JPH047113B2 - - Google Patents

Info

Publication number
JPH047113B2
JPH047113B2 JP2807583A JP2807583A JPH047113B2 JP H047113 B2 JPH047113 B2 JP H047113B2 JP 2807583 A JP2807583 A JP 2807583A JP 2807583 A JP2807583 A JP 2807583A JP H047113 B2 JPH047113 B2 JP H047113B2
Authority
JP
Japan
Prior art keywords
laser
region
window
active layer
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2807583A
Other languages
Japanese (ja)
Other versions
JPS59152686A (en
Inventor
Morichika Yano
Saburo Yamamoto
Hiroshi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2807583A priority Critical patent/JPS59152686A/en
Priority to EP83301600A priority patent/EP0095826B1/en
Priority to DE8383301600T priority patent/DE3376936D1/en
Publication of JPS59152686A publication Critical patent/JPS59152686A/en
Publication of JPH047113B2 publication Critical patent/JPH047113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface

Description

【発明の詳細な説明】 <従来分野> 本発明はレーザ光の吸収の少ない窓領域を有す
る半導体レーザ素子の新しい構造に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Prior Art> The present invention relates to a new structure of a semiconductor laser device having a window region that absorbs little laser light.

<従来技術> 半導体レーザの寿命を制限する要因の一つに、
光出射面となる共振器端面の劣化があることはよ
く知られている。また、半導体レーザ素子を高出
力動作させた場合にこの共振器端面は破壊される
ことがある。このとき端面破壊出力(以下、
Pmaxと称す)は従来の半導体レーザでは
106W/cm2程度であつた。レーザ光を安定に高出
力発振させるためにPmaxを増大させ、また端面
劣化を防止するために端面でのレーザ光の吸収を
少なくした端面窓形半導体レーザ素子として、例
えば、WSレーザ(Appl.Phys.Lett.15May 1979
p.637)が提唱されている。あるいは端面近傍を
活性層よりもバンドギヤツプの広い物質で埋め込
んだ構造のものも知られている。
<Prior art> One of the factors that limits the lifespan of semiconductor lasers is
It is well known that the resonator end face, which serves as the light exit face, deteriorates. Further, when the semiconductor laser device is operated at high output, this cavity end face may be destroyed. At this time, the end face destruction output (hereinafter referred to as
Pmax) is
It was about 106W/cm2. For example, the WS laser (Appl.Phys. .Lett.15May 1979
p.637) has been proposed. Alternatively, a structure in which the vicinity of the end face is filled with a material having a wider band gap than the active layer is also known.

しかしながら、これらの窓形半導体レーザは、
その窓領域では接合に平行な方向に光導波路が形
成されていない。従つて、窓領域ではレーザ光が
拡がつて伝播するため、共振器反射面で反射して
レーザ発振領域に戻る光の量が少なくなり、この
ため発振の効率が低下して発振閾値電流が高くな
るといつた欠点を有する。従来の窓形半導体レー
ザ素子内で光の伝播する様子をレーザ素子上面方
向より描くと第1図に示す如くとなる。即ち、ス
トライプ状のレーザ発振動作領域1の両共振端方
向に窓領域2,2′が形成され、共振器端面3,
3′よりレーザビーム4,4′が出力される。尚、
レーザ発振領域端面5,5′は共振器端面3,
3′の内方に位置し、この位置よりレーザ光は伝
播波面6で示すように進行する。
However, these window type semiconductor lasers
No optical waveguide is formed in the window region in a direction parallel to the junction. Therefore, as the laser light spreads and propagates in the window region, the amount of light that is reflected by the resonator reflection surface and returns to the laser oscillation region is reduced, resulting in a decrease in oscillation efficiency and a high oscillation threshold current. It has some drawbacks. FIG. 1 shows how light propagates in a conventional window-type semiconductor laser device when viewed from the top of the laser device. That is, window regions 2 and 2' are formed in the direction of both resonant ends of the striped laser oscillation operating region 1, and the resonator end faces 3 and
Laser beams 4, 4' are output from 3'. still,
The laser oscillation region end faces 5, 5' are the resonator end faces 3,
3', and from this position the laser light travels as shown by a propagation wavefront 6.

レーザビームの焦点(ビームウエスト)は接合
に平行な方向ではレーザ発振領域端面5,5′に
存在し、接合に垂直な方向では共振器端面3,
3′に存在する。この非点収差はレンズ等により
光学的結合を行なう場合に不都合となる。
The focal point (beam waist) of the laser beam is located at the laser oscillation region end faces 5, 5' in the direction parallel to the junction, and at the cavity end faces 3, 5' in the direction perpendicular to the junction.
3'. This astigmatism is inconvenient when optical coupling is performed using a lens or the like.

<発明の目的> 本発明は上記従来の窓形半導体レーザ素子の有
する欠点を克服した新規な構造を有する半導体レ
ーザ素子を提供することを目的とするものであ
る。即ち、窓領域にも光導波路を形成し、共振器
内方部の励起領域(レーザ発振動作領域)と窓領
域との間にテーパ状の結合領域を設けて励起領域
と窓領域間を結合させ、レーザ発振を行なわせ
る。このような構成とすることにより、レーザ発
振モードを窓領域で制御することができ、ビーム
ウエストを端面に一致させることが可能となる。
更に、高出力で乱れやすい半導体レーザのモード
を安定化することもできる。本発明はこのような
半導体レーザ素子を確立したものである。
<Object of the Invention> An object of the present invention is to provide a semiconductor laser device having a novel structure that overcomes the drawbacks of the conventional window-type semiconductor laser device. That is, an optical waveguide is also formed in the window region, and a tapered coupling region is provided between the excitation region (laser oscillation operating region) inside the cavity and the window region to couple the excitation region and the window region. , to cause laser oscillation. With such a configuration, the laser oscillation mode can be controlled in the window region, and the beam waist can be made to coincide with the end face.
Furthermore, it is also possible to stabilize the mode of a semiconductor laser which is easily disturbed at high output. The present invention establishes such a semiconductor laser device.

<実施例> 第2図は本発明の一実施例を説明する半導体レ
ーザ素子の素子内で光伝播する様子をレーザ素子
上面より描いたものである。
<Example> FIG. 2 is a diagram showing how light propagates within a semiconductor laser device according to an example of the present invention, viewed from the top of the laser device.

導波路幅Wg1及び長さLeを有するレーザ発振動
作領域21の両端位置に導波路幅Wg2及び各々の
長さLW,LW′を有する窓領域22,22′が配設
され、両窓領域22,22′と動作領域21との
間に長さLT,LT′のテーパ結合部23,23′が
連結されている。レーザ発振動作領域21はレー
ザ発振領域端面25,25′でその長さが限定さ
れている。レーザ光はその伝播波面26が図示の
如くとなり、共振器端面24,24′よりレーザ
ビームが放射される。第3図A,Bは第2図に於
けるX−X及びY−Y断面図である。砂ち第3図
Aはレーザ発振動作領域21の断面図であり、第
3図Bは窓領域22,22′の断面図である。
Window regions 22 and 22' having a waveguide width W g2 and respective lengths L W and L W ' are arranged at both ends of a laser oscillation operating region 21 having a waveguide width W g1 and a length L e , Tapered joints 23, 23' having lengths L T and L T ' are connected between both window areas 22, 22' and the operating area 21. The length of the laser oscillation operating region 21 is limited by the laser oscillation region end faces 25, 25'. The propagation wavefront 26 of the laser beam is as shown in the figure, and the laser beam is emitted from the resonator end faces 24, 24'. 3A and 3B are cross-sectional views taken along line X-X and line Y-Y in FIG. 2. 3A is a sectional view of the laser oscillation operating region 21, and FIG. 3B is a sectional view of the window regions 22, 22'.

p−GaAs基板31上に電流を遮断するための
n−GaAs電流ブロツキング層32が堆積され、
電流ブロツキング層32とGaAs基盤31にはス
トライプ状の溝が加工されている。この上にp−
GaAlAsクラツド層33、GaAs又はGaAlAs活
性層34、n−GaAlAsクラツド層35、n−
GaAsキヤツプ層36が順次積層されている。
An n-GaAs current blocking layer 32 for blocking current is deposited on the p-GaAs substrate 31;
Striped grooves are formed in the current blocking layer 32 and the GaAs substrate 31. On top of this p-
GaAlAs cladding layer 33, GaAs or GaAlAs active layer 34, n-GaAlAs cladding layer 35, n-
GaAs cap layers 36 are sequentially laminated.

第3図Aの構造はいわゆる活性層湾曲型VSIS
レーザ、第3図Bは同じく活性層平坦型VSISレ
ーザと同様の構成になつている。VSIS(V−
channeled Substrate Inner Stripe)レーザにつ
いては電気通信学会技術報告(ED−81−42、
1981年、P.31)等に詳述されているが、基板にV
溝加工して電流通路を形成した光及びキヤリア閉
じ込め構造を有する内部ストライプ型レーザであ
る。即ち、レーザ発振のための電流はn−GaAs
層32によつて阻止され、それぞれ幅Wc1,Wc2
のチヤネル部のみに流れる。これらのチヤネル幅
はWc1>Wc2となるように形成されており、同一
成長条件で前者では活性層を湾曲させ、後者では
活性層を平坦に形成することができる。活性層が
湾曲すると、屈折率光導波路が形成され、その幅
Wg1はチヤンネル幅Wcよりも狭くなる。また活
性層34が平坦な場合は、チヤネル両端でのn−
GaAs層32への光吸収により実効屈折率が下が
る原理を利用した光導波路が形成され、その幅
Wg2はチヤネル幅Wc2にほぼ等しい。
The structure shown in Figure 3A is the so-called active layer curved VSIS.
The laser shown in FIG. 3B has the same structure as the active layer flat type VSIS laser. VSIS (V-
Regarding the channeled Substrate Inner Stripe) laser, see the Institute of Electrical Communication Engineers Technical Report (ED-81-42).
(1981, p. 31), etc., but the V
This is an internal stripe type laser with a light and carrier confinement structure in which a current path is formed by processing grooves. In other words, the current for laser oscillation is n-GaAs
are blocked by layers 32 and have widths W c1 and W c2 , respectively.
Flows only through the channel. These channel widths are formed so that W c1 >W c2 , and under the same growth conditions, the active layer can be formed curved in the former case, and flat in the latter case. When the active layer is curved, a refractive index optical waveguide is formed, and its width
W g1 is narrower than the channel width W c . Furthermore, if the active layer 34 is flat, n-
An optical waveguide is formed using the principle that the effective refractive index decreases due to light absorption into the GaAs layer 32, and its width
W g2 is approximately equal to the channel width W c2 .

本発明を創出せるに到つた重要な事象は、同一
成長条件でそれぞれ活性層湾曲型VSISレーザと
活性層平坦型VSISレーザを個別に製作した場合、
常に前者の方が100〜200〓だけ長波長で発振する
ということ、即ち21〜42meVだけバンドギ
ヤツプが狭くなるということである。さらに、活
性層を湾曲させると発振閾値電流は小さくなるが
横モードが不安定になり易く、活性層を平坦にす
ると発振閾値電流はやや増大するが、横モードが
非常に安定になるという性質がある。従つて、こ
れら2種類の活性層をもつ光導波路を同時に形成
し、有効に結合させれば、レーザ発振は湾曲部分
で起り、平坦部では単にレーザ光が通過するだけ
となる。従つて、両端面近傍に活性層平坦部が位
置するように配置すれば、発振閾値電流Ithは小
さくできるし、横モードも安定化させることがで
きる。しかも、端面劣化の少ないあるいは端面破
壊耐用出力Pmaxの大きい半導体レーザを作製す
ることができる。換言すれば、上述した2種類の
VSISレーザの利点のみを利用し、欠点を補ない
合うことができ、しかも窓形レーザを容易に製作
することができる。
The important event that led to the creation of the present invention is that when a curved active layer VSIS laser and a flat active layer VSIS laser are manufactured separately under the same growth conditions,
The former always oscillates at a longer wavelength by 100~200〓, that is, the bandgap is narrower by 21~42 meV. Furthermore, when the active layer is curved, the oscillation threshold current becomes smaller, but the transverse mode tends to become unstable, and when the active layer is made flat, the oscillation threshold current increases slightly, but the transverse mode becomes very stable. be. Therefore, if optical waveguides having these two types of active layers are formed at the same time and effectively coupled, laser oscillation will occur in the curved portion, and the laser light will simply pass through the flat portion. Therefore, by arranging the active layer so that the flat portions are located near both end faces, the oscillation threshold current I th can be reduced and the transverse mode can also be stabilized. Furthermore, it is possible to fabricate a semiconductor laser with less end face deterioration or a large end face breakdown durability output Pmax. In other words, the two types mentioned above
It is possible to use only the advantages of the VSIS laser and compensate for its disadvantages, and moreover, it is possible to easily manufacture a window type laser.

以下、本発明の製造方法の一実施例について説
明する。
An example of the manufacturing method of the present invention will be described below.

第4図A,B,C,Dは製造方法の一実施例を
説明する製造工程図である。
4A, B, C, and D are manufacturing process diagrams illustrating one embodiment of the manufacturing method.

まず、p型GaAs基板(Znドープ、キヤリア濃
度1×1019cm-3)41にn型GaAs層(Teドー
プ、キヤリア濃度6×1018cm-3)42を約0.6μm
の厚さに液相エピタキシヤル成長させる。その
後、n型GaAs層42表面に第4図Aで示す様な
幅が変化するストライプ状のパターンを従来のホ
トリソグラフイ技術により形成する。使用したレ
ジストはシツプレイ社のAZ1350であり、各部の
寸法が、L1=150μm、L2=100μm、L3=20μm、
Wc1=6μm、Wc2=3μmとなるような窓が形成さ
れる。この窓を通して硫酸系エツチング液で
GaAs層42をエツチングする。尚、Z1−Z1,Z2
−Z2方向断面形状をそれぞれ第4図B,Cに示
す。
First, an n-type GaAs layer (Te-doped, carrier concentration 6×10 18 cm -3 ) 42 of approximately 0.6 μm is deposited on a p-type GaAs substrate (Zn doped, carrier concentration 1×10 19 cm -3 ) 41.
Liquid phase epitaxial growth to a thickness of . Thereafter, a striped pattern of varying width as shown in FIG. 4A is formed on the surface of the n-type GaAs layer 42 by conventional photolithography. The resist used was AZ1350 manufactured by Shipprey, and the dimensions of each part were L 1 = 150 μm, L 2 = 100 μm, L 3 = 20 μm,
A window is formed such that W c1 =6 μm and W c2 =3 μm. Through this window, use a sulfuric acid-based etching solution.
Etch the GaAs layer 42. Furthermore, Z 1 −Z 1 , Z 2
-Z cross-sectional shapes in the two directions are shown in Figures 4B and C, respectively.

その後、再び液相エピタキシヤル技術により、
第3図で示すようなp−Ga0.5Al0.5Asクラツド層
33、p−Ga0.85Al0.15As活性層34、n−Ga0.5
Al0.5Asクラツド層34、n−GaAsキヤツプ層3
6をそれぞれ平坦部で0.15μm、0.1μm、1.0μm、
2μm成長させた。ただし、活性層湾曲部の中央
での活性層厚は0.2μmとなつた。基板裏面をラツ
ピングすることによりウエハーの厚さを約100μ
mとした後、n−GaAsキヤツプ層36表面には
Au−Ge−Niを、又p−GaAs基板31裏面には
Au−Znを蒸着し、450℃に加熱して合金化する
ことにより電極層とする。次にp−GaAs基板3
1の裏面にAlを蒸着した後、内部のチヤネルの
ピツチに合致したパターンを形成して第4図Dの
如くとする。その後、長さL1をもつ窓領域の中
央で劈開し、共振器を形成する。従つて、窓領域
は素子の両端で各々50μmの長さを有することに
なる。
Then, using liquid phase epitaxial technology again,
As shown in FIG. 3, p-Ga 0.5 Al 0.5 As cladding layer 33, p-Ga 0.85 Al 0.15 As active layer 34, n-Ga 0.5
Al 0.5 As clad layer 34, n-GaAs cap layer 3
6 is 0.15μm, 0.1μm, 1.0μm at the flat part, respectively.
It was grown to 2 μm. However, the active layer thickness at the center of the curved part of the active layer was 0.2 μm. The thickness of the wafer is reduced to approximately 100μ by wrapping the backside of the substrate.
After m, the surface of the n-GaAs cap layer 36 is
Au-Ge-Ni and p-GaAs substrate 31 on the back side.
Au-Zn is deposited and heated to 450°C to form an alloy to form an electrode layer. Next, p-GaAs substrate 3
After Al is deposited on the back surface of 1, a pattern matching the pitch of the internal channels is formed as shown in FIG. 4D. It is then cleaved at the center of the window region with length L 1 to form a resonator. The window regions will therefore have a length of 50 μm at each end of the element.

この窓形レーザは1th=30mAでレーザ発振し、
その時の波長は7800〓であつた。また端面破壊出
力Pmaxは約100mWであつた。しかも、100mW
まで安定な横基本モードで発振した。
This window type laser oscillates at 1 th = 30mA,
The wavelength at that time was 7800〓. Further, the end face breaking power Pmax was approximately 100 mW. Moreover, 100mW
It oscillated in a stable transverse fundamental mode until

次に、活性層の湾曲したレーザ発振領域で劈開
し、共振器としたところ、高次横モードで発振
し、約10mWで端面破壊した。従つて、本発明の
窓形レーザによつて、Pmaxは約10倍に向上した
ことになる。更に、端面をAl2O3でコートした場
合、Pmaxは約200mWに向上した。また、発振
波長8300〓の窓形レーザを製作した場合には、端
面コートなしでPmax=200mW、端面コート付
でPmax=400mWであつた。
Next, when the active layer was cleaved at the curved laser oscillation region to form a resonator, it oscillated in a higher-order transverse mode and the end face was destroyed at approximately 10 mW. Therefore, the window laser of the present invention improves Pmax by about 10 times. Furthermore, when the end face was coated with Al 2 O 3 , Pmax improved to about 200 mW. Furthermore, when a window type laser with an oscillation wavelength of 8300㎜ was manufactured, Pmax = 200 mW without end face coating, and Pmax = 400 mW with end face coating.

ここで、結合領域23,23′を設けない場合
には結合が有効に行なわれず、微分効率の低下
(通常のVSISレーザの1/2程度)になり、また周
囲温度により結合効率が変動して発振モードが変
化する等の不都合があつた。結合領域を20μm以
上にすると、微分効率は通常のVSISの90%まで
改善され、周囲温度に対しても安定な発振が得ら
れた。
Here, if the coupling regions 23 and 23' are not provided, coupling will not be performed effectively, resulting in a decrease in differential efficiency (about 1/2 that of a normal VSIS laser), and coupling efficiency will vary depending on the ambient temperature. There were inconveniences such as the oscillation mode changing. When the coupling area was increased to 20 μm or more, the differential efficiency was improved to 90% of normal VSIS, and stable oscillation was obtained even at ambient temperatures.

上記7800Å及び8300Åの発振波長をもつ窓形レ
ーザを出力30mW、50℃で連続動作させたとこ
ろ、現在2500時間でいずれも無劣化である。
When window lasers with oscillation wavelengths of 7,800 Å and 8,300 Å were operated continuously at an output of 30 mW and 50°C, no deterioration was observed after 2,500 hours.

本発明の半導体レーザは上記実施例で述べた
GaAlAs系だけでなく、InP−InGaAsP系その他
すべてのヘテロ接合レーザに適用できることは明
らかである。また、半導体レーザに限らず、光集
積回路のモード変換器にも適用することが可能で
ある。
The semiconductor laser of the present invention is as described in the above embodiment.
It is clear that the present invention is applicable not only to GaAlAs-based lasers but also to InP-InGaAsP-based and all other heterojunction lasers. Furthermore, the present invention is applicable not only to semiconductor lasers but also to mode converters for optical integrated circuits.

<発明の効果> 以上詳説した如く本発明によれば、レーザ発振
動作を行なう励起領域と励起領域の両端に設けら
れた窓領域との間がテーパ状の結合領域で連結さ
れ、導波路幅の狭い励起領域と導波路幅の広い窓
領域の結合がテーパ状に導波路幅の変化する結合
領域で連続的に行なわれるため、高出力動作時に
於いても発振モードを安定化することができる。
また微分効率の改善、周囲温度に対する安定化を
図ることも可能となり、素子特性の良好な信頼性
の高い半導体レーザ素子が得られる。
<Effects of the Invention> As detailed above, according to the present invention, the excitation region that performs the laser oscillation operation and the window regions provided at both ends of the excitation region are connected by the tapered coupling region, and the width of the waveguide is reduced. Since the coupling between the narrow excitation region and the wide window region of the waveguide is performed continuously in the coupling region where the waveguide width changes in a tapered manner, the oscillation mode can be stabilized even during high-power operation.
Furthermore, it becomes possible to improve the differential efficiency and to stabilize it against ambient temperature, and a highly reliable semiconductor laser device with good device characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の窓形レーザに於ける光の伝播を
説明する平面図である。第2図は本発明の一実施
例を示す窓形レーザの光伝播を説明する平面図で
ある。第3図A,Bはそれぞれ第2図のX−X、
Y−Y断面図である。第4図A,B,C,Dは本
発明の製造方法の一実施例を説明する製作工程図
である。 21……レーザ発振動作領域、22,22′…
…窓領域、23,23′……結合領域、25,2
5′……レーザ発振領域端面、31……p−
GaAs基板、32……n−GaAs電流ブロツキン
グ層、33……p−クラツド層、34……活性
層、35……n−クラツド層、36……n−キヤ
ツプ層。
FIG. 1 is a plan view illustrating the propagation of light in a conventional window laser. FIG. 2 is a plan view illustrating light propagation of a window laser according to an embodiment of the present invention. Figures 3A and B are X-X in Figure 2, respectively.
It is a YY cross-sectional view. 4A, B, C, and D are manufacturing process diagrams illustrating an embodiment of the manufacturing method of the present invention. 21... Laser oscillation operating area, 22, 22'...
... Window area, 23, 23'... Connection area, 25, 2
5'...Laser oscillation region end face, 31...p-
GaAs substrate, 32... n-GaAs current blocking layer, 33... p-clad layer, 34... active layer, 35... n-clad layer, 36... n-cap layer.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に形成した電流狭窄用溝のストライプ
幅変化に対応して湾曲した活性層を有する励起領
域と共振器両端の平坦な活性層を有する窓領域を
設け、前記励起領域と窓領域の間を双方の導波路
幅で決定されるテーパ状に導波路幅が変化する結
合領域で連結したことを特徴とする半導体レーザ
素子。
1 An excitation region having a curved active layer and a window region having a flat active layer at both ends of the resonator are provided in response to changes in the stripe width of the current confinement groove formed on the substrate, and a gap between the excitation region and the window region is provided. A semiconductor laser device characterized in that the two waveguides are connected by a coupling region whose waveguide width changes in a tapered manner determined by the width of both waveguides.
JP2807583A 1982-05-28 1983-02-21 Semiconductor laser element Granted JPS59152686A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2807583A JPS59152686A (en) 1983-02-21 1983-02-21 Semiconductor laser element
EP83301600A EP0095826B1 (en) 1982-05-28 1983-03-22 Semiconductor laser
DE8383301600T DE3376936D1 (en) 1982-05-28 1983-03-22 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2807583A JPS59152686A (en) 1983-02-21 1983-02-21 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS59152686A JPS59152686A (en) 1984-08-31
JPH047113B2 true JPH047113B2 (en) 1992-02-07

Family

ID=12238649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2807583A Granted JPS59152686A (en) 1982-05-28 1983-02-21 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS59152686A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817255B2 (en) * 2006-12-14 2011-11-16 富士通株式会社 Optical semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS59152686A (en) 1984-08-31

Similar Documents

Publication Publication Date Title
JPS6327879B2 (en)
JPS6343908B2 (en)
US4546481A (en) Window structure semiconductor laser
US4644552A (en) Semiconductor laser
JPH0114717B2 (en)
JPH0474876B2 (en)
JPH047113B2 (en)
JPS58197787A (en) Semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPS6139758B2 (en)
JPS5858784A (en) Distribution feedback type semiconductor laser
JPH0268975A (en) Semiconductor laser
JPH0614575B2 (en) Semiconductor laser device
JPS601881A (en) Semiconductor laser element
JPS59175182A (en) Semiconductor laser element
JP3200918B2 (en) Semiconductor laser device
JPH01132189A (en) Semiconductor laser element and manufacture thereof
JP2973215B2 (en) Semiconductor laser device
JPH0256836B2 (en)
JPH0613709A (en) Semiconductor laser device and manufacture thereof
JPS59200484A (en) Semiconductor laser
JPS60245191A (en) Single beam type semiconductor laser array
JPH03208390A (en) Semiconductor laser element and manufacture thereof
JPS6261384A (en) High-power semiconductor laser
EP0292276A2 (en) A semiconductor laser device