JPS5968988A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5968988A
JPS5968988A JP17883182A JP17883182A JPS5968988A JP S5968988 A JPS5968988 A JP S5968988A JP 17883182 A JP17883182 A JP 17883182A JP 17883182 A JP17883182 A JP 17883182A JP S5968988 A JPS5968988 A JP S5968988A
Authority
JP
Japan
Prior art keywords
groove
region
shallow
resonator
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17883182A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueno
上野 眞資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17883182A priority Critical patent/JPS5968988A/en
Publication of JPS5968988A publication Critical patent/JPS5968988A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region

Abstract

PURPOSE:To enable a large photo output oscillation and facilitate the manufacture by a method wherein shallow groove active regions at two parts are provided by isolation each other in the same plane in the londitudinal direction of a resonator, and a deep groove is provided in the neighborhood of reflection surfaces at both ends of the resonator. CONSTITUTION:The first shallow V-grooves 51 and 52 are formed in parallel at the center region of the resonator of a P type GaAs substrate 10, the second shallow V- groove 53 is formed on its extension, and a deep V-groove 54 is formed in continuity to this groove 53. At the region becoming the other reflection surface in opposition to the reflection surface wherein the groove 54 is formed, the deep rectangular groove 55 is formed in adjacency to the grooves 51 and 52. Next, clad layers are formed in the grooves 51-55, and then active layers, guide layers, clad layers, and cap layers are successively grown. This constitution makes it difficult to generate the chemical reaction with the outside because of no direct exposure of an excited region to the reflection surface and thus enables to block the deterioration due to the photochemical reaction of the reflection surface. Besides, since the neighborhood of the reflection surface is a layer of a band gap which is large to an oscillated light, light absorption is small, optical damages are difficult to generate, and accordingly the large photo output oscillation is enabled.

Description

【発明の詳細な説明】 本発明は半導体レーザ、特に大光出力半導体レーザに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor lasers, and more particularly to high optical output semiconductor lasers.

AtGaAs/GaAs等の結晶材料を用いる可視光半
導体レーザは、低閾値で・高効率の室温連続発振を行う
事ができるので、光方式のディジタル・オーディオ・デ
ィスク(DAD)用光源として最適でありこの半導体レ
ーザを用いた装置が、実用化されつつある。この可視光
半導体レーザは光プリンタ等の光書きこみ用光源として
用いる要求も高まっているが、この要求をみたすため大
光出力発振に耐える可視光半導体レーザの研究開発が進
められている。
Visible light semiconductor lasers using crystalline materials such as AtGaAs/GaAs can perform continuous oscillation at room temperature with a low threshold and high efficiency, making them ideal as light sources for optical digital audio disks (DAD). Devices using semiconductor lasers are being put into practical use. There is an increasing demand for this visible light semiconductor laser to be used as a light source for optical writing in optical printers and the like, and in order to meet this demand, research and development of visible light semiconductor lasers that can withstand large optical output oscillations is underway.

ところで、従来のストライブ幅10〜20μmのAtG
aAs/GaAs半導体レーザは、室温連続発振(CW
)の光出力が10mW程度、パルス動作(100ns幅
)の光出力が100mW8度のものが動作限界であり、
これ以上の光出力を放出すると容易に反射面が破壊され
る現象がある。この現象は古くから光学損傷として知ら
れており、このCW動作の限界光出力密度はIMW/d
前後である。
By the way, conventional AtG with a stripe width of 10 to 20 μm
aAs/GaAs semiconductor lasers are room temperature continuous wave (CW) lasers.
) has an optical output of about 10 mW, and a pulse operation (100 ns width) optical output of 100 mW at 8 degrees is the operating limit.
There is a phenomenon in which the reflective surface is easily destroyed if more optical power is emitted. This phenomenon has long been known as optical damage, and the critical optical power density of this CW operation is IMW/d
Before and after.

従来、大光出力を得るために反射面での光出力密度を下
げる試みがなされている。すなわち、ストライブ幅の拡
大、活性層厚の拡大、二重ダブルへテロ構造等が報告さ
れているが、この場合には。
Conventionally, attempts have been made to lower the optical output density at the reflective surface in order to obtain a large optical output. That is, enlargement of stripe width, enlargement of active layer thickness, double double heterostructure, etc. have been reported, but in this case.

閾値電流密度の増加を伴い室温連続発掘を困難にさせた
。また、大光出力動作にすると、たと、えストライブ幅
が狭くても発振領域が拡がり水平横モード(活性層に平
行な方向のモード)は複雑な多モードと化し、このため
大光出力の複雑な多モードと化した。このため大光出力
半導体レーザの用途は障害物検知等に限られ、レーザプ
リンタ等には用いられていない。
The increase in threshold current density makes continuous excavation at room temperature difficult. In addition, when operating with a large optical output, the oscillation region expands even if the stripe width is narrow, and the horizontal transverse mode (mode parallel to the active layer) becomes a complex multi-mode. It has become a complex multimodal system. For this reason, the use of high-output semiconductor lasers is limited to obstacle detection, etc., and is not used in laser printers or the like.

これに対し反射面近傍には電流を流さず非励起状態にし
、中央部のストライブ領域にのみ電流を流して励起領域
とし、反射面近傍がレーザ光に対し透明な非励起領域と
なる構造のストライブ半導体レーザが本発明の発明者ら
により特願昭53−18882に提案されている。
On the other hand, a structure in which no current is applied to the vicinity of the reflective surface, leaving it in a non-excited state, and a current is supplied only to the stripe region in the center to make it an excitation region, and the vicinity of the reflective surface becomes a non-excited region that is transparent to the laser beam. A striped semiconductor laser was proposed by the inventors of the present invention in Japanese Patent Application No. 53-18882.

AtGaAs/GaAsダブルへテロ接合構造の場合、
励起領域を取囲む非励起領域の活性層をn形にし。
In the case of AtGaAs/GaAs double heterojunction structure,
The active layer in the non-excited region surrounding the excited region is made n-type.

この活性層の励起領域となる部分をZn拡散等でストラ
イブ状にp形にすると、励起領域のバンドギャップに対
して非励起領域のバンドギャップは約30〜50meV
縮少する。この場合n形濃度が高くp形濃度が高い程バ
ンドギャップの相対的な変化量は大きいので、励起領域
で生じたレーザ光に対して非励起領域はほぼ透明になる
。この構造において光学損傷は従来の限界光出力の5倍
をこえてもなお発生しなかった。すなわち、非励起領域
が小数キャリアの拡散長以上に長ければ、充分効果を示
し、かつこれらの効果はダブルへテロ接合構造に限られ
る事も確認された。しかし、この構造の半導体レーザは
励起領域が不純物補償されたp形になっており、内部吸
収損失が大きく閾値電流が高くなる傾向があるばかりで
なく、拡散長が短くなるため、高次横モードの利得の上
昇が大きく、大光出力動作時では水平横モードが高次多
モード化する欠点があった。その上レーザ光が非励起領
域を伝播する場合に、光はガウス分布状に拡がりながら
伝播するため、反射面で反射されてもどってきた光が再
び励起領域に入り、レーザ発振に必要な利得の増大に寄
与する割合(カップリング効率)は低くなり、そのため
損失が大きくなり閾値電流が上昇し外部微分量子効率が
低下する等の欠点をもっていた。
When the part of the active layer that becomes the excited region is made p-type in a stripe shape by Zn diffusion, etc., the band gap of the non-excited region is about 30 to 50 meV with respect to the band gap of the excited region.
Shrink. In this case, the higher the n-type concentration and the higher the p-type concentration, the greater the relative change in bandgap, so the non-excitation region becomes almost transparent to the laser light generated in the excitation region. In this structure, no optical damage occurred even when the optical output exceeded five times the conventional limit optical output. That is, it was confirmed that if the non-excited region is longer than the diffusion length of minority carriers, sufficient effects are exhibited, and these effects are limited to the double heterojunction structure. However, in semiconductor lasers with this structure, the excitation region is impurity-compensated p-type, which not only tends to have large internal absorption losses and a high threshold current, but also shortens the diffusion length, resulting in higher-order transverse modes. The increase in gain is large, and the horizontal transverse mode becomes a high-order multi-mode during operation with a large optical output. Furthermore, when the laser light propagates through the non-excitation region, the light propagates while spreading in a Gaussian distribution, so the light that is reflected by the reflective surface and returns enters the excitation region again, increasing the gain required for laser oscillation. The ratio contributing to the increase (coupling efficiency) becomes low, resulting in disadvantages such as increased loss, increased threshold current, and decreased external differential quantum efficiency.

また、反射面近傍を活性層よりもバンドギャップの大き
いクラッド層で埋込む構造も提案されている。しかし、
この場合も上記構造と同様にレーザ光がクラッド層を伝
播する際に光は拡がり、カップリング効率が低くなるた
め、閾値′電流の上昇及び外部微分量子効率の低下をき
たす欠点を有しているのみならず、結晶成長した後、エ
ツチングをして反射面となる領域をクラッド層で埋込む
など製法が複雑であり、更に埋込んだクラッド層領域と
活性層との界面部分に結晶欠陥が生じやすく信頼性の点
で問題がある等の種々の欠点を有していた。
Furthermore, a structure has been proposed in which the vicinity of the reflective surface is buried with a cladding layer having a larger band gap than the active layer. but,
In this case as well, as with the above structure, when the laser light propagates through the cladding layer, the light spreads and the coupling efficiency decreases, so it has the disadvantage of increasing the threshold current and decreasing the external differential quantum efficiency. In addition, the manufacturing method is complicated, such as etching after crystal growth and burying the region that will become the reflective surface with a cladding layer, and crystal defects also occur at the interface between the buried cladding layer region and the active layer. It had various drawbacks, such as being easy to use and having problems with reliability.

一方、この構造において反射面近傍を透明な領域とした
場合信頼性をもって動作できる大光出力の限界は20〜
30mW程度であり、光書き込み用光源として必要な5
0〜60 mWの大光出力を信頼性よく安定に動作させ
る事は困難であった。
On the other hand, in this structure, if the area near the reflective surface is made transparent, the limit of the large optical output that can operate reliably is 20 ~
It is about 30mW, which is necessary as a light source for optical writing.
It has been difficult to operate reliably and stably with a large optical output of 0 to 60 mW.

本発明の目的は、これら欠点を除去し、従来にくらべて
はるかに高い大光出力発振が可能であると共に、基本横
モード発振のみならず単一軸モード発振を行い更に一回
成長で製作でき再現性及び信頼性の上でもすぐれた半導
体レーザを提供する事にある。
The purpose of the present invention is to eliminate these drawbacks, to enable oscillation with a much higher optical power than conventional methods, and to produce not only fundamental transverse mode oscillation but also single-axis mode oscillation, which can be manufactured and reproduced in one growth process. The purpose of the present invention is to provide a semiconductor laser that is excellent in terms of performance and reliability.

本発明の半導体レーザの構成は、共振器長方向の中央部
分に互に平行な複数個の第1の溝を有しかつその共振器
長方向の延長上の一部に第2の浅い溝を有しその共振器
両端の両度射面近傍に深い溝を形成した半導体基板と、
この半導体基板上に活性層とこの活性層より屈折率が小
さいガイド層とをこのガイド層より屈折率が小さい嬉1
.第2のクラッド層ではさんだ多層構造とを含み、前記
複数個の第1の浅い溝領域の活性領域と前記第2の浅い
溝領域の活性領域とが同一平面上で互に分離して設けら
れ、これらMl、82の浅い溝領域の活性層と前記深い
溝との活性層との間に段差が設けられ、前記深い溝の活
性層を非励起領域にした事を特徴とする。
The structure of the semiconductor laser of the present invention has a plurality of first grooves parallel to each other in the central portion in the longitudinal direction of the cavity, and a second shallow groove in a part of the extension in the longitudinal direction of the cavity. a semiconductor substrate having deep grooves formed near both incident surfaces at both ends of the resonator;
An active layer and a guide layer having a refractive index lower than that of this active layer are formed on this semiconductor substrate.
.. a multilayer structure sandwiched between second cladding layers, wherein the active regions of the plurality of first shallow trench regions and the active regions of the second shallow trench regions are provided on the same plane and separated from each other. , Ml, 82, a step is provided between the active layer in the shallow trench region and the active layer in the deep trench, and the active layer in the deep trench is made into a non-excited region.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の実施例の斜視図、第21”l ) d
3図および第4図は第1図のh−h:  13−B’お
よびc −c’の各断面図、第5図は第1図の基板の斜
視図である。
FIG. 1 is a perspective view of an embodiment of the present invention, No. 21"l) d
3 and 4 are sectional views taken along lines hh: 13-B' and c-c' in FIG. 1, and FIG. 5 is a perspective view of the substrate in FIG. 1.

まず、(100)面を平面とするp形G a A s基
板10上に5iOz膜をつけフォトレジスト法で(01
1)方向の中央領域に幅2μmのストライブ状の第1の
窓(51,52)を15μmの間隔をあけて200μm
の長さに平行に2本作り、その共振器長方向で両者の中
央に位置しかつ両者から10μmはなして幅2μm長さ
50μmの第2の窓(53)とそれに連続して幅4μm
長さ50μmの窓(54)を形成する。次に、Br2と
メチルアルコ・−ルとの混合溶液を用いてエツチングす
ると、(111)A面を側斜面(平面に対して54度4
4分)とする■溝51〜54が形成される。■溝はエツ
チング用のマスクとして用いた5iQ2膜にあけた窓の
幅に対応して深さ1.4μmの第1のV溝51.52が
2本平行に共振器中央領域に形成され、その延長上で2
本の第1の溝51.,52の中央に位置する部分に深さ
1.4μmの巣2のV溝53が形成され、それに連続し
て深さ2.8μmのV溝54が反射面近傍に形成される
。前記8i02膜を除去した後再び全体に3iQ2膜を
つけ、上記V溝を形成した反射面に対して他の一方の反
射面となる領域に第1の溝51.52に隣接して幅30
μm長さ50μmのストライブ状の窓(55)をあける
。この時共振器〔011〕方向において第1の溝51゜
52が2本ともにストライブ幅内部に含まれるようにす
る。次いてH3PO4,H2O2,CH30Hが1:1
:3の混合溶液を用いて深さ2.8μmエツチングする
と矩形状溝55が形成され、SiO2膜を除去すると、
第5図に示す様な、この発明の構成に必要な基板10が
形成される。
First, a 5iOz film is applied on a p-type GaAs substrate 10 whose plane is the (100) plane, and a (01
1) Stripe-shaped first windows (51, 52) with a width of 2 μm are placed in the central region in the direction of 200 μm with an interval of 15 μm.
A second window (53) with a width of 2 μm and a length of 50 μm is made, and a second window (53) with a width of 2 μm and a length of 50 μm is located at the center of both in the length direction of the resonator and separated by 10 μm from both, and a second window (53) with a width of 4 μm is made continuously.
A window (54) with a length of 50 μm is formed. Next, when etching is performed using a mixed solution of Br2 and methyl alcohol, the (111)A surface is converted to a side slope (54 degrees 4 degrees with respect to the plane).
4) Grooves 51 to 54 are formed. ■Two first V grooves 51 and 52 with a depth of 1.4 μm are formed in the central region of the resonator in parallel, corresponding to the width of the window made in the 5iQ2 film used as an etching mask. 2 by extension
Book first groove 51. , 52 is formed with a V-groove 53 having a depth of 1.4 μm and a V-groove 54 with a depth of 2.8 μm is formed in the vicinity of the reflecting surface. After removing the 8i02 film, a 3iQ2 film is applied to the entire surface again, and a groove with a width of 30 mm is formed adjacent to the first groove 51, 52 in the area that will become the other reflective surface with respect to the reflective surface on which the V groove is formed.
A stripe-shaped window (55) with a length of 50 μm is opened. At this time, both of the first grooves 51 and 52 are made to be included within the stripe width in the resonator [011] direction. Next, H3PO4, H2O2, CH30H is 1:1
: When etching is performed to a depth of 2.8 μm using a mixed solution of 3, a rectangular groove 55 is formed, and when the SiO2 film is removed,
A substrate 10 necessary for the configuration of the present invention as shown in FIG. 5 is formed.

次に、p形At O,4Ga o、s A sクラッド
層11を中央部分の浅い溝51〜53の内部を埋めつく
し溝外部の肩の部分の厚さが0.1μmになるように成
長させると、平担な成長表面が得られる。次いてアンド
ープAt011sGaO1B、As活性)v112を0
.08μm成長させる。この時両反射面近傍の深い溝の
内部にもp形りラッド層11.活性、I!i12が成長
し、活性層12の成長表面の位置は平担な基板表面に対
して0.5μmの深さになる。次に、n形kto、xt
 oao、、、 Asガイド層13を1.0μm。
Next, a p-type AtO, 4GaO, SAs cladding layer 11 is grown to completely fill the shallow grooves 51 to 53 in the central portion and to have a thickness of 0.1 μm at the shoulder portion outside the groove. A flat growth surface can be obtained. Then undoped At011sGaO1B, As activity)v112 is 0
.. Grow to 08 μm. At this time, p-type rad layers 11 are also formed inside the deep grooves near both reflective surfaces. Active, I! i12 grows, and the growth surface of the active layer 12 is located at a depth of 0.5 μm with respect to the flat substrate surface. Next, n-type kto, xt
oao, As guide layer 13 with a thickness of 1.0 μm.

n形kt o、 4 G a 6.6 A sクラッド
層14を1.5/Am。
n-type kto, 4 Ga 6.6 As cladding layer 14 at 1.5/Am.

p形G a A sキャラプ層15を0.5μm連続成
長させる。この時両反射面近傍の深い溝54.55はガ
イド層13で埋めつくされ両反射面近傍のガイド層13
はそれぞれ第1のV溝領域51.52もしくは第2の■
溝領域53に成長したp形りラッド層11の一部、活性
層12.ガイド層13の一部に隣接する。
A p-type GaAs cap layer 15 is continuously grown to a thickness of 0.5 μm. At this time, the deep grooves 54 and 55 near both reflective surfaces are completely filled with the guide layer 13.
are the first V groove region 51, 52 or the second V groove region 51, 52, respectively.
A portion of the p-type rad layer 11 grown in the groove region 53, the active layer 12. Adjacent to a portion of the guide layer 13 .

次に、成長表面に8fo2膜16をつけ中央部分の第1
の■溝領域51.52及び第2のV溝領域53のキャッ
プ層15にそれぞれフォトレジスト法で窓をあけ、n形
不純物イオウをn形hto、4G a 6.6 A s
クラッド層14の一部まで拡散フロントがくるように拡
散する。この時第1の■溝領域51.52での拡散領域
17とWJ2の■溝領域53での拡散領域18とが互い
に接しないようにする。その後成長表面側にn形オーミ
ックコンタクト19.基板側にp形オーミックコンタク
ト20を形成して本発明の半導体レーザを構成できる。
Next, an 8fo2 film 16 is applied to the growth surface, and the first
Windows are formed in the cap layer 15 of the (1) groove regions 51, 52 and the second V-groove region 53 using a photoresist method, and n-type impurity sulfur is added to the cap layer 15 by n-type hto, 4G a 6.6 A s.
Diffusion is performed so that the diffusion front reaches a part of the cladding layer 14. At this time, the diffusion region 17 in the first groove region 51 and 52 and the diffusion region 18 in the groove region 53 of WJ2 are made not to contact each other. After that, an n-type ohmic contact 19. The semiconductor laser of the present invention can be constructed by forming a p-type ohmic contact 20 on the substrate side.

この実施例において、共振器中央部分の第1の浅い溝5
1.52部分の活性層12から第1クラッド層11にし
み出た光の一部はその発振波長に対して吸収体となるG
aAs基板にまで達し大きな吸収損失を受ける。その結
果、損失と利得とのステップを生じ、同時に各浅い溝5
1.52上の活性層12の屈折率が高くなって正の実効
的な屈折率差が活性層12内に形成されて屈折率ガイデ
ィング機構が各浅い溝上に形成され安定な基本横モード
発振を行う。
In this embodiment, the first shallow groove 5 in the central part of the resonator
A part of the light that seeps into the first cladding layer 11 from the active layer 12 in the 1.52 part is absorbed by G, which becomes an absorber for the oscillation wavelength.
It reaches the aAs substrate and suffers a large absorption loss. This results in steps of loss and gain, and at the same time each shallow groove 5
The refractive index of the active layer 12 above 1.52 is increased, and a positive effective refractive index difference is formed within the active layer 12, and a refractive index guiding mechanism is formed on each shallow groove, resulting in stable fundamental transverse mode oscillation. I do.

特にこの構造では、中央部分の14 iの浅い溝51.
52の領域において光の一部は活性層12から隣接した
ガイド層13にもしみ出てレーザ発振をするがこれは光
学損傷の生ずるレベルを著しく上昇させる。すなわち、
レーザ発振時に活性層12からしみ出た光の一部は発振
波長に対してバンドギャップの広いガイド層13を通る
ので、吸収損失を受ける事なく透過し活性層12を通る
光が光学損傷を引きおこす要因となるが、活性層12内
の光の量を少くすれば光学損傷を生じるレベルを上昇さ
せる事ができる。この構造では個々のレーザ発振領域の
光学損傷の生じるレベルが上昇する事になるので、全党
出力はこれに応じてレーザ発振領域となる第1の浅い溝
51.52のiに比例して大幅に上昇させる事ができる
。才た、光のガイド層13へのしみ出し量はガイド層の
屈折率によって変化させる事ができるが、吸収効果をも
つこの実施例の構造ではガイド層へのしみ出し量を調整
し吸収層への光のしみ出し効果も持つようにする必要が
ある。このためには浅い溝の外部平担部に成長した第1
クラッド層11の層厚を薄くする事が望ましい。
In particular, in this structure, a 14 i shallow groove 51.
In the region 52, a portion of the light leaks from the active layer 12 into the adjacent guide layer 13 and causes laser oscillation, which significantly increases the level of optical damage caused. That is,
A part of the light that seeps out from the active layer 12 during laser oscillation passes through the guide layer 13, which has a wide bandgap relative to the oscillation wavelength, so it is transmitted without suffering any absorption loss, and the light passing through the active layer 12 causes optical damage. However, by reducing the amount of light within the active layer 12, the level at which optical damage occurs can be increased. In this structure, the level of optical damage in each laser oscillation region increases, so the total output power increases in proportion to the i of the first shallow groove 51, 52 which serves as the laser oscillation region. It can be raised to The amount of light that seeps into the guide layer 13 can be changed by changing the refractive index of the guide layer, but in the structure of this embodiment that has an absorption effect, the amount of light that seeps into the guide layer 13 is adjusted and the amount of light that seeps into the guide layer 13 is adjusted. It is also necessary to create a light seepage effect. For this purpose, the first growth on the external flat part of the shallow groove is necessary.
It is desirable to reduce the layer thickness of the cladding layer 11.

また、共振器中央部の第1の浅い溝領域51゜52にお
いて共振器長延長上にストライブ状の第2の浅い溝53
をもっているので次のような特長がある。すなわち、こ
のストライブ状の第2の浅い溝53にあたる活性層12
にはキャリアが注入され第1の浅い溝51.52とは独
立した励起領域となっている。これら第1の浅い溝51
.52で励起された光は共振器長方向に伝播していく際
に励起領域があるとその励起領域に集光する。このため
本発明の構造ではこれら第1の浅い溝領域51.52の
レーザ共振器からの励起光はともに光の伝播方向にある
第2の励起領域(53)を通って相互に重なり単一の基
本横モードとして第2の励起領域に隣接する深い溝領域
の反射面からレーザ発振出力を取り出す事ができる。こ
の時第1の浅い溝領域51.52のレーザ共振器の数に
対応するレーザ光がそれぞれ重なり合うのでそれらを掛
合わせた発振光出力を得る事ができ、大光出力レーザ発
振が可能となる。例えば、1個の第1の溝による最大光
出力が50mWの場合、この実施例では100+nWの
大光出力が可能となる。
Further, in the first shallow groove region 51° 52 at the center of the resonator, a stripe-shaped second shallow groove 53 is formed on the extension of the resonator length.
It has the following features. That is, the active layer 12 corresponding to this striped second shallow groove 53
Carriers are injected into the grooves 51 and 52 to form excitation regions independent of the first shallow grooves 51 and 52. These first shallow grooves 51
.. When the light excited by 52 propagates in the resonator length direction, if there is an excitation region, the light is focused on the excitation region. Therefore, in the structure of the present invention, the excitation light from the laser resonators in the first shallow groove regions 51 and 52 passes through the second excitation region (53) in the light propagation direction, overlaps each other, and forms a single beam. Laser oscillation output can be extracted as the fundamental transverse mode from the reflective surface of the deep groove region adjacent to the second excitation region. At this time, since the laser beams corresponding to the number of laser resonators in the first shallow groove regions 51 and 52 are overlapped with each other, an oscillation light output obtained by multiplying them can be obtained, and large optical output laser oscillation is possible. For example, if the maximum optical output from one first groove is 50 mW, this embodiment allows a large optical output of 100+nW.

このように別々の共振器によるレーザ光が励起領域で重
なり合う時、これら共振器によって形成される軸モード
もカップリングするが、この時間−の軸モードのみが相
互に強めあい強い一本の軸モードになる。この軸モード
は同一活性層内にもわずかな変動があり各共振器によっ
て形成される軸モードはわずかに変化しているが、相互
に強め合う軸モードはほぼ一本程度になるので、はぼ単
一の軸モード発振を得る事ができる。
When the laser beams from different resonators overlap in the excitation region in this way, the axial modes formed by these resonators also couple, but only the time-axis modes mutually reinforce each other, resulting in a single strong axial mode. become. This axial mode has slight fluctuations within the same active layer, and the axial mode formed by each resonator changes slightly, but the number of mutually reinforcing axial modes is about one, so Single axial mode oscillation can be obtained.

この実施例における両反射面近傍の深い溝の構造は、次
のような特徴を持っている。すなわち。
The structure of the deep grooves near both reflecting surfaces in this embodiment has the following characteristics. Namely.

本宿造では結晶成長時に活性層が浅い溝領域以外に両反
射面近傍の深い溝領域54.52にも形成されるが共振
器長方向の溝の深さの差による段差を生じ、この段差が
大きい場合には活性層はその部分でとぎれて成長しやす
い。なお、活性層がつながっていても深い溝内部の活性
層12は非励起領域となっているので、浅い溝から深い
溝の活性層内を通る光は150cm”から200 c=
”にわたる吸収損失をうけるためにレーザ発振の通路と
はならず深い溝のガイド層内を直進しレーザ発振を出方
する。
In this case, during crystal growth, the active layer is formed not only in the shallow groove region but also in the deep groove regions 54 and 52 near both reflective surfaces, but a step is created due to the difference in the depth of the groove in the resonator length direction. If the active layer is large, the active layer tends to break off at that part and grow easily. Note that even if the active layers are connected, the active layer 12 inside the deep groove is a non-excited region, so the light passing from the shallow groove to the active layer in the deep groove is from 150cm'' to 200c=
In order to undergo absorption loss over a period of 30 minutes, the laser oscillation is emitted by traveling straight through the deep groove guide layer, rather than as a path for the laser oscillation.

特に、この構造において片方の反射面近傍に第2の浅い
溝53に隣接して深い溝54があり、他方の反射面近傍
に複数の第1の浅い溝51.52に隣接してこれら浅い
溝全部を含む幅をもった深い溝55力干形成されている
。第1.第2の浅い溝領域51〜53の活性層12はい
ずれもその深い溝との境界で深い溝領域のガイド層13
の一部に隣接している。従ってレーザ発振光は両反射面
近傍ではガイド層13内を直進するが、このガイド層は
レーザ発振光に対して透明であり光の吸収損失は全く無
視てきる。例えば、発振波長λ=0.78fimにおい
て、Ato、zy G ao、ys A Sガイド層を
用いた場合そのエネルギー差は17011eV以上とな
り低閾値で発振する事ができる。
In particular, in this structure, there is a deep groove 54 adjacent to the second shallow groove 53 near one reflecting surface, and a plurality of shallow grooves 54 adjacent to the plurality of first shallow grooves 51 and 52 near the other reflecting surface. 55 deep grooves are formed with a width that includes all of them. 1st. The active layer 12 in each of the second shallow groove regions 51 to 53 has a guide layer 13 in the deep groove region at the boundary with the deep groove.
Adjacent to part of. Therefore, the laser oscillation light travels straight through the guide layer 13 in the vicinity of both reflective surfaces, but this guide layer is transparent to the laser oscillation light and the absorption loss of the light can be completely ignored. For example, at the oscillation wavelength λ=0.78 fim, when Ato, zy Gao, and ys AS guide layers are used, the energy difference is 17011 eV or more, making it possible to oscillate with a low threshold.

また1本発明の構造では、反射面近傍には光のガイド機
構となるガイドJ@13があり、光はこのガイド層内に
とじこもって進行し、この光のガイド機構により光の重
なり合う効果が助長され単一の横モード発振が可能にな
る。このレーザ光は深い溝領域のガイド層を進行するに
際して垂直方向にも拡がり、レーザ発振光の垂直方向と
水平方向との拡がり角がほぼ近くなり円形に近い発振光
となり、光学系とのカップリング効率も上昇する。
In addition, in the structure of the present invention, there is a guide J@13 that serves as a light guide mechanism near the reflecting surface, and the light travels while being confined within this guide layer, and this light guide mechanism prevents the effect of light overlapping. This facilitates single transverse mode oscillation. As this laser light travels through the guide layer in the deep groove region, it also spreads in the vertical direction, and the spread angles of the laser oscillation light in the vertical and horizontal directions become almost circular, resulting in a nearly circular oscillation light that is coupled to the optical system. Efficiency also increases.

さらに、この内反射面近傍をレーザ発振光が透過する構
造により反射面破壊(COD)レベルを飛躍的に上昇さ
せる事ができる。すなわち、通常の半導体レーザではキ
ャリア注入による励起領域となる活性層端面が反射面と
して露出しており、そこでは表面再結合が生じ空乏層化
してバンドギャップが縮少しているので、大光出力発振
をさせるとこの縮少したバンドギャップにより光の吸収
が生じ、そこは発熱して融点近くまで温度が上昇しつい
には光学損傷を生ずる。これに対して本発明の構造では
光の反射面となる両端面近傍ではレーザ発振光はバンド
ギャップ差が170 meV以上もあるガイド層を透過
して発振するので、反射面近傍での光の吸収はなく光学
損傷は生じにくく大光出力発振が可能となる。更に共振
器長中央部分の光はガイド層にしみ出てレーザ発振する
ので、米国雑誌 I E E E Journal o
f Quantum Elec −tronics、 
 第QE−15巻775頁〜781頁にヨネズ他によっ
て報告されているような大光出力発振によって活性層内
部に生じる破壊現象もおさえる事ができレーザ素子の光
出力レベルははるかに高くなる。
Furthermore, the structure in which the laser oscillation light passes through the vicinity of the internal reflection surface can dramatically increase the level of damage to the reflection surface (COD). In other words, in a normal semiconductor laser, the end face of the active layer, which becomes the excitation region due to carrier injection, is exposed as a reflective surface, where surface recombination occurs, forming a depletion layer and reducing the band gap, resulting in large optical output oscillation. When this occurs, light absorption occurs due to the reduced bandgap, which generates heat and rises in temperature to near the melting point, eventually causing optical damage. On the other hand, in the structure of the present invention, the laser oscillation light passes through the guide layer with a band gap difference of 170 meV or more in the vicinity of both end faces, which are the light reflecting surfaces. Therefore, optical damage is less likely to occur and high optical output oscillation is possible. Furthermore, the light at the center of the resonator length penetrates into the guide layer and oscillates as a laser, so
f Quantum Elec-tronics,
The destruction phenomenon occurring inside the active layer due to large optical output oscillation, as reported by Yonezu et al. in Vol.

以上に説明したように、本発明による半導体レーザは、
励起領域が直接反射面に露出している通常の半導体レー
ザにくらべて外部との化学反応はおこりにくく反射面の
光学反応による劣化を阻止する事ができる。また、この
反射面近傍は発振光に対してバンドギャップのきわめて
大きな層になっているので、光の吸収は少く光学損傷を
発生しにくく大光出力発振が可能であり、全体の光出力
を従来のレーザアレイに比べて一部近く上昇できる。ま
た、この構造は溝を形成した基板上に一回の連続結晶成
長で製作する事ができ、溝の形成も比較的簡単であるの
で、このレーザ製作は容易に再現性よく作る事ができる
As explained above, the semiconductor laser according to the present invention has
Compared to a normal semiconductor laser in which the excitation region is directly exposed to the reflective surface, chemical reactions with the outside are less likely to occur, and deterioration due to optical reactions on the reflective surface can be prevented. In addition, since the area near this reflective surface is a layer with an extremely large bandgap relative to the oscillated light, light absorption is low and optical damage is less likely to occur, allowing for large optical output oscillation, making the overall optical output much lower than before. Compared to the laser array of Further, this structure can be manufactured by one continuous crystal growth on a substrate in which grooves have been formed, and since the formation of the grooves is relatively simple, this laser fabrication can be easily performed with good reproducibility.

ところで、第1の浅い溝領域51.52におけるレーザ
励起光λ= 0.78μmに対してp形G a A s
基板は数千ci1から一万cm”  の吸収損失をもつ
ので、第1の浅い溝51.52の外部の平担部でレーザ
光は大きな吸収損失をうける。レーザ光の大部分は活性
層に隣接したガイド層へしみ出るが基板側へしみ出た一
部の光が吸収損失をうけただけで第1の浅い溝部分に正
の実効的な屈折率差が生じる事が明らかになった。これ
に対して一次横モードの利得の上昇は第1の浅い溝外部
での吸収損失で抑圧されるので基本横モード発振が大光
出力発振において維持される。
By the way, for the laser excitation light λ = 0.78 μm in the first shallow groove region 51.52, the p-type Ga As
Since the substrate has an absorption loss of several thousand ci1 to 10,000 cm, the laser beam suffers a large absorption loss in the flat area outside the first shallow groove 51, 52. Most of the laser beam is absorbed into the active layer. It has become clear that a positive effective refractive index difference is generated in the first shallow groove portion simply by absorbing some of the light that leaks into the adjacent guide layer but leaks toward the substrate side and undergoes absorption loss. On the other hand, since the increase in gain in the primary transverse mode is suppressed by absorption loss outside the first shallow groove, fundamental transverse mode oscillation is maintained in large optical output oscillation.

本実施例においては、第1の浅い溝が2本の場合を示し
たが任意の数の励起領域を形成する事ができる。また、
p形基板を用いた実施例を説す」シたが、pnを反転さ
せてn形基板を用いて作製する事もできる。さらに、本
実施例は、AtGaAs/GaAsダブルへテロ接合結
晶材料について説明したが、コノ材料以外たとえばIn
GaAsP/InGaP。
Although this embodiment shows the case where there are two first shallow grooves, any number of excitation regions can be formed. Also,
Although an embodiment using a p-type substrate will be described, it is also possible to invert pn and use an n-type substrate. Furthermore, although this embodiment has been described with respect to the AtGaAs/GaAs double heterojunction crystal material, other than the AtGaAs/GaAs double heterojunction crystal material, for example, In
GaAsP/InGaP.

InGaAsP/InP、InGaP/AtGaP、A
7GaAsSb/GaAs8b 等数多くの結晶材料に
適用する事ができる。
InGaAsP/InP, InGaP/AtGaP, A
It can be applied to many crystal materials such as 7GaAsSb/GaAs8b.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の斜視図、第2図は第1図のA
−Aの部分で切断した断面図、第3図は第1図のB、−
Hの部分で切断した断面図、第4図は第1図のC−Cの
部分で切断した断面図、第5図は第1図の基板の斜視図
である。図において10・・・・・・p形Ga A s
基板、11・・・・・・p形At6.4Ga 0.6 
A sクラッド層、12・・・・・・アンドープA t
6.15Ga O,B 5 As活性層、13 ・−・
−n形Ato、 27 G a O,73Asガイド層
、14−−−−−− n形A 16.4 G a g、
 6 A B クラッド層、15・・・・・・p形G 
a A sキヤツプ層、16・・・・・・SiO2膜、
17・・・・・・第1のV溝領域での拡散領域、18・
・・・・・第2のV溝領域での拡散領域、19・・・・
・・n形オーミックコンタクト、2o・・・・・・p形
オーミックコンタクト、51.52・・曲第1の溝(領
域)、53°・・・・・第2の溝(領域)、54・・・
・・・■溝、55・・曲走形状溝である。 特開昭59−68988 (6) f)4  図 第 C図
Figure 1 is a perspective view of an embodiment of the present invention, and Figure 2 is A of Figure 1.
- A sectional view taken at part A, Figure 3 is B in Figure 1, -
4 is a cross-sectional view taken along the line C--C in FIG. 1, and FIG. 5 is a perspective view of the substrate in FIG. 1. In the figure, 10... p-type Ga As
Substrate, 11...p-type At6.4Ga 0.6
A s cladding layer, 12... Undoped A t
6.15GaO,B5As active layer, 13...
- n-type Ato, 27 Ga O, 73 As guide layer, 14------- n-type A 16.4 Ga g,
6 A B cladding layer, 15...p-type G
a As cap layer, 16...SiO2 film,
17... Diffusion region in the first V groove region, 18.
...Diffusion region in the second V-groove region, 19...
...N-type ohmic contact, 2o...P-type ohmic contact, 51.52...Track first groove (region), 53°...Second groove (region), 54.・・・
... ■Groove, 55... Curved groove. JP-A-59-68988 (6) f) 4 Figure C

Claims (1)

【特許請求の範囲】[Claims] 共振器長方向の中央部分に互に平行な複数個の第1の溝
を有しかつその共振器長方向の延長上の一部に第2の浅
い溝を有しその共振器両端の内反射面近傍に深い溝を形
成した半導体基板と、この半導体基板上に活性層とこの
活性層より屈折率が小さいガイド層とをこのガイド層よ
り屈折率が小さい第1.第2のクラッド層ではさんだ多
層構造とを含み、前記複数個の第1の浅い溝領域の活性
領域と前記第2の浅い溝領域の活性領域とが同一平面上
で互に分離して設けられ、これら第1.第2の浅い溝領
域の活性層と前記深い溝との活性層との間に段差が設け
られ、前記深い溝の活性層を非励起領域にした事を特徴
とする半導体レーザ。
It has a plurality of first grooves parallel to each other in the central part in the longitudinal direction of the resonator, and has a second shallow groove in a part of the extension in the longitudinal direction of the resonator, and has internal reflections at both ends of the resonator. A semiconductor substrate having a deep groove formed near its surface, an active layer and a guide layer having a refractive index lower than that of the active layer on this semiconductor substrate, and a first layer having a refractive index lower than that of this guide layer. a multilayer structure sandwiched between second cladding layers, wherein the active regions of the plurality of first shallow trench regions and the active regions of the second shallow trench regions are provided on the same plane and separated from each other. , these first. A semiconductor laser characterized in that a step is provided between the active layer in the second shallow groove region and the active layer in the deep groove, and the active layer in the deep groove is made into a non-excitation region.
JP17883182A 1982-10-12 1982-10-12 Semiconductor laser Pending JPS5968988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17883182A JPS5968988A (en) 1982-10-12 1982-10-12 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17883182A JPS5968988A (en) 1982-10-12 1982-10-12 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5968988A true JPS5968988A (en) 1984-04-19

Family

ID=16055424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17883182A Pending JPS5968988A (en) 1982-10-12 1982-10-12 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5968988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383216A (en) * 1992-12-28 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser with light modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383216A (en) * 1992-12-28 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser with light modulator

Similar Documents

Publication Publication Date Title
EP0095826B1 (en) Semiconductor laser
JPS5940592A (en) Semiconductor laser element
US4546481A (en) Window structure semiconductor laser
JPS58197787A (en) Semiconductor laser
JPS5968988A (en) Semiconductor laser
JPS58225681A (en) Semiconductor laser element
JPS5832794B2 (en) semiconductor laser
JPS6018988A (en) Semiconductor laser
JPS59195895A (en) Semiconductor laser
KR0141057B1 (en) A method of manufacturing semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS5948973A (en) Semiconductor laser
JPS5963788A (en) Semiconductor laser
JPS58216488A (en) Semiconductor laser
JPS58194387A (en) Semiconductor laser
JPS6017980A (en) Semiconductor laser
JPS62155582A (en) Buried type semiconductor laser
JPS58194385A (en) Semiconductor laser
JPS6057689A (en) Semiconductor laser
JPS5992590A (en) Semiconductor laser
JPS6022392A (en) Semiconductor laser and manufacture thereof
JPS60164381A (en) Semiconductor laser
JPS59175182A (en) Semiconductor laser element
JPS62165389A (en) Semiconductor laser
JPS5832483A (en) Semiconductor laser