JPS6017977A - Semiconductor laser diode - Google Patents

Semiconductor laser diode

Info

Publication number
JPS6017977A
JPS6017977A JP12580283A JP12580283A JPS6017977A JP S6017977 A JPS6017977 A JP S6017977A JP 12580283 A JP12580283 A JP 12580283A JP 12580283 A JP12580283 A JP 12580283A JP S6017977 A JPS6017977 A JP S6017977A
Authority
JP
Japan
Prior art keywords
layer
substrate
conductivity type
active
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12580283A
Other languages
Japanese (ja)
Inventor
Soichiro Yamashita
山下 總一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12580283A priority Critical patent/JPS6017977A/en
Publication of JPS6017977A publication Critical patent/JPS6017977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a crystal structure of a laser diode element which can increase its output without loss of the substrate properties of the laser diode by concentrating the applied current only at the active stripe. CONSTITUTION:A clad layer 12 and a flat raised guide layer 13 bent by a groove, formed of an N type AlGaAs are arranged on an N type GaAs substrate 11 formed with a groove 91 in the prescribed size at the position for disposing a cavity. Further, an active layer 15 formed of AlGaAs, a clad layer 15 formed of P type AlGaAs, and a cap layer 16 formed of P type GaAs are arranged to expose the surface of a guide layer 13 by forming grooves at the end and both sides of active stripes 92. 2-layer block layers 117, 127 made of P and N type AlGaAs and a cap layer 137 made of P type GaAs are arranged to cover the layers 13-16. When only the active strip 92 of the center is electrically connected, the light emitted from the layer 14 of the strip 92 is propagated through the guide layer, and is guided to the end, i.e., the reflecting surface of the element crystal chip.

Description

【発明の詳細な説明】 本発明は半導体レーザダイオードの素子構造、特に高光
出力を得るための端面埋込型の素子結晶構造に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an element structure of a semiconductor laser diode, and particularly to an end-face buried type element crystal structure for obtaining high optical output.

半導体レーザダイオードの菓子結晶に於いて、通常端面
(反射面)近傍では界面準位が多いため、注入キャリア
密度が減少しレーザ光に対して吸収層となる。端面近傍
では光吸収によって発熱し、バンドキャップエネルギの
低下を生じ更に光吸収増大を来す。高光出力密度ではあ
る光出力限界を越えると光吸収→発熱→光吸収の正帰還
作用により反射面部分の結晶が融点に達し、ついには溶
融してしまうことが仰られている。この限界となる光出
力は臨界光出力(、POOD)と呼ばれ、i’oonの
大きさは素子結晶の構造に密接に依存する。端面の光吸
収を減らしPaoD’fc大きく採る手段として、第1
図に示す様な端面埋込型の素子結晶構造がある。
In the confectionery crystal of a semiconductor laser diode, there are usually many interface states near the end face (reflection face), so the injected carrier density decreases and the crystal becomes an absorption layer for laser light. In the vicinity of the end face, heat is generated due to light absorption, resulting in a decrease in band gap energy and further increase in light absorption. It is said that at high optical output densities, when a certain optical output limit is exceeded, the crystal on the reflective surface reaches its melting point due to the positive feedback action of light absorption → heat generation → light absorption, and eventually melts. This limiting optical output is called critical optical output (POOD), and the size of i'oon closely depends on the structure of the element crystal. The first method is to reduce light absorption at the end face and increase PaoD'fc.
There is an element crystal structure of an end face buried type as shown in the figure.

第1図は従来の端面埋込型レーザダイオード素子を説明
するための概念図であり、アルミニウムガリウム砒素(
Al ()a As ) /ガリウム砒素(GaAs)
系に例をとって、キャビティと平行方向の断面を示すも
のである。即ちn型GaAs基板1上にAI Ga A
 s よりなる活性層4及びクラッド層2及び5で構成
されるダブルへテロ接合を形成し、キャップ層6を介1
−て外部電極8と電気接続されており、キャップ層のキ
ャビティ直上部分で電流狭窄の為の拡散層等が形成され
ている。このキャビティ両端面部にクラッド層2及び5
と同程度のバンドキャップエネルギをもつ/JGaAs
 よりなる端面埋込層7が配設されている。従って活性
層1よりバンドギャップエネルギの大きい端面埋込層7
の配役により端面部の光吸収を小きく抑制でさるため前
述のFOODは大きくとる事ができるとされている。
Figure 1 is a conceptual diagram for explaining a conventional edge-embedded laser diode element.
Al()aAs)/Gallium arsenide (GaAs)
Taking the system as an example, a cross section in a direction parallel to the cavity is shown. That is, AI Ga A is deposited on the n-type GaAs substrate 1.
A double heterojunction consisting of an active layer 4 and cladding layers 2 and 5 made of
- is electrically connected to the external electrode 8, and a diffusion layer and the like for current confinement are formed directly above the cavity of the cap layer. Cladding layers 2 and 5 are formed on both end surfaces of this cavity.
/JGaAs with band cap energy similar to
An end face buried layer 7 consisting of the following is provided. Therefore, the end face buried layer 7 has a larger band gap energy than the active layer 1.
It is said that the above-mentioned FOOD can be increased because the light absorption at the end face can be suppressed to a small extent by the arrangement of the elements.

しかし、従来知られている上述の如き構造では、訪電体
導波路としての光ガイド部が埋込まれた界面で途切れて
し甘う。このため共振面の位置が元ガイド部から離れる
事になり、回折換が大きくなる。従って閾電流(I+h
)が大きくなると共に微分効率(ηD)が下がってしま
い、レーザダイオードとしての基本特性全低下させてし
まう。従ってもともと臨界光出力1:’OOD k向上
でせ高光出力まで扱う事が出きる様に採った構造である
にもかかわらず、十分な光出力を得る事ができなくなる
ばかりか、高電流密度で実用する事になりむしろ製品信
頼度を損う懸念すら生ずる。又素子結晶の切り出し即ち
 開面(反射面)形成時の位置ばらつきによってレーザ
光のビームウェストの位置が制御できないため、実用上
使い難い欠点を持っている。
However, in the conventionally known structure as described above, the light guide portion serving as the visiting body waveguide is interrupted at the buried interface. For this reason, the position of the resonant surface moves away from the original guide portion, and the diffraction refraction increases. Therefore, the threshold current (I+h
) increases, the differential efficiency (ηD) decreases, and the basic characteristics of the laser diode are completely degraded. Therefore, even though the structure was originally designed to be able to handle high optical output by improving the critical optical output 1:'OOD k, not only is it not possible to obtain sufficient optical output, but at high current density. When put into practical use, there is even a concern that product reliability may be compromised. In addition, the position of the beam waist of the laser beam cannot be controlled due to positional variations when cutting out the element crystal, that is, forming the open face (reflecting face), so it has a drawback that it is difficult to use in practice.

本発明は上記に鑑みなされたもので、従来の端面埋込型
の素子結晶構造のもつ欠点を排除し、レーザダイオード
の基本特性を損わないで高出力化を可能とする新規なレ
ーザダイオード菓子の結晶構造を提供する事を目的とす
るものである。
The present invention has been made in view of the above, and is a novel laser diode confectionery that eliminates the drawbacks of the conventional end-face buried element crystal structure and enables high output without impairing the basic characteristics of the laser diode. The purpose is to provide the crystal structure of.

本発明によれば溝孔の形成された一導電型の化合物半導
体基板上に、その基板と同一導電型の溝部で湾曲した断
面を持つクラッド層と、溝孔部で平凸形断面を有するガ
イド層とを基板面全面に及んで配設し、ガイド層上に活
性層と、基板とは反対導電型のクラッド層と第1のキャ
ップ層とを、キャビティ方向両端面で切断除去しかつ基
板に形成された溝孔の上部に位置する部分にストライプ
状突起全形成すべくこのストライプ状突起部位の両脇を
溝状に除去してガイド層表面を部分的に露呈する状態に
配設し、この上にストライプ状突起の上部を除いて基板
と反対導電型及び同一導電型の二層のブロック層を順に
配設し、更にストライプ状突起の露呈した第1のキャッ
プ層表面及び基板と同一導電型のブロック層表面全面を
覆うが如く配設された基板と反対導を型のWc2のキャ
ップ層を有し、ストライプ状突起部のみで活性層と主−
5= な電気的接続がなされている事を特徴とする素子結晶構
造からなる半導体レーザダイオードが得られる。
According to the present invention, on a compound semiconductor substrate of one conductivity type in which a groove is formed, a cladding layer having a curved cross section at the groove portion of the same conductivity type as the substrate, and a guide having a plano-convex cross section at the groove portion. The active layer, the cladding layer and the first cap layer, which are of the opposite conductivity type to the substrate, are cut and removed on both end faces in the direction of the cavity, and the active layer is disposed on the guide layer over the entire surface of the substrate. In order to completely form stripe-like protrusions in the upper part of the formed groove, both sides of the stripe-like protrusions are removed in grooves to partially expose the surface of the guide layer. Two blocking layers of the opposite conductivity type and the same conductivity type as the substrate are sequentially disposed on the top of the striped protrusions except for the upper part of the striped protrusions, and a block layer of the same conductivity type as the substrate is further disposed on the surface of the first cap layer where the striped protrusions are exposed. The block layer has a cap layer of Wc2 with opposite conductivity to the substrate disposed so as to cover the entire surface of the block layer, and only the striped protrusions separate the active layer from the main layer.
5= A semiconductor laser diode having an element crystal structure characterized in that electrical connections are made is obtained.

以下に、本発明について図面を用いて、やはシA!!G
aAs/GaAs 系の実施例により詳細に説明する。
Below, the present invention will be described using drawings. ! G
This will be explained in detail using an example of an aAs/GaAs system.

第2図は本発明による半導体レーザダイオード素子結晶
構造を示すものである。第2図(alは本発明の理解全
容易にするために素子結晶構造の相対的な位置関係を概
念的に示す見取図である。第2図(b)は(alに於け
るY−Y/断面即ちキャビティと平行方向の断面を示す
ものであり、従来の構造を示す第1図に対応するもので
ある。第2図(C)は(a)に於けるX−X/断面即ち
キャビティと直交方向の断面を示すものである。
FIG. 2 shows the crystal structure of a semiconductor laser diode device according to the present invention. FIG. 2 (al) is a sketch diagram conceptually showing the relative positional relationship of the element crystal structures in order to facilitate understanding of the present invention. FIG. It shows a cross section, that is, a cross section in a direction parallel to the cavity, and corresponds to Fig. 1 showing the conventional structure. It shows a cross section in the orthogonal direction.

本発明の構造はキャビティの位置する部位に所定の寸度
ケ持つ溝91が形成されたn型GaAs基板11上(C
,、n型Al!GaA Sよりなるキャビティとを変断
面で見た場合湾曲したクラッド層12及び平凸型ガイド
層13を配設し、更にA/GaAsよりなる活性層14
.P型AA!GaAsよりなるクラッド6− 層15及びP型GaAsよりなる@1キャップ層16を
、第2図(a)又は(b)に示す様に端面部及び(a)
又は(CJに示す様に活性ストライ1920両脇に溝加
工を施して前記ガイド層130表面を露呈せるが如く配
設し、これ等ガイド層13、活性層14゜クラッド層1
5、第1キャップ層16を覆う様に、第2図(bl及び
FC)に示す形状にP型及び11型AlGaAsよジな
る二層のブ07り層117,118及びP型GaAsよ
りなる第2キャップ層127を配設して成さ爲。
The structure of the present invention is formed on an n-type GaAs substrate 11 (C
,, n-type Al! When a cavity made of GaAs is seen in a modified cross section, a curved cladding layer 12 and a plano-convex guide layer 13 are provided, and an active layer 14 made of A/GaAs is provided.
.. P type AA! The cladding layer 15 made of GaAs and the @1 cap layer 16 made of P-type GaAs are attached to the end face portion and (a) as shown in FIG. 2(a) or (b).
Or (as shown in CJ, grooves are formed on both sides of the active strip 1920 so that the surface of the guide layer 130 is exposed, and these are the guide layer 13, the active layer 14, the cladding layer 1)
5. To cover the first cap layer 16, two layers 117 and 118 made of P-type and 11-type AlGaAs and a second layer made of P-type GaAs are formed in the shape shown in FIG. 2 (bl and FC). This is achieved by disposing two cap layers 127.

ここで各層のA7混晶比は 活性層〉ガイド層〉クラッド層=ブロック層の関係を満
すものとする。
Here, it is assumed that the A7 mixed crystal ratio of each layer satisfies the relationship: active layer>guide layer>cladding layer=block layer.

本発明の構造の定理はn型(i a A S基板11上
に予め写真蝕刻技術を用いて溝91i形成した後、n型
クラッドノー12、ガイド層13、活性層14゜P型ク
ラッド層15、P型彫1キャップ層16まで5層連続し
て液相エピタキシャル成長を行った後ハロゲン化炭素を
用いたドライエッチや硫酸(H,804)/過酸化水素
(HtUs)系のエッテンダ液等全使用した写真蝕刻技
術によって選択的に第2図(aJに点線で示した様な形
状を形成し、然る後にP型及びN型の二層のブロック層
117゜127及びP型第2キャップ137全やは9液
相エビタギシヤル技術を用いて連続成長して得る事がで
きる。ここで各エピタキシャル成長層のアルミニウム(
AAi)混晶比や、不純物の種類及び濃度は液相エピタ
キシャル成長に除し予め又は途中で添加する事で所望の
組成を得る事ができる。GaAsに対するn型不純物と
しては錫(Sn)、テルル(Te)シリコン(S i)
が、P型不純物としてはゲルマニウム(Gす、亜M (
Zll)、マグネシウム(Mg)が普通用いられる。ま
た液相エピタキシャル成長では幅が狭い溝状の部分では
成長が進み易い性質が知られている。第2回目の液相エ
ピタキシャル成長即ち二層のブロック117,127及
び第2キャップ層137の成長に際し、溝部分の成長が
速いため溝の周辺の溶質が溝の中に吸い寄せられて周辺
の層厚が薄くなる。光ガイド部(即ちガイド層13の基
板に形成されていた溝91の直上部)上に位置したスト
ライプ状突起部(即ち活性ストライプ)92は幅が狭い
(通常レーザダイオード素子では数μm程度)ため、上
記効果が著しくエピタキシャル成長の開始が両側の広い
表面を有する部分より遅れる。従って上記のP型kl 
Ga A s及びn型A45GaAsの二層からなるブ
ロック層117,127を成長すれば第2図(C)の様
に両側の広い表面金石する部分にはブロック層が形成さ
れるが、中央の活性ストライプ部(ロ)の上にはブロッ
ク層が形成されない状態が実現できる。続いてP型Ga
A、sの第2キャップ層137を比較的時間をかけて成
長すれば、中央の活性ストライプ部92だけが電気的に
接続される。更に通常の電極金属層の形成さした後 開
すれば第2図に示す如き本発明の構造が得られる。
The theorem of the structure of the present invention is that after a groove 91i is formed in advance on an n-type (ia AS substrate 11 using photolithography), an n-type cladding layer 12, a guide layer 13, an active layer 14, a p-type cladding layer 15 After performing liquid phase epitaxial growth of 5 consecutive layers up to P die engraving 1 cap layer 16, dry etching using halogenated carbon and sulfuric acid (H, 804)/hydrogen peroxide (HtUs) based ettender solution were used. A shape as shown by the dotted line in FIG. Aluminum can be obtained by continuous growth using a nine-liquid phase epitaxial technique. Here, each epitaxial layer of aluminum (
AAi) A desired composition can be obtained by adjusting the mixed crystal ratio and the type and concentration of impurities by adding them in advance or during the liquid phase epitaxial growth. N-type impurities for GaAs include tin (Sn), tellurium (Te), and silicon (Si).
However, as P-type impurities, germanium (G, sub-M (
Magnesium (Mg) is commonly used. Furthermore, it is known that liquid phase epitaxial growth tends to grow more easily in narrow groove-like portions. During the second liquid phase epitaxial growth, that is, the growth of the two-layer blocks 117, 127 and the second cap layer 137, the growth of the groove portion is fast, so the solute around the groove is attracted into the groove, and the layer thickness around the groove is reduced. Become thin. The striped protrusions (i.e., active stripes) 92 located on the optical guide portion (i.e., directly above the grooves 91 formed in the substrate of the guide layer 13) have a narrow width (usually on the order of several μm in a laser diode element). , the above effect is so remarkable that the start of epitaxial growth is delayed compared to the area having wide surfaces on both sides. Therefore, the above P type kl
If the block layers 117 and 127 consisting of two layers of GaAs and n-type A45GaAs are grown, block layers will be formed on the wide surface areas on both sides as shown in Fig. 2(C), but the active layer in the center will be A state in which no block layer is formed on the striped portion (b) can be realized. Next, P-type Ga
If the second cap layer 137 of A, s is grown over a relatively long period of time, only the central active stripe portion 92 is electrically connected. Further, by forming a conventional electrode metal layer and then opening the structure, the structure of the present invention as shown in FIG. 2 can be obtained.

本発明全実施すれば活性ストライプ部92の活性層14
で発光した光はガイド層を伝播するので、素子結晶チッ
プの端面部ち反射面までガイドされる。従って従来構造
で大きな問題であった共振面の位置がガイド部から離れ
る事による回折換をな9− くす事が可能となり、レーザダイオード素子の基本特性
である閾電流(■利りや微分効率(ηu)の劣化を生ず
る事がない。又、チップの切り出し時の 開面位置ばら
つきに基くビームウェスト位置の制御問題も結晶チップ
の端面まで光がガイドされる事によって本質的に消滅す
る。
If the present invention is fully implemented, the active layer 14 of the active stripe portion 92
Since the emitted light propagates through the guide layer, it is guided to the end face or reflective surface of the element crystal chip. Therefore, it is possible to eliminate the diffraction refraction caused by the position of the resonant surface moving away from the guide part, which was a big problem in the conventional structure. ). Furthermore, the problem of controlling the beam waist position due to variations in the aperture position during chip cutting is essentially eliminated by guiding the light to the end face of the crystal chip.

またAl混晶比が小さい層ではバンドキャップエネルギ
が大きいため前述の如く光吸収が少く臨界光出力Pao
o−q大きくとる事ができる。本発明の構造ではキャビ
ティ両端に位置する反射面(共振面)近傍は活性層より
Al混晶比の小でいガイド層13、クラッド層12、ブ
ロック層117で構成されているため臨界光出力P。。
In addition, in a layer with a small Al mixed crystal ratio, the band gap energy is large, so as mentioned above, light absorption is small and the critical light output Pao
It is possible to increase o-q. In the structure of the present invention, the vicinity of the reflective surfaces (resonant surfaces) located at both ends of the cavity is composed of the guide layer 13, cladding layer 12, and block layer 117, which have a lower Al mixed crystal ratio than the active layer, so the critical optical output P . .

Dを大きく改善できる。D can be greatly improved.

更に本発明の構造?:採れば、二層のブロック層117
.127による電流狭窄が極めて効果的に作用する。即
ち電極金属膜18に印加された電流はブロック)@11
7,127に阻まれて第2キャップ層16の活性ストラ
イプ部92のみに集中し、周囲にもれることなく活性ス
トライプ部に存在す−r、o − る活性層14のみに注入される。従ってレーザ発振の為
の閾電流密度(J+h)に容易に到達し、無効電流が少
くなるため、いわゆる閾電流■4− b は小さくで@
電流の利用効率が良いと共に相対発熱も少くなる。
Furthermore, the structure of the present invention? : If taken, two-layer block layer 117
.. Current confinement by 127 works extremely effectively. In other words, the current applied to the electrode metal film 18 is blocked) @11
7 and 127, and is concentrated only in the active stripe portion 92 of the second cap layer 16, and is injected only into the active layer 14 existing in the active stripe portion without leaking to the surroundings. Therefore, the threshold current density (J+h) for laser oscillation is easily reached and the reactive current is reduced, so the so-called threshold current ■4- b is small.
Current usage efficiency is good and relative heat generation is reduced.

又上述の効果により光出力に余裕のあるレーザダイオー
ド素子を定限できる事になるので、活性ストライプ部の
幅S全せ壕くする事ができ、放射レーザビームの水平方
向力射角θ11を大きくする事ができる。一般にレーザ
ダイオード素子では活性層厚は0.1μm以下程度と極
めて薄いためレーザビームの遠視野像は垂直方向に長円
となる楕円形状をとるが、これが真円に近い程効率よく
レーザビームを実用できる。従って、本発明全実施した
上清性ストライブ部の幅S6小さくし水平方向ビーム方
射角を大きくすればレーザビーム遠視野像が真円に近づ
き、レーザビームの実用効率もそれだけ向上も、レーザ
ダイオードとして使い易い製品が得られる付帯的効果も
ある。
Furthermore, because of the above-mentioned effect, it is possible to limit the number of laser diode elements with sufficient optical output, so the entire width S of the active stripe can be made shallow, and the horizontal direction angle of incidence θ11 of the emitted laser beam can be increased. I can do that. Generally, in a laser diode device, the active layer thickness is extremely thin, about 0.1 μm or less, so the far-field pattern of the laser beam takes an elliptical shape, which is an ellipse in the vertical direction.The closer this is to a perfect circle, the more efficiently the laser beam can be used in practical use. can. Therefore, by reducing the width S6 of the supernatant stripe portion and increasing the horizontal beam direction angle according to the present invention, the far-field image of the laser beam approaches a perfect circle, and the practical efficiency of the laser beam increases accordingly. There is also the additional effect that a product that is easy to use as a diode can be obtained.

以上本発明の構成、作用、効果について詳述したが本発
明全実施する事により、レーザダイオードとしての基本
性能を何ら損うことなく、高出力の即ち臨界光出力の高
い製品を実記でき、閾電流が小さく高効率使用が可能と
なるため製品実用時の温度上昇も少く信頼性の高いレー
ザダイオードが実現できる。
The structure, operation, and effects of the present invention have been described in detail above, but by fully implementing the present invention, a product with high output, that is, high critical light output, can be realized without any loss in the basic performance as a laser diode, and the threshold Since the current is small and high efficiency can be used, the temperature rise during product use is small, making it possible to create highly reliable laser diodes.

尚、本発明はAd Ga、As/GaAs系レーザダイ
オードに例を採り説明したが、インジウムガリウム砒素
燐(InGaAsp)/インシュウ燐(InP)系レー
ザダイオードその他にも適用できる事は首うまでもない
。又各層の導電型を反対にしても全く同様である。
Although the present invention has been explained by taking examples of Ad Ga and As/GaAs laser diodes, it goes without saying that it can also be applied to indium gallium arsenide phosphide (InGaAsp)/inshu phosphorous (InP) laser diodes and others. Moreover, the same effect can be obtained even if the conductivity type of each layer is reversed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の活性層端面埋込型半導体レーザダイオー
ド素子構造の概念図(キャビティと平行方向の断面図)
。 第2図は本発明による活性層端面埋込型半導体レーザダ
イオード素子構造の概念図であり、第2(alは本発明
を全体的に説明する構造見取図、第2図(1))はキャ
ビティと平行方向(Y−Y’方向)の断面図、第2図(
C)はキャビティと直交方向(X−X′方向)の断面図
をそれぞれ示す。 1.11・・・・・・ll型GaA、S基板、2 、1
2 ・−・−・11型AlG aA sクラッド層、1
3・・・・・・fl型A、1GaAsガイ)”Jtii
、 4 、14−−−−−−AeGaAs 活性層、5
,15゜・・・・・・P fJ kl GaAs クラ
ッド層、6,16・・・・・・P型GaAsキャップ層
又は第1キャップ層、117・・・・・・P型AdGa
Asブロック層、127・・・・・・nmAlGaAs
 ブo、yり層、] 37−、、、 P型GaAS第2
キャップ層、8.8’、18.18’・・・・・・電極
金属膜、91・・・・・・銹電体導波路形成用基板溝、
92(ロ)・・・・・・活性ストライプ部。 兜1図
Figure 1 is a conceptual diagram of a conventional active layer edge-embedded semiconductor laser diode device structure (cross-sectional view parallel to the cavity).
. FIG. 2 is a conceptual diagram of the active layer edge-embedded type semiconductor laser diode element structure according to the present invention, and the second figure (al is a structural sketch diagram for explaining the present invention as a whole, and FIG. 2 (1)) shows the cavity and Cross-sectional view in the parallel direction (Y-Y' direction), Figure 2 (
C) shows a cross-sectional view in a direction perpendicular to the cavity (X-X' direction). 1.11...ll type GaA, S substrate, 2, 1
2 ・-・-・11 type AlGaAs cladding layer, 1
3...fl type A, 1GaAs guy)"Jtii
, 4, 14---AeGaAs active layer, 5
,15°...P fJ kl GaAs cladding layer, 6,16...P-type GaAs cap layer or first cap layer, 117...P-type AdGa
As block layer, 127...nm AlGaAs
37-, P-type GaAS second
Cap layer, 8.8', 18.18'... Electrode metal film, 91... Substrate groove for forming electric waveguide,
92 (b)...Active stripe section. Helmet 1

Claims (1)

【特許請求の範囲】[Claims] 溝孔の形成された一導電型の化合物半導体基板上に、該
基板と同一導電型の該溝部で湾曲した断面金持つクラッ
ド層と、該溝孔部で平凸形断面金有するガイド層とを基
板面全面に及んで配設し、ガイド層上に活性層と、前記
基板とは反対導電型のクラッド層と第1のキャップ層と
を、キャビティ方向両端面で切断除去しかつ前記基板に
形成さ、 れた溝孔の上部に位置する部分にストライプ
状突起を形成すべく該ストライプ状突起部位の両脇を溝
状に除去して前記ガイド層表面を部分的に露呈する状態
に配設し、この上に該ストライプ状突起の上部を除いて
基板と反対導電型及び同一導電型の二層のブロック層ケ
順に配設し、更に前記ストライプ状突起の露呈した第1
のキャップ層表面及び基板と同一導電型のブロック層表
面全面を覆うが如く配設された基板と反対導電型の第2
のキャップ層を有し、前記ストライプ状突起部のみで活
性層と主な電気的接続がなされていること全特徴とする
素子結晶構造からなる半導体レーザダイオード。
A cladding layer having a curved cross section at the groove portion and a guide layer having a plano-convex cross section at the groove portion and having the same conductivity type as the substrate are formed on a compound semiconductor substrate of one conductivity type in which a groove is formed. Disposed over the entire surface of the substrate, an active layer on the guide layer, a cladding layer and a first cap layer having a conductivity type opposite to that of the substrate are cut and removed at both end faces in the cavity direction, and then formed on the substrate. Then, in order to form a stripe-like protrusion in the upper part of the groove, both sides of the stripe-like protrusion are removed in a groove-like manner so that the surface of the guide layer is partially exposed. , a two-layer block layer of the opposite conductivity type and the same conductivity type as the substrate is disposed in order on this except for the upper part of the stripe-shaped protrusion, and further a first block layer with the stripe-shaped protrusion exposed
A second cap layer of the opposite conductivity type to the substrate is disposed so as to cover the entire surface of the cap layer and the block layer of the same conductivity type as the substrate.
1. A semiconductor laser diode having an element crystal structure characterized in that the main electrical connection to the active layer is made only by the striped protrusions.
JP12580283A 1983-07-11 1983-07-11 Semiconductor laser diode Pending JPS6017977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12580283A JPS6017977A (en) 1983-07-11 1983-07-11 Semiconductor laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12580283A JPS6017977A (en) 1983-07-11 1983-07-11 Semiconductor laser diode

Publications (1)

Publication Number Publication Date
JPS6017977A true JPS6017977A (en) 1985-01-29

Family

ID=14919261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12580283A Pending JPS6017977A (en) 1983-07-11 1983-07-11 Semiconductor laser diode

Country Status (1)

Country Link
JP (1) JPS6017977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782713A (en) * 1985-09-10 1988-11-08 Fanuc Ltd Industrial robot shaft supporting mechanism
JPH02244687A (en) * 1989-03-16 1990-09-28 Matsushita Electric Ind Co Ltd Semiconductor laser device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635484A (en) * 1979-08-29 1981-04-08 Nec Corp Semiconductor laser
JPS5882587A (en) * 1981-11-11 1983-05-18 Nec Corp Manufacture of buried hetero structure semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635484A (en) * 1979-08-29 1981-04-08 Nec Corp Semiconductor laser
JPS5882587A (en) * 1981-11-11 1983-05-18 Nec Corp Manufacture of buried hetero structure semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782713A (en) * 1985-09-10 1988-11-08 Fanuc Ltd Industrial robot shaft supporting mechanism
JPH02244687A (en) * 1989-03-16 1990-09-28 Matsushita Electric Ind Co Ltd Semiconductor laser device

Similar Documents

Publication Publication Date Title
JPH0556036B2 (en)
US4366568A (en) Semiconductor laser
US4841532A (en) Semiconductor laser
JPS6343908B2 (en)
US4757509A (en) Semiconductor laser apparatus
US4581742A (en) Semiconductor laser having a non-absorbing passive region with beam guiding
JPS6017977A (en) Semiconductor laser diode
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2940158B2 (en) Semiconductor laser device
JPH0474876B2 (en)
JPH0231476A (en) Semiconductor laser element
JP2827130B2 (en) Semiconductor laser device and method of manufacturing the same
JPS60226191A (en) Semiconductor laser element
JPS58216488A (en) Semiconductor laser
JPH0410705Y2 (en)
JPH0440874B2 (en)
JPH04370993A (en) Semiconductor laser device
JPH0569318B2 (en)
JPH047113B2 (en)
JPS6139758B2 (en)
JPS60220982A (en) Semiconductor laser element
JPS63287080A (en) Manufacture of semiconductor laser
JPS60224291A (en) Semiconductor laser elememt
JPS6017980A (en) Semiconductor laser
JPS58194385A (en) Semiconductor laser