JPS6017980A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS6017980A JPS6017980A JP12580883A JP12580883A JPS6017980A JP S6017980 A JPS6017980 A JP S6017980A JP 12580883 A JP12580883 A JP 12580883A JP 12580883 A JP12580883 A JP 12580883A JP S6017980 A JPS6017980 A JP S6017980A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- region
- guide layer
- adjacent
- striped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/16—Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/16—Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
- H01S5/164—Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
- H01S5/2275—Buried mesa structure ; Striped active layer mesa created by etching
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体レーザ特に大光出力半導体レーザに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor lasers, particularly high optical output semiconductor lasers.
最近、AlGaAs/GaAs等の結晶材料を用いた可
視光半導体レーザは、低閾値で高効率の室温連続発振を
行うことができる点で、光方式のディジタル・オーディ
オ・ディスク(DAD)用光源として好適であるとして
その実用化が進められている。まだ、同時にこの可視光
半導体レーザは光プリンタ等の光書きこみ用光源として
の需要も高壕り、この要求をみだすため大光出力発振に
耐える可視光半導体レーザの研究開発も進められている
。これらの目的に使用するだめ、光学系との結合効率を
上げ、しかも活性層水平方向と垂直方向との広がり角が
等しい半導体レーザの開発が要求されている。Recently, visible light semiconductor lasers using crystalline materials such as AlGaAs/GaAs are suitable as light sources for optical digital audio disks (DAD) because they can perform continuous oscillation at room temperature with a low threshold and high efficiency. As such, its practical application is progressing. At the same time, visible light semiconductor lasers are in high demand as light sources for optical writing in optical printers and the like, and to meet this demand, research and development of visible light semiconductor lasers that can withstand large optical output oscillations is underway. In order to be used for these purposes, there is a need to develop a semiconductor laser that has improved coupling efficiency with an optical system and whose active layer has equal spread angles in the horizontal and vertical directions.
半導体レーザの中で、ツカダによシM、誌’Journ
alof Applied Physlcs ’第45
巻4899頁〜4906頁に報告されているものは、活
性層をクラッド層でとりかこみ、pH接合の組合せによ
り活性層内にのみ有効にキャリアを注入できる構造をも
ついわゆるB H(Buried Heteroatr
ucture )レーザで、活性層の水平方向と垂11
′方向との広がり角が等しい円形に近い光源で・ちり、
低閾値電流で高効率のレーザ発振を行うすぐれた特性を
有している。しかし、通常のB T−(レーザはスポッ
トサイズが2〜3μm程度ときわめて小さ−ので、室温
連続発振(CW)光出力が2〜3 mW、パルス動作(
100ns幅)光出力が1On#程度の動作限界で、こ
れ以上の光出力を放出すると容易に反射面が破壊される
。この現象は光学損傷として知られており、そのCW動
作の限界光出力密度は1賢d前後である。これに対し、
光学損傷を防ぎ大光出力を得る方法として、活性層に隣
接してガイド層を設けた構造BOG (13uried
0ptical Guid6 B II)レーザが、
ナカジマ等によりdig Japanese Jour
nal of Applied Physics”第1
9巻L591頁〜工、594頁に報告されてい乙。この
構成は、活性層及びガイド層をクラッド層でうめこみ、
活性層の光の一部を隣接したガイド層にしみ出させ光学
損傷の生じるレベルを上昇させようというものである。Among semiconductor lasers, Tsukada Yoshi M, magazine 'Journ'
alof Applied Physlcs' 45th
What is reported in Vol. 4899-4906 is a so-called Buried Heteroator (BH) which has a structure in which the active layer is surrounded by a cladding layer and carriers can be effectively injected only into the active layer by a combination of pH junctions.
) With a laser, the horizontal and vertical directions of the active layer are
A nearly circular light source with an equal spread angle to the ′ direction.・Dust,
It has excellent characteristics of performing highly efficient laser oscillation with a low threshold current. However, since the spot size of a normal BT laser is extremely small (about 2 to 3 μm), the room temperature continuous wave (CW) optical output is 2 to 3 mW, and the pulse operation (
100 ns width) The optical output is at the operating limit of about 1 On#, and if more optical output is emitted, the reflective surface will be easily destroyed. This phenomenon is known as optical damage, and the critical optical output density for CW operation is around 1. On the other hand,
As a method to prevent optical damage and obtain high optical output, a BOG structure in which a guide layer is provided adjacent to the active layer (13uried
0ptical Guid6 B II) The laser is
Dig Japanese Jour by Nakajima et al.
nal of Applied Physics” 1st
It is reported in Volume 9, pages L591-E, page 594. This structure embeds the active layer and the guide layer with a cladding layer,
The idea is to allow some of the light from the active layer to seep into the adjacent guide layer to increase the level of optical damage.
この方法はガイド層にしみ出す光の量に依存するが、信
頼性よく使用できる最大光出力は10mW前後が限界で
ある。Although this method depends on the amount of light seeping into the guide layer, the maximum optical output that can be used reliably is limited to around 10 mW.
また、B)f構造の反射面近傍を活性層よりもバンドギ
ャップの大きいクラッド層で埋込み、大光出力発振をさ
せようという試みは、渡辺等により第29回応用物理学
関係連合講演会予稿集161頁(1982年春季)に報
告されている。しかしこの方法ではレーザ光が反射面近
傍のクラッド層を伝播する際に広がるため、反射面で反
射されて活性領域内にはいり再励起される光の量(カッ
プリング効率)が低くなるので、閾値電流の上昇および
外部微分量子効率の低下をきたす欠点を有している。In addition, B) An attempt to bury the vicinity of the reflective surface of the f structure with a cladding layer with a larger bandgap than the active layer to achieve large optical output oscillation was reported by Watanabe et al. It is reported on page 161 (Spring 1982). However, with this method, the laser beam spreads as it propagates through the cladding layer near the reflective surface, which lowers the amount of light that is reflected by the reflective surface and enters the active region and is reexcited (coupling efficiency). It has the disadvantage of increasing current and decreasing external differential quantum efficiency.
この渡辺等の報告によれば、閾値電流は通常のBH半導
体レーザの2倍になり、外部微分量子効率はわずか11
.8%しか得られていない。更にこの構造を形成する場
合、結晶成長後エツチングして反射面となる領域を埋込
むので、埋込んだクラッド層領域と活性層との界面部分
に結晶欠陥が生じゃすく信頼性の点で問題がある等の欠
点を有していた。According to this report by Watanabe et al., the threshold current is twice that of a normal BH semiconductor laser, and the external differential quantum efficiency is only 11.
.. Only 8% was obtained. Furthermore, when forming this structure, since the region that will become the reflective surface is buried by etching after crystal growth, crystal defects are likely to occur at the interface between the buried cladding layer region and the active layer, which poses a problem in terms of reliability. It had some drawbacks, such as:
本発明の目的は、これらの欠点を除去し、低閾値高効率
で発振するのみならず基本横モード発振による大光出力
発振かり能であり比較的容易に製作でき再現性およびイ
イ頼性の上ですぐれた半導体レーザな提供することにあ
る。The purpose of the present invention is to eliminate these drawbacks, to achieve not only low-threshold, high-efficiency oscillation, but also high optical output oscillation by fundamental transverse mode oscillation, relatively easy manufacture, high reproducibility, and high reliability. Our goal is to provide excellent semiconductor lasers.
すなわち、本発明は活性層に該活性層よりも屈折率が小
さい材質からなる第1および第2のクラッド層ではさみ
こんだダブルへテロ接合半導体材料を用い、長手方向に
沿って中央部分に幅が広い領域と、その両端に隣接して
形成された幅の狭い領域とからなるストライプ状構造を
設け、幅の広いストライプ状領域とこれに隣接した幅の
狭いストライプ状領域との境界をなす面がレーザ光に対
する全反射角を有し、畝幅の狭いストライプ状領域に隣
接して内反射面近傍に形成された溝部領域とストライプ
状構造の外部の領域とを第3のクラッド層、クラッド層
よりも屈折率が大きく活性層よりも屈折率が小さい材質
からなるガイド層、第4のクラッド層を連続してうめこ
んだ状態において該ガイドjΔを溝部領域では厚く、他
の埋込み領域では薄くシ、その長手方向において該スト
ライプ状構造内の活性層を溝部領域のガイド層と隣接さ
せたことを特徴とする半導体レーザである。That is, the present invention uses a double heterojunction semiconductor material sandwiched between first and second cladding layers made of a material whose refractive index is smaller than that of the active layer, and has a width in the center along the longitudinal direction. A striped structure consisting of a wide area and narrow areas formed adjacent to both ends of the striped structure is provided, and a surface forming a boundary between the wide striped area and the adjacent narrow striped area is provided. has a total reflection angle with respect to the laser beam, and the groove region formed near the internal reflection surface adjacent to the stripe-like region with narrow ridge width and the region outside the stripe-like structure are combined into a third cladding layer, a cladding layer. With the guide layer made of a material whose refractive index is larger than that of the active layer and smaller than that of the active layer, and the fourth cladding layer is continuously buried, the guide jΔ is made thick in the groove region and thin in the other buried regions. , a semiconductor laser characterized in that the active layer in the striped structure is adjacent to the guide layer in the groove region in the longitudinal direction.
以下図面を用いて本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below using the drawings.
第6図において、(100)面を平面とするn形GaA
s基板10上に、n形Alo、4Gao、6As第1ク
ラッド層11を1゜08m1次いでアンドープAl(、
,1,Ga0.8.As活性層12を0.07μm、P
形Al (、、=Gao 、6As 第2クラッド層1
3を1゜5μm順次連続成長させる。次にSin!膜1
4で全体を被膜した後、フォトレジスト法およびエツチ
ング法により形成すべき共振器の長手方向である(O1
l〕方向に、中央部分に300μmの幅をおいて、内反
射面近傍に幅3μ7π長さ20μmの窓をあけた後、深
さ1.0μmエツチングする。これによって形成される
溝両端に接し、その長手方向において溝の中心と5LO
n膜14の中心とが一致する様に幅5μm長さ220μ
mのSi03M14を中央部分に、これに隣接しかつ溝
に隣接する様に幅3μm長さ40μmのスト2イブ状の
5ins膜14を中央部分の両端に残し、残部をn形G
aAa基板10に達するまで全体を一様にエツチングす
る(第7図)、このとき、初期に溝をつけた内反射面近
傍領域も同時にエツチングが進行し、内反射面近傍には
幅の狭い深さ1μmの溝22が他のエツチング領域に対
して形成され、又中央部分にはストライプ状領域が島状
に残される(第8図)、又中央の幅の広いストライプ状
領域とこれに隣接する幅の狭いストライプ状領域との境
界では各々の余1面が形成すべき共振器の長手方向とな
す角度0(第8図)はi−θが臨界角よりも大きくなる
ようにする。In FIG. 6, n-type GaA with the (100) plane as the plane
On the s-substrate 10, an n-type Alo, 4Gao, 6As first cladding layer 11 of 1°08 m1 is then deposited with undoped Al (,
,1,Ga0.8. The As active layer 12 has a thickness of 0.07 μm and P
Type Al (,,=Gao, 6As second cladding layer 1
3 was successively grown to a thickness of 1°5 μm. Next, Sin! Membrane 1
This is the longitudinal direction of the resonator to be formed by photoresist method and etching method after coating the entire surface in step 4 (O1
After opening a window with a width of 3μ7π and a length of 20μm in the vicinity of the internal reflection surface with a width of 300μm in the central portion in the [l] direction, etching is performed to a depth of 1.0μm. In contact with both ends of the groove formed by this, and in the longitudinal direction, the center of the groove and 5LO
The width is 5 μm and the length is 220 μ so that the center of the n film 14 coincides with the center of the film 14.
A strip-like 5ins film 14 with a width of 3 μm and a length of 40 μm is left at both ends of the central portion, and the rest is an n-type G
The entire surface is uniformly etched until it reaches the aAa substrate 10 (Fig. 7). At this time, the etching progresses at the same time in the area near the internal reflective surface where the grooves were initially formed, and a narrow deep area is formed near the internal reflective surface. A groove 22 with a diameter of 1 μm is formed in the other etched areas, and a striped area is left in the form of an island in the center (Fig. 8), and a wide striped area in the center and adjacent areas are left in the center. At the boundary with the narrow striped region, the angle 0 (FIG. 8) formed by each extra surface with the longitudinal direction of the resonator to be formed is such that i-θ is larger than the critical angle.
すなわち臨界角ψは
sinψ=111 (、、;皿込み層の屈折率、n!;
活3
性層の屈折率)
このとき、θとしては
0くθ(T −5i11 (就−)
とする。本発明の実施例の場合埋込み層は下記に述べる
如くp−形Al。、4Ga、、As 第3クラッド層と
なるのでO〈θ(21度にする事が望ましい。こうすれ
ば幅の広いストライプ状領域から発光し共振器の長手方
向に伝搬する光のうち斜面にぶつかったものはこの斜面
で全反射されて隣接した幅の狭いストライプ状領域内を
進行する。That is, the critical angle ψ is sinψ=111 (,,; refractive index of the dishing layer, n!;
(Refractive index of active layer) At this time, θ is 0 and θ(T −5i11 (refractive index)). In the case of the embodiment of the present invention, the buried layer is p-type Al, 4Ga, as described below. , As becomes the third cladding layer, so it is desirable to set O〈θ (21 degrees).In this way, among the light emitted from the wide striped region and propagating in the longitudinal direction of the resonator, the light that hits the slope will be The light is totally reflected by this slope and travels within an adjacent narrow stripe-shaped region.
第1図〜第5図にお−て、次に5tO2膜14を残した
まtp−形A1o、4Gao、6As第3クラッド層1
5を1゜5/’d長する。ストライプ状領域の外部領域
の平担部に成長した第3クラッド層15にストライプ状
領域の第1クラッド層11、活性層12および第2クラ
ッド層13の一部が隣接する・このとき、溝22は第3
クラッド層15で埋込まれ、この溝部領域の表面は他の
埋込み領域に対して深さ〜1μm程度の湾曲した凹状に
なる。次いで連続してp−形Al o、azQao、a
shガイド層16で溝部領域の凹状を埋めつくし全体が
平担になるように成長させる。一般に凹状領域の成長速
度は平担部にくらべて速いのでこれを利用して凹部領域
を埋めつくし平担部では層厚が0.1〜0.2μm8度
になるように成長させることが望ましいやこのとき、ス
トライプ状領域の活性層の位置は第3クラッド層15を
成長した後には垂直方向において溝部凹状の中心部分に
くるようにしガイド層16を成長したときには共振器の
長手方向において、幅の狭いストライプ状領域の活性層
はガイド層と内反射面近傍で隣接するようにする。更に
n−形Alo、、Ga、。、As第4クラッド層17で
全体を埋込む。1 to 5, next, the 5tO2 film 14 is left and the tp-type A1o, 4Gao, 6As third cladding layer 1 is shown.
5 by 1°5/'d. Parts of the first cladding layer 11, the active layer 12, and the second cladding layer 13 of the striped region are adjacent to the third cladding layer 15 grown on the flat part of the outer region of the striped region. At this time, the groove 22 is the third
It is buried with the cladding layer 15, and the surface of this groove region has a curved concave shape with a depth of about 1 μm relative to the other buried regions. Then successively p-type Al o, azQao, a
The sh guide layer 16 is grown to completely fill the concave shape of the groove region and become flat as a whole. In general, the growth rate of the concave area is faster than that of the flat area, so it is desirable to use this to fill the concave area and grow the layer to a thickness of 0.1 to 0.2 μm and 8 degrees in the flat area. At this time, the position of the active layer in the striped region is such that after growing the third cladding layer 15, it is at the center of the groove concave in the vertical direction, and when the guide layer 16 is grown, it is located at the center of the groove in the longitudinal direction of the resonator. The active layer in the narrow striped region is adjacent to the guide layer near the internal reflection surface. Furthermore, n-type Alo, Ga. , the entire surface is buried with a fourth cladding layer 17 of As.
このときsio、膜]4上には結晶成長はしないので溝
の部分およびストライプ状領域の外部全体が埋込まれる
。上記において第3クラッド層15、ガイド層16、第
4クラッド層17は高抵抗層にすることが望ましい。又
第4クラッド層17の成長厚を調整して表面が平担にな
るようにすることがより望ましい。At this time, since no crystal growth occurs on the sio film 4, the groove portion and the entire outside of the striped region are buried. In the above, it is desirable that the third cladding layer 15, the guide layer 16, and the fourth cladding layer 17 are high resistance layers. Further, it is more desirable to adjust the growth thickness of the fourth cladding layer 17 so that the surface becomes flat.
次にSiO,J[14を除去した後5ill膜18で全
体を被膜し中央部分の幅の広いストライプ状領域に幅3
μm長さ200μmの窓をあけ、第2クラッド層13の
途中まで亜鉛を拡散する(亜鉛拡散領域19)、次に亜
鉛拡散をした領域にp形オーミックコンタクト20基板
側にn形オーミックコンタクト21を形成すると本発明
の構造の半導体レーザが得られる。Next, after removing SiO, J[14, the entire surface is coated with a 5ill film 18, and a wide stripe-like area in the center is coated with a width of 3
A window with a length of 200 μm is opened and zinc is diffused halfway into the second cladding layer 13 (zinc diffusion region 19). Next, a p-type ohmic contact 20 is placed in the zinc-diffused region and an n-type ohmic contact 21 is placed on the substrate side. When formed, a semiconductor laser having the structure of the present invention is obtained.
本発明の構造において、ストライプ状領域全体が高抵抗
層である第3クラッド層15、ガイド層16、第4クラ
ッド層17で囲まれているので、亜鉛拡散領域19を通
して幅の広い中央のストライプ状領域に注入された電流
はもれることなく活性層12に有効にはいり、発振に寄
与する。中央の幅の広いストライプ状領域で発光した光
は共振器の長手方向に進行するが幅の広いストライプ状
領域に隣接して境界面が共振器の長手方向に進行する光
に対して全反射角を持った幅の狭いストライプ状領域が
形成されているので、光は損失なくこの領域にはいり進
行する。この幅の狭いストライプ状領域の活性層12は
溝部領域のガイド層16に隣接しているので光は内反射
面近傍にあるこの溝部領域のガイド層内にはいり進行す
る。この溝部領域のガイド層16はその断面が半円状に
近い形状をしており、成長表面の平担部分を除いて他の
部分はこのガイド層よりも屈折率の小さい第3および第
4のクラッド層で埋込まれて光導波路を形成し、光は広
がることなくこのガイド層内に集光して進行する。In the structure of the present invention, since the entire striped region is surrounded by the third cladding layer 15, the guide layer 16, and the fourth cladding layer 17, which are high resistance layers, the wide central striped region is formed through the zinc diffusion region 19. The current injected into the region effectively enters the active layer 12 without leaking and contributes to oscillation. The light emitted from the wide striped area in the center travels in the longitudinal direction of the cavity, but the boundary surface adjacent to the wide striped area has a total internal reflection angle for the light traveling in the longitudinal direction of the cavity. Since a narrow stripe-like region with a width of . Since the active layer 12 in this narrow striped area is adjacent to the guide layer 16 in the groove area, light enters and travels within the guide layer in the groove area near the internal reflection surface. The guide layer 16 in this groove region has a nearly semicircular cross-section, and except for the flat portion of the growth surface, the other portions are covered with third and fourth guide layers having a smaller refractive index than this guide layer. It is embedded in a cladding layer to form an optical waveguide, and light travels while condensing within this guide layer without spreading out.
本発明の一例として上記に記述したガイド層16の組成
の場合、ガイド層のバンドギャップはレーザ発振光に対
して230meV以上広がっているので、ガイド層を進
行する光は吸収損失を全くうける事はない。又内反射面
近傍のガイド層はその成長表面が平担な領域の成長層と
つながっているが、との層厚はごく薄いので光は実効的
に屈折率の高くなっている層厚の厚い溝部領域のガイド
層内を進行し平担部分にもれる葉は微量である。こうし
て反射面近傍のガイド層内を進行した光の一部は反射面
で反射され、再び光導波路機能なもつ溝部領域のガイド
層内を損失をうけることなくもどり、活性層内にはいり
再励起されるので、低閾値高効率でレーザ発振すること
ができる。上記のように本発明の構造は前記した第29
回応用物理学関係連合講演会予稿集161頁に渡辺等に
よって報告された端面埋め込み型B Hレーザと仲全く
異なシ、本発明の構造ではカップリング効率が飛躍的に
高くなっており、低閾値高効率というBE構造レーザの
もつ基本的特性をそこなうことなくこれを有している。In the case of the composition of the guide layer 16 described above as an example of the present invention, the band gap of the guide layer is wider than 230 meV with respect to the laser oscillation light, so the light traveling through the guide layer will not suffer any absorption loss. do not have. In addition, the guide layer near the internal reflection surface is connected to the growth layer in the area where the growth surface is flat, but since the layer thickness between the guide layer and the guide layer is extremely thin, light is effectively transmitted through the thick layer where the refractive index is high. There is only a small amount of leaves that advance within the guide layer in the groove area and leak into the flat area. In this way, a part of the light that has traveled within the guide layer near the reflective surface is reflected by the reflective surface, returns to the guide layer in the groove region that has an optical waveguide function without loss, and enters the active layer where it is re-excited. Therefore, laser oscillation can be performed with low threshold and high efficiency. As mentioned above, the structure of the present invention is as follows.
The structure of the present invention is completely different from the edge-embedded BH laser reported by Watanabe et al. on page 161 of the proceedings of the Joint Conference on Applied Physics, but the structure of the present invention has dramatically increased coupling efficiency and a low threshold value. It has this without sacrificing the basic characteristics of a BE structure laser, which is high efficiency.
更に本発明の構造では内反射面近傍がレーザ発振光に対
してバンドギャップの広いガイド層になっているので、
光学損傷(COD)の生じる光出力レベルを著しく上昇
させることができる。すなわち、通常の半導体レーザで
は、キャリア注入による励起領域となる活性層端面が反
射面として露出しており、そこでは表面再結合が生じて
空乏層化し、バンドギャップが縮少している。従って、
大光出力発振をさせると、この縮少したバンドギャップ
によシ光の吸収が生じ、そこは発熱して融点近くまで温
度が上昇し、ついには光学損傷が生じる。Furthermore, in the structure of the present invention, the vicinity of the internal reflection surface serves as a guide layer with a wide bandgap for the laser oscillation light.
The light output level at which optical damage (COD) occurs can be significantly increased. That is, in a normal semiconductor laser, the end face of the active layer, which serves as an excitation region due to carrier injection, is exposed as a reflective surface, where surface recombination occurs and forms a depletion layer, reducing the band gap. Therefore,
When a large optical power is oscillated, light is absorbed by this narrowed bandgap, which generates heat and rises in temperature to near the melting point, eventually causing optical damage.
これに対し、本発明の構造では内反射面近傍は非励起領
域になっているばかりでなく、レーザ発振光はバンドギ
ャップ差が230meV以上も広い層を透過して発振す
るので、反射面近傍での光の吸収はなく光学損傷は生じ
にくく大光出力発振が可能になる。In contrast, in the structure of the present invention, not only is the area near the internal reflection surface a non-excitation region, but also the laser oscillation light is oscillated by passing through a layer with a wide band gap difference of 230 meV or more. There is no light absorption, optical damage is less likely to occur, and large optical output oscillation is possible.
又本発明の構造ではレーザ光の横モードは幅の狭いスト
ライプ状領域とこれに隣接する溝部領域のガイド層との
幅によってその大きさが規定されている。従ってこの幅
を基本横モードを保持できる大きさにしておけば、光出
力を増加し中央の幅の広いストライプ状領域に空間的な
ホールバーニングが生じても共振器の長手方向において
一次横モードの損失が大きくなっているため、キャリア
はホールバーニングをうめる方向に働き、基本横モード
発振が維持される。Further, in the structure of the present invention, the size of the transverse mode of the laser beam is defined by the width of the narrow striped region and the guide layer of the groove region adjacent thereto. Therefore, if this width is set to a size that can maintain the fundamental transverse mode, the optical output can be increased and the primary transverse mode can be maintained in the longitudinal direction of the resonator even if spatial hole burning occurs in the central wide striped region. Since the loss is large, the carriers work to fill up the hole burning, and the fundamental transverse mode oscillation is maintained.
又内反射面近傍にある光導波機構を進行するうちに光は
この領域全体に広がるが、端面から放射されるレーザ光
はこの機構を形成しているガイド層の幅と厚さとに限定
され、外部光学系とのカップリングが容易となってその
効率を上昇させることができる。Furthermore, as the light travels through the optical waveguide mechanism near the internal reflection surface, it spreads throughout this area, but the laser light emitted from the end face is limited to the width and thickness of the guide layer that forms this mechanism. Coupling with an external optical system becomes easy and efficiency can be increased.
以上に説明した本発明による半導体レーザによれば、励
起領域が直接反射面に露出している通常の半導体レーザ
にくらべて、外部との化学反応はおこりにくく、反射面
の光学反応による劣化を阻止することができ、また通常
のBHレーザと同一製造過程でつくることができる。According to the semiconductor laser according to the present invention as described above, compared to a normal semiconductor laser in which the excitation region is directly exposed to the reflective surface, chemical reactions with the outside are less likely to occur, and deterioration due to optical reactions on the reflective surface is prevented. It can also be manufactured in the same manufacturing process as a normal BH laser.
各領域の寸法及び組成は前記実施例に限られたものでは
ない。又本実施例はAlGaAs/CaAgダプルペテ
ロ接合結晶材料について説明したが、他の結晶材料、例
えばInGaAsP/InGaP * InGaP/A
IInP rInGaAsP/TnP # AlGaA
sSb/GaAsSb 等数多くの結晶材料に適用する
ことができる。The dimensions and composition of each region are not limited to those in the above embodiments. Furthermore, although the present embodiment has been described with reference to the AlGaAs/CaAg double-petero junction crystal material, other crystal materials, such as InGaAsP/InGaP*InGaP/A
IInP rInGaAsP/TnP # AlGaA
It can be applied to many crystalline materials such as sSb/GaAsSb.
第1図は本発明の実施例を示す斜視図、第2図。
M3図、第4図はそれぞれ第1図のA−A’、B−B’
、C−C’の各断面図、第5図は第1図の上面図、第6
図はこの実施例の作製の過程においてダブルへテロ接合
結晶を成長したときの断面図、第7図はこの実施例の作
製過程において上記ダブルへテロ接合結晶をエツチン、
グしたときの斜視図、第8図は第7図の上面図である・
10−n形G a A s基板、11−n形A10.4
Gao、sA8第1クラッド層、12−・・アンドープ
AL、tiGao、m5AI!活性層、13−p形Al
o、4G&o、@AS第2クラッド層、14・Sin、
膜、15−I)−形A1.0.Ga、、、、As第3ク
ラッド層、16・p−形尤o、5zGao、@sA3ガ
イド層、17・・・n−1形Alo、4GjL 6,6
kB 第4クラッド層、18・・・5i01膜、19・
・・亜鉛拡散領域、2゜・・・p形オーミックコンタク
ト、21・・・n形オーミックコンタクト、22・・・
溝
特許出願人 日本電気株式会社
第1図
第2図FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 2 is a perspective view showing an embodiment of the present invention. Figure M3 and Figure 4 are A-A' and B-B' in Figure 1, respectively.
, C-C', FIG. 5 is a top view of FIG. 1, and FIG. 6 is a top view of FIG.
The figure is a cross-sectional view of the double heterojunction crystal grown during the manufacturing process of this example, and FIG.
Fig. 8 is a top view of Fig. 7. 10-n type GaAs substrate, 11-n type A10.4
Gao, sA8 first cladding layer, 12-... undoped AL, tiGao, m5AI! Active layer, 13-p type Al
o, 4G&o, @AS second cladding layer, 14・Sin,
membrane, 15-I) - form A1.0. Ga, ..., As third cladding layer, 16.p-type o, 5zGao, @sA3 guide layer, 17...n-1 type Alo, 4GjL 6,6
kB 4th cladding layer, 18...5i01 film, 19.
...Zinc diffusion region, 2゜...P-type ohmic contact, 21...N-type ohmic contact, 22...
Mizo patent applicant NEC Corporation Figure 1 Figure 2
Claims (1)
らなる第1および第2のクラッド層ではさみこんだダブ
ルへテロ接合半導体材料を用い、長手方向に沿って中央
部分に幅が広い領域とその両端に隣接して形成された幅
の狭い領域とからなるストライブ状構造を設け、幅の広
いストライブ状領域とこれに隣接した幅の狭いストライ
ブ状領域との境界をなす面がレーザ光に対する全反射角
を有し、該幅の狭いストライブ状領域に隣接して両反射
面近傍に形成された溝部領域とストライブ状構造の外部
領域とを、第3のクラッド層、クラッド層よりも屈折率
が大きく活性層よシも屈折率が小さい材質からなるガイ
ド層、第4のクラッド層を連続してうめこんだ状態にお
いて、該ガイド層を、溝部領域では厚く、他の埋込み領
域では薄くし、その長手方向において、該ストライブ状
構造内の活性層を溝部領域のガイド層に隣接させたこと
を特徴とする半導体レーザ。(1) The active layer is made of a double heterojunction semiconductor material sandwiched between first and second cladding layers made of a material with a lower refractive index than the active layer, and the width is increased in the center along the longitudinal direction. A stripe-like structure consisting of a wide region and narrow regions formed adjacent to both ends of the stripe-like structure is provided, and the wide stripe-like region and the adjacent narrow stripe-like region form a boundary. The surface has a total reflection angle with respect to the laser beam, and a groove region formed in the vicinity of both reflecting surfaces adjacent to the narrow stripe-like region and an external region of the stripe-like structure are covered with a third cladding layer. , a guide layer made of a material having a refractive index higher than that of the cladding layer and a refractive index lower than that of the active layer, and a fourth cladding layer are continuously embedded, and the guide layer is thick in the groove region and 1. A semiconductor laser characterized in that the embedded region is thin, and the active layer in the stripe-like structure is adjacent to the guide layer in the groove region in the longitudinal direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12580883A JPS6017980A (en) | 1983-07-11 | 1983-07-11 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12580883A JPS6017980A (en) | 1983-07-11 | 1983-07-11 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6017980A true JPS6017980A (en) | 1985-01-29 |
Family
ID=14919423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12580883A Pending JPS6017980A (en) | 1983-07-11 | 1983-07-11 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6017980A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0197172U (en) * | 1987-12-18 | 1989-06-28 |
-
1983
- 1983-07-11 JP JP12580883A patent/JPS6017980A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0197172U (en) * | 1987-12-18 | 1989-06-28 | ||
JPH0514120Y2 (en) * | 1987-12-18 | 1993-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4841532A (en) | Semiconductor laser | |
JPS6017980A (en) | Semiconductor laser | |
JPS58197787A (en) | Semiconductor laser | |
JPS59195895A (en) | Semiconductor laser | |
JPS5832794B2 (en) | semiconductor laser | |
JPS6362292A (en) | Semiconductor laser device and manufacture thereof | |
JPS6018988A (en) | Semiconductor laser | |
JPS58225681A (en) | Semiconductor laser element | |
JPS58216488A (en) | Semiconductor laser | |
JPS5968988A (en) | Semiconductor laser | |
JPS60163483A (en) | Semiconductor laser | |
JPS6057689A (en) | Semiconductor laser | |
JPS6343909B2 (en) | ||
JPS60163484A (en) | Semiconductor laser | |
JPS59197181A (en) | Semiconductor laser | |
JPS60164381A (en) | Semiconductor laser | |
JPH01132191A (en) | Semiconductor laser element | |
JPS5834988A (en) | Manufacture of semiconductor laser | |
JPS6234473Y2 (en) | ||
JPS6120388A (en) | Semiconductor laser | |
JPS6017977A (en) | Semiconductor laser diode | |
JPS6355995A (en) | Semiconductor laser | |
JPS6331189A (en) | Semiconductor laser | |
JPS6360583A (en) | Semiconductor laser | |
JPS5923585A (en) | Semiconductor laser element |