JPS59152686A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS59152686A
JPS59152686A JP2807583A JP2807583A JPS59152686A JP S59152686 A JPS59152686 A JP S59152686A JP 2807583 A JP2807583 A JP 2807583A JP 2807583 A JP2807583 A JP 2807583A JP S59152686 A JPS59152686 A JP S59152686A
Authority
JP
Japan
Prior art keywords
region
laser
layer
width
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2807583A
Other languages
Japanese (ja)
Other versions
JPH047113B2 (en
Inventor
Morichika Yano
矢野 盛規
Saburo Yamamoto
三郎 山本
Hiroshi Hayashi
寛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2807583A priority Critical patent/JPS59152686A/en
Priority to EP83301600A priority patent/EP0095826B1/en
Priority to DE8383301600T priority patent/DE3376936D1/en
Publication of JPS59152686A publication Critical patent/JPS59152686A/en
Publication of JPH047113B2 publication Critical patent/JPH047113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface

Abstract

PURPOSE:To stabilize an oscillating mode at the high output operation time, to improve the differentiating efficiency and to stabilize to be adapted to environmental temperatures by continuously forming a coupling of an exciting region of a narrow waveguide width and a wide window region of a waveguide width in a coupling region that the waveguide width is varied in a tapered shape. CONSTITUTION:Window regions 22, 22' having a width Wg2, lengths Lw, Lw' are arranged at both ends of a laser oscillating region 21 having a width Wg1 and a length Le, and tapered couplers 23, 23' having lengths LT, LT' are coupled between the both regions 22, 22' and the region 21. The region 21 is limited in length at the laser oscillating region end faces 25, 25', and laser beams are emitted from the resonator end faces 24, 24'. An N type GaAs current blocking layer 32 for interrupting a current is accumulated on a P type GaAs substrate 31, and striped grooves are formed on the layer 32 and the substrate 31. A P type GaAlAs clad layer 33, a GaAs or GaAlAs active layer 34, a P type GaAlAs clad layer 35, and an N type GaAs cap layer 36 are sequentially laminated thereon. Thus, only the advantages of the VSIS laser of two types of active layer bent type and active layer flat type are utilized to complement the disadvantages, and a window laser can be readily manufactured.

Description

【発明の詳細な説明】 く技術分野〉 本発明はレーザ光の吸収の少ない窓領域を有する半導体
レーザ素子の新しい構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a new structure of a semiconductor laser device having a window region that absorbs little laser light.

〈従来技術〉 半導体レーザの寿命を制限する要因の一つに、光出射面
となる共振器端面の劣化があることはよく知られている
。また、半導体レーザ素子を高出力動作させた場合にこ
の共振器端面は破壊されることがある。このときの端面
破壊出力(以下、Pmax  と称す)は従来の半導体
レーザでは106W/ aCl 程度であった。レーザ
光を安定に高出力発振させるためにPmaxを増大させ
、また端面劣化を防止するために端面でのレーザ光の吸
収を少なくした端面態形半導体レーザ素子として、例え
ば、wsレーザ(Appl、Phys、Lett、 1
5 May  I 979P、637)が提唱されてい
る。あるいは端面近傍を活性層よりもバンドギャップの
広い物質で埋め込んだ構造のものも知られている。
<Prior Art> It is well known that one of the factors that limits the lifespan of semiconductor lasers is the deterioration of the resonator end face, which serves as the light emitting surface. Further, when the semiconductor laser device is operated at high output, this cavity end face may be destroyed. At this time, the end face destruction output (hereinafter referred to as Pmax) was approximately 106 W/aCl in the conventional semiconductor laser. For example, WS lasers (Appl, Phys. , Lett, 1
5 May I 979P, 637) has been proposed. Alternatively, a structure in which the vicinity of the end face is buried with a material having a wider band gap than the active layer is also known.

しかしながら、これらの態形半導体レーザは、その窓領
域では接合に平行な方向に光導波路が形成されていない
。従って、窓領域ではレーザ光が拡がって伝播するため
、共振器反射面で反射してレーザ発振領域に戻る光の量
が少なくなり、このため発振の効率が低下して発振閾値
電流が高くなるといった欠点を有する。従来の態形半導
体レーザ素子内で光の伝播する様子をレーザ素子上面方
向より描くと第1図に示す如くとなる。即ち、スドライ
ブ状のレーザ発振動作領域lの耐共振端方向に窓領域2
,2′が形成され、共振器端面3,3′よりレーザビー
ム4,4′が出力される。尚、レーザ発振領域端面5,
5′は共振器端面3,3′の内方に位置し、この位置よ
りレーザ光は伝播波面6で示すように進行する。
However, in these types of semiconductor lasers, no optical waveguide is formed in the window region in a direction parallel to the junction. Therefore, since the laser light spreads and propagates in the window region, the amount of light reflected by the resonator reflection surface and returned to the laser oscillation region is reduced, which reduces the oscillation efficiency and increases the oscillation threshold current. It has its drawbacks. The propagation of light within a conventional semiconductor laser device is as shown in FIG. 1 when viewed from the top of the laser device. That is, a window region 2 is formed in the direction of the resonance resistant end of the strip-shaped laser oscillation operating region l.
, 2' are formed, and laser beams 4, 4' are output from the resonator end faces 3, 3'. In addition, the laser oscillation region end face 5,
5' is located inside the resonator end faces 3, 3', and the laser light travels from this position as shown by a propagation wavefront 6.

レーザビームの焦点(ビームウェスト)は接合に平行な
方向ではレーザ発振領域端面5,5′に存在し、接合に
垂直な方向では共振器端面3,3′に存在する。この非
点収差はレンズ等4により光学的結合を行なう場合に不
都合となる。
The focal point (beam waist) of the laser beam exists at the laser oscillation region end faces 5, 5' in the direction parallel to the junction, and at the resonator end faces 3, 3' in the direction perpendicular to the junction. This astigmatism becomes inconvenient when optical coupling is performed using a lens 4 or the like.

〈発明の目的〉 本発明は上記従来の態形半導体レーザ素子の有する欠点
を克服した新規な構造を有する半導体レーザ素子を提供
することを目的とするものである。
<Objective of the Invention> An object of the present invention is to provide a semiconductor laser device having a novel structure that overcomes the drawbacks of the conventional semiconductor laser device described above.

即ち、窓領域にも光導波路を形成し、共振器内方部の励
起領域(レーザ発振動作領域)と窓領域との間にテーパ
状の結合領域を設けて励起領域と窓領域間を結合させ、
レーザ発振を行なわせる。このような構成とすることに
より、レーザ発振モードを窓領域で制御することができ
、ビームウェストを端面に一致させることが可能となる
。更に、高出力で乱れやすい半導体レーザのモードを安
定化することもできる。本発明はこのような半導体レー
ザ素子を確立したものである。
That is, an optical waveguide is also formed in the window region, and a tapered coupling region is provided between the excitation region (laser oscillation operating region) inside the cavity and the window region to couple the excitation region and the window region. ,
Causes laser oscillation. With such a configuration, the laser oscillation mode can be controlled in the window region, and the beam waist can be made to coincide with the end face. Furthermore, it is also possible to stabilize the mode of a semiconductor laser which is easily disturbed at high output. The present invention establishes such a semiconductor laser device.

〈実施例〉 第2図は本発明の一実施例を説明する半導体レーザ素子
の素子内で光伝播する様子をレーザ素子上面より描いた
ものである。
<Embodiment> FIG. 2 is a diagram showing light propagation within a semiconductor laser device, which explains one embodiment of the present invention, as viewed from the top of the laser device.

導波路幅Wgl及び長さしeを有するレーザ発振動作領
域21の両端位置に導波路幅Wg2及び各々の長さLw
、Lwlを有する窓領域22.22’が配設され、側窓
領域22.22’と動作領域21との間に長さLT、L
T+のテーパ結合部23.23’が連結されている。レ
ーザ発振動作領域21はレーザ発振領域端面25,25
’でその長さが限定されている0レーザ光はその伝播波
面26が図示の如くとなり、共振器端面24,24’よ
りレーザビームが放射される。
A waveguide width Wg2 and each length Lw are located at both ends of the laser oscillation operating region 21 having a waveguide width Wgl and a length e.
, Lwl is arranged, with lengths LT, L between the side window region 22.22' and the working region 21.
T+ tapered joints 23, 23' are connected. The laser oscillation operating area 21 is the laser oscillation area end face 25, 25.
The propagation wavefront 26 of the zero laser beam whose length is limited by ' is as shown in the figure, and the laser beam is emitted from the resonator end faces 24, 24'.

第3図(A)(B)は第2図に於けるx−x及びY−Y
断面図である。即ち第3図(A)はレーザ発振動作領域
21の断面図であり、第3図(B)は窓領域22.22
’の断面図である。
Figure 3 (A) and (B) are x-x and Y-Y in Figure 2.
FIG. That is, FIG. 3(A) is a sectional view of the laser oscillation operating region 21, and FIG. 3(B) is a sectional view of the window region 22.22.
' is a sectional view of '.

p−GaAs基板31上に電流を遮断するだめのH−G
aAs電流ブロッキング層32が堆積され、電流ブロッ
キング層32とGaAs基板31にはストライプ状の溝
が加工されている。この上にp −GaAIAsクラッ
ド層83 、GaA3又はGaAlAs活性層34 、
n−GaAlAsクラッド層35.n−GaAsキャッ
プ層36が順次積層されている。
H-G for blocking current on the p-GaAs substrate 31
An aAs current blocking layer 32 is deposited, and striped grooves are formed in the current blocking layer 32 and the GaAs substrate 31. On top of this, a p-GaAIAs cladding layer 83, a GaA3 or GaAlAs active layer 34,
n-GaAlAs cladding layer 35. N-GaAs cap layers 36 are sequentially laminated.

第3図(A)の構造はいわゆる活性層湾曲型VSISレ
ーザ、第3図(B)は同じく活性層平坦型VSISレー
ザと同様の構成になっている。VSIS’(V−cha
nneled 5ubstrate Inner 5t
ripe)レーザについては電気通信学会技術報告(E
D−81−42。
The structure shown in FIG. 3(A) is the same as that of a so-called active layer curved VSIS laser, and the structure shown in FIG. 3(B) is similar to that of a flat active layer VSIS laser. VSIS' (V-cha
nnneled 5ubstrate Inner 5t
Regarding lasers, please refer to the Technical Report (E
D-81-42.

1981年、p、al)等に詳述されているが、基板に
V溝加工して電流通路を形成した光及びキャリア閉じ込
め構造を有する内部ストライプ型レーザである。即ち、
レーザ発振のだめの電流はn −GaAs層32によっ
て阻止され、それぞれ幅W。l。
1981, p. al), etc., is an internal stripe type laser having a light and carrier confinement structure in which a V-groove is formed in the substrate to form a current path. That is,
The current for laser oscillation is blocked by the n-GaAs layer 32, each having a width W. l.

Wc2のチャネル部のみに流れる。これらのチャネル幅
はW。l > Wc2となるように形成されており、同
一成長条件で前者では活性層を湾曲させ、後者では活性
層を平坦に形成することができる。活性層が湾曲すると
、屈折率光導波路が形成され、その幅Wglはチャネル
幅W。よりも狭くなる。また活性層34が平坦な場合は
、チャネル両端でのn−GaAs層32への光吸収によ
り実効屈折率が下がる原理を利用した光導波路が形成さ
れ、その幅Wg2はチャネル幅W。2にほぼ等しい。
Flows only to the channel portion of Wc2. These channel widths are W. They are formed so that l > Wc2, and under the same growth conditions, the active layer can be formed curved in the former case, and flat in the latter case. When the active layer is curved, a refractive index optical waveguide is formed, the width Wgl of which is the channel width W. becomes narrower than When the active layer 34 is flat, an optical waveguide is formed using the principle that the effective refractive index decreases due to light absorption into the n-GaAs layer 32 at both ends of the channel, and its width Wg2 is equal to the channel width W. Almost equal to 2.

本発明を創出せるに到った重要な事象は、同一成長条件
でそれぞれ活性層湾曲型V、S、ISレーザと活性層平
坦型VSISレーザを個別に作製した場合、常に箭者の
方が100〜200λだけ長波長で発振するということ
、即ち21〜42 me Vだけバンドギャップが狭く
なるということである。さらに、活性層を湾曲させると
発振閾値電流は小さくなるが横モードが不安定になり易
く、活性層を平坦にすると発振閾値電流はやや増大する
が、横モードが非常に安定になるという性質がある。従
って、これら2種類の活性層をもっ光導波路を同時に形
成し、有効に結合させれば、レーザ発振は湾曲部分で起
り、平坦部では単にレーザ光が通過するだけとなる。従
って、両端面近傍に活性層平坦部が位置するように配置
すれば、発振閾値電流Ithは小さくできるし、横モー
ドも安定化させることができる。
The important event that led to the creation of the present invention is that when curved active layer V, S, IS lasers and VSIS lasers with flat active layer are individually fabricated under the same growth conditions, the curved active layer is always 100% faster. This means that it oscillates at a longer wavelength by ~200λ, ie, the band gap narrows by 21-42 meV. Furthermore, when the active layer is curved, the oscillation threshold current becomes smaller, but the transverse mode tends to become unstable, and when the active layer is made flat, the oscillation threshold current increases slightly, but the transverse mode becomes very stable. be. Therefore, if an optical waveguide having these two types of active layers is simultaneously formed and effectively coupled, laser oscillation will occur in the curved portion, and the laser light will simply pass through the flat portion. Therefore, by arranging the active layer so that the flat portions are located near both end faces, the oscillation threshold current Ith can be reduced and the transverse mode can also be stabilized.

しかも、端面劣化の少ないあるいは端面破壊耐用出力I
’maxの大きい半導体レーザを作製す・ることかでき
る。換言すればス上述した2種類のvsrsレーザの利
点のみを利用し、欠点を補ない合うことができ、しかも
態形レーザを容易に製作することができる。
Moreover, the output I with less end face deterioration or end face destruction durability
It is possible to fabricate a semiconductor laser with a large max. In other words, it is possible to make use of only the advantages of the two types of vsrs lasers described above and compensate for their disadvantages, and moreover, it is possible to easily manufacture a shaped laser.

以下、本発明の製造方法の一実施例について説明する。An example of the manufacturing method of the present invention will be described below.

第4図(A)(B)(C)(D)は製造方法の一実施例
を説明する製造工程図である。
FIGS. 4(A), 4(B), 4(C), and 4(D) are manufacturing process diagrams illustrating one embodiment of the manufacturing method.

まず、p型GaAs基板(Znドープ、キャリア濃度I
X I 019cm−8) 41にn型GaAs層(T
eドープ。
First, a p-type GaAs substrate (Zn doped, carrier concentration I
X I 019cm-8) 41 has an n-type GaAs layer (T
e-dope.

キャリア濃度6X 1018cm −8) 42を約0
.611rnの厚さに液相エピタキシャル成長させる。
Carrier concentration 6X 1018cm -8) 42 to about 0
.. Liquid phase epitaxial growth is performed to a thickness of 611rn.

その後、n型Cya A B層42表面に第4図(A)
で示す様な幅が変化するストライプ状のパターンを従来
のホトリソグラフィ技術により形成する。使用したレジ
ストはシップレイ社のAZ +350であり、各部の寸
法が、Ll=150μm、L2=100μm、L3=2
0μm、Wc+”6μm、 wc2 = aμmとなる
ような窓が形成される。この窓を通して硫酸系エツチン
グ液でGaAs層42をエツチングする。尚、Zl−z
l 、 Z2−Z2方方向面形状をそれぞれ第4図(B
)(C)に示す。
After that, as shown in FIG. 4(A) is formed on the surface of the n-type Cya A B layer 42.
A striped pattern of varying width as shown in is formed by conventional photolithography technology. The resist used was Shipley's AZ +350, and the dimensions of each part were Ll = 150 μm, L2 = 100 μm, L3 = 2.
A window is formed such that 0 μm, Wc+”6 μm, and wc2 = a μm. Through this window, the GaAs layer 42 is etched with a sulfuric acid-based etching solution.
The surface shapes in the Z2-Z2 direction are shown in Figure 4 (B
) (C).

その後、再び液相エピタキシャル技術により、第3図で
示すよう・なp−Gao、5Alo、5Asクラッド層
8 B 、 p−Gao、55A1o、15As活性層
34.n−G ao、5A 10.5− A sクララ
ド層34 、 rl−GaA4キャップ層36をそれぞ
れ平坦部で015μm、o、Ipm。
Thereafter, a p-Gao, 5Alo, 5As cladding layer 8B, a p-Gao, 55A1o, 15As active layer 34. as shown in FIG. The n-Gao, 5A 10.5-A s Clarado layer 34 and the rl-GaA4 cap layer 36 have a flat area of 0.15 μm, o, and Ipm, respectively.

1.0μm、′2μm成長させた。ただし、活性層湾曲
部の中央での活性層厚は′02μmとなった。基板裏面
をラッピングすることによりウェハーの厚さを約100
μmとした後、n−GaAsキャップ層36表面にはA
u−Ge−Niを、又p−GaAs基板31裏面にはA
u−Znを蒸着し、450℃に加熱して合金化すること
により電極層とする。次にp−GaAs基板31の裏面
にAlを蒸着した後、内部のチャネルのピッチに合致し
たパターンを形成して第4図+、n)の如くとする。そ
の後、長さLl をもつ窓領域の中央で骨間し、共振器
を形成する。従って、窓領域は素子の両端で各々50μ
mの長さを有することになる。
It was grown to 1.0 μm and 2 μm. However, the active layer thickness at the center of the curved portion of the active layer was 0.02 μm. The thickness of the wafer is reduced to approximately 100 mm by lapping the backside of the substrate.
μm, the surface of the n-GaAs cap layer 36 has A
u-Ge-Ni, and A on the back surface of the p-GaAs substrate 31.
An electrode layer is formed by depositing u-Zn and heating it to 450° C. to form an alloy. Next, after depositing Al on the back surface of the p-GaAs substrate 31, a pattern matching the pitch of the internal channels is formed as shown in FIGS. It is then interosseous in the center of the window region with length Ll, forming a resonator. Therefore, the window area is 50μ at each end of the device.
It will have a length of m.

この態形レーザはl th=30mAでレーザ発振し、
その時の波長は7800λであった。まだ端面破壊出力
Pmaxは約100mWであった。しかも、100rn
Wまで安定な横基本モードで発振した。
This form of laser oscillates at l th = 30 mA,
The wavelength at that time was 7800λ. The end face breaking output Pmax was still about 100 mW. Moreover, 100rn
It oscillated in a stable transverse fundamental mode up to W.

次に、活性層の湾曲したレーザ発振領域で骨間し、共振
器としだところ、高次横モードで発振し、約10mWで
端面破壊した。従って、本発明の態形レーザによって、
Pmaxは約10倍に向上したことになる。更に、端面
をAt203でコートした場合、PmaXは約200m
Wに向上した。また、発振波長8300λの態形レーザ
を製作した場合には、端面コートなしでPmax=20
0mW ’+端面コート付でPmax=400mWであ
った。
Next, when the curved laser oscillation region of the active layer was used as a resonator between the bones, it oscillated in a higher-order transverse mode and the end face was destroyed at approximately 10 mW. Therefore, by the embodiment laser of the present invention,
This means that Pmax has improved about 10 times. Furthermore, when the end face is coated with At203, PmaX is approximately 200m
Improved to W. In addition, when manufacturing a laser with an oscillation wavelength of 8300λ, Pmax=20 without end face coating.
Pmax=400 mW with 0 mW'+end surface coating.

ここで、−結合領域23.23’を設けない場合には結
合が有効に行なわれず、微分効率の低下(通常のVSI
Sレーザの1/2程度)になり、まだ周囲温度により結
合効率が変動して発振モードが変化する等の不都合があ
った。結合領域を20μm以上にすると、微分効率は通
常のVSISの90係まで改善され、周囲温度に対して
も安定な発振が得られた。
Here, if the coupling regions 23 and 23' are not provided, coupling will not be performed effectively and the differential efficiency will decrease (normal VSI
(approximately 1/2 that of an S laser), and there were still disadvantages such as the coupling efficiency fluctuating depending on the ambient temperature and the oscillation mode changing. When the coupling area was set to 20 μm or more, the differential efficiency was improved to a factor of 90 compared to normal VSIS, and stable oscillation was obtained even at ambient temperature.

上記7800λ及びLi0OAの発振波長をもつ態形レ
ーザを出力30mW、50℃で連続動作させたところ、
現在2500時間でいずれも無劣化である。
When the above-mentioned morphological laser with an oscillation wavelength of 7800λ and Li0OA was operated continuously at an output of 30mW and 50°C, the following results were obtained.
Currently, there is no deterioration in any of them after 2500 hours.

本発明の半導体レーザは上記実施例で述べたGaAlA
s系だけでなく、InP−1nGaAsP系その他すべ
てのへテロ接合レーザに適用できることは明らかである
。また、半導体レーザに限らず、光集積回路のモード変
換器にも適用することが可能である。
The semiconductor laser of the present invention is the GaAlA semiconductor laser described in the above embodiment.
It is clear that the present invention is applicable not only to s-based lasers but also to InP-1nGaAsP-based and all other heterojunction lasers. Furthermore, the present invention is applicable not only to semiconductor lasers but also to mode converters for optical integrated circuits.

〈発明の効果〉 以上詳説した如く本発明によれば、レーザ発振動作を行
なう励起領域と励起領域の両端に設けられた窓領域との
間がテーパ状の結合領域で連結され、導波路幅の狭い励
起領域と導波路幅の広い窓領域の結合がテーパ状に導波
路幅の変化する結合領域で連続的に行なわれるため、高
出力動作時に於いても発振モードを安定化することがで
きる。
<Effects of the Invention> As described in detail above, according to the present invention, the excitation region that performs the laser oscillation operation and the window regions provided at both ends of the excitation region are connected by the tapered coupling region, and the width of the waveguide is reduced. Since the coupling between the narrow excitation region and the wide window region of the waveguide is performed continuously in the coupling region where the waveguide width changes in a tapered manner, the oscillation mode can be stabilized even during high-power operation.

まだ微分効率の改善、周囲温度に対する安定化を図るこ
とも可能となり、素子特性の良好な信頼性の高い半導体
レーザ素子が得られる。
It is also possible to improve the differential efficiency and stabilize against ambient temperature, and a highly reliable semiconductor laser device with good device characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の態形レーザに於ける光の伝播を説明する
平面図である。 第2図は本発明の一実施例を示す態形V;ザの光伝播を
説明する平面図である。 第3図(A)(B)はそれぞれ第2図のx−x、y−y
断面図である。 第4図(A)、(B)(C)(D)は本発明の製造方法
の一実施例を説明する製作工程図である。 21・・・レーザ発振動作領域、22.22’・・・窓
領域、28.28’・・・結合領域、25.25’・・
・レーザ発振領域端面、3 ]−p−GaAs基板、8
2 ・−n −GaAs電流ブロッキング層、83・・
・p−クラッド層、3・・・活性層、35・・・n−ク
ラッド層、36・・・・n−キャップ層。
FIG. 1 is a plan view illustrating the propagation of light in a conventional laser. FIG. 2 is a plan view illustrating light propagation in Form V, which shows one embodiment of the present invention. Figure 3 (A) and (B) are x-x and y-y in Figure 2, respectively.
FIG. FIGS. 4(A), 4(B), 4(C), and 4(D) are manufacturing process diagrams illustrating an embodiment of the manufacturing method of the present invention. 21...Laser oscillation operating area, 22.22'...Window area, 28.28'...Coupling area, 25.25'...
・Laser oscillation region end face, 3 ]-p-GaAs substrate, 8
2.-n-GaAs current blocking layer, 83.
-p-cladding layer, 3...active layer, 35...n-cladding layer, 36...n-cap layer.

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に形成した電流狭窄用溝のストライプ幅変化
に対応して湾曲した活性層を有する励起領域と共振器両
端の平坦な活性層を有する窓領域を設け、前記励起領域
と窓領域の間を双方の導波路幅で決定されるテーパ状に
導波路幅が変化する結合領域で連結したことを特徴とす
る半導体レーザ素子。
1. An excitation region having a curved active layer and a window region having a flat active layer at both ends of the resonator are provided in response to changes in the stripe width of the current confinement groove formed on the substrate, and the width of the excitation region and the window region is What is claimed is: 1. A semiconductor laser device, characterized in that the two waveguides are connected by a coupling region whose waveguide width changes in a tapered manner determined by the width of both waveguides.
JP2807583A 1982-05-28 1983-02-21 Semiconductor laser element Granted JPS59152686A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2807583A JPS59152686A (en) 1983-02-21 1983-02-21 Semiconductor laser element
EP83301600A EP0095826B1 (en) 1982-05-28 1983-03-22 Semiconductor laser
DE8383301600T DE3376936D1 (en) 1982-05-28 1983-03-22 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2807583A JPS59152686A (en) 1983-02-21 1983-02-21 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS59152686A true JPS59152686A (en) 1984-08-31
JPH047113B2 JPH047113B2 (en) 1992-02-07

Family

ID=12238649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2807583A Granted JPS59152686A (en) 1982-05-28 1983-02-21 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS59152686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153260A (en) * 2006-12-14 2008-07-03 Fujitsu Ltd Optical semiconductor element and its fabrication process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153260A (en) * 2006-12-14 2008-07-03 Fujitsu Ltd Optical semiconductor element and its fabrication process

Also Published As

Publication number Publication date
JPH047113B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
US4788689A (en) Composite resonator-type semiconductor laser device
JPS5940592A (en) Semiconductor laser element
US5396511A (en) Semiconductor laser apparatus with curved waveguide
JPH0114717B2 (en)
JPS58225681A (en) Semiconductor laser element
JPS59152686A (en) Semiconductor laser element
JP2532449B2 (en) Semiconductor laser device
US4764937A (en) Semiconductor laser array device
JPS59175182A (en) Semiconductor laser element
JPH0376287A (en) Broad area laser
JPH0671121B2 (en) Semiconductor laser device
JPS58207691A (en) Semiconductor laser element
JPS601881A (en) Semiconductor laser element
JPS60245191A (en) Single beam type semiconductor laser array
JPH01132189A (en) Semiconductor laser element and manufacture thereof
JPH02305487A (en) Semiconductor laser
JPS6022392A (en) Semiconductor laser and manufacture thereof
JPS595689A (en) Distributed feedback type semiconductor laser
JPH05206567A (en) Semiconductor laser
JPS6261384A (en) High-power semiconductor laser
JPS5968988A (en) Semiconductor laser
JPH04372185A (en) Semiconductor laser
JPS63281492A (en) Semiconductor laser device
JPH04105381A (en) Semiconductor laser
JPH0337876B2 (en)