolyte-type fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
JPH01140559A (en) Fuel cell
JPH02197055A (en) Cell structure of fuel cell
JPH04298967A (en) Fuel cell
JPS60246570A (en) Fused carbonate fuel cell
KR0124862Y1 (en) Molten carbonate type fuel cell
JP6180609B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells