JPS601759A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPS601759A
JPS601759A JP58109987A JP10998783A JPS601759A JP S601759 A JPS601759 A JP S601759A JP 58109987 A JP58109987 A JP 58109987A JP 10998783 A JP10998783 A JP 10998783A JP S601759 A JPS601759 A JP S601759A
Authority
JP
Japan
Prior art keywords
nickel
powder
positive plate
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58109987A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakamitsu
中満 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58109987A priority Critical patent/JPS601759A/en
Publication of JPS601759A publication Critical patent/JPS601759A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the utilization rate of an active material principally consisting of nickel hydroxide powder and cobalt powder by stopping the initial charging of a positive plate prepared by packing the active material into an active-material-holding body before the electric potential of the positive plate reaches that at which oxygen is generated. CONSTITUTION:Cobalt powder obtained, for example, by subjecting cobalt oxalate to hydrogen reduction is added to nickel hydroxide powder and nickel carbonyl powder before the mixture is mixed with aqueous carboxymethylcellulose solution to make a paste. The paste is then packed into a spongy porous nickel body having a three-dimentionally continuous structure. The thus obtained body, after being dried with hot air and immersed in a dispersion liquid of a fluorine resin, is again dried with hot air before being pressed, thereby making a positive plate. During the process of formation, charging is stopped before the electric potential of the positive electrode reaches that at which oxygen is generated and which corresponds to about 0.5V relative to a mercuric oxide electrode so that the charged rate of Ni(OH)2 held by the positive plate does not exceed 100%. In this case, a very small amount of oxygen gas is generated from the positive plate.

Description

【発明の詳細な説明】 本発明は、粉末状の活物質をスポンジ状ニッケル多孔体
等の活物質保持体に保持させてなる正極板を有するアル
カリ蓄電池に関するものであり、初回の充電を正極板の
電位が酸素発生電位に至る前に打ち切ることによって正
極板の性能を向上させて、性能のすぐれたアルカリ蓄電
池を得ることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alkaline storage battery having a positive electrode plate formed by holding a powdered active material in an active material holder such as a sponge-like porous nickel material. The purpose of this invention is to improve the performance of the positive electrode plate by terminating the potential before it reaches the oxygen generation potential, thereby obtaining an alkaline storage battery with excellent performance.

三次元的に連続した構造を有するスポンジ状多孔体やI
ll状状ニッケル多孔体あるいはニッケル網等の活物質
保持体に、正極活物質の作用物質である水酸化ニッケル
の粒子を結着剤と共に直接塗−11布して得られるアル
カリ蓄電池は高容量化を図る事が出来ると共に充填が極
めて簡便になり連続工程が可能で経済的にも右利である
反面、多孔体の孔径が大きいために集電体であるニッケ
ル多孔体と活物質粉末との間および活物質粒子間の電気
的な接触性が充分に得られず利用率が低いという欠点が
ある。そこで、ニッケル粉末等の導電材や種々の添加剤
を加えることによって利用率を向上する試みが行われて
いる。この導電材としてはカーボニルニッケルV)末を
用いるのが一般的となっており、添加剤としてはコバル
ト粉末を用いることが提案されているが、それらの効果
は必ずしも充分ではなく、高い活物質利用率を得るため
には多量の添加を要するという欠点があった。
A sponge-like porous material with a three-dimensional continuous structure and I
The alkaline storage battery obtained by directly applying nickel hydroxide particles, which is the active substance of the positive electrode active material, along with a binder to an active material support such as a ll-shaped nickel porous material or a nickel net has a high capacity. While this is economically advantageous as it makes filling extremely simple and allows a continuous process, on the other hand, due to the large pore diameter of the porous material, the gap between the nickel porous material, which is the current collector, and the active material powder. Another drawback is that sufficient electrical contact between active material particles cannot be obtained, resulting in a low utilization rate. Therefore, attempts have been made to improve the utilization rate by adding conductive materials such as nickel powder and various additives. It is common to use carbonyl nickel V) powder as this conductive material, and it has been proposed to use cobalt powder as an additive, but these effects are not necessarily sufficient and the use of active materials is high. It has the disadvantage that a large amount must be added in order to obtain the desired ratio.

本発明は、水酸化ニッケル粉末とコバルト粉末とを主体
とする活物質粉末を活物質保持体に保持させて成る正極
板の初回の充電を、正極板の電位が酸素発生電位に至る
前に打ち切ると活物質利用率が著しく向上することを見
出したことに基づくものである。
The present invention discontinues the initial charging of a positive electrode plate, which is formed by holding active material powder mainly composed of nickel hydroxide powder and cobalt powder in an active material holder, before the potential of the positive electrode plate reaches the oxygen generation potential. This is based on the discovery that the active material utilization rate is significantly improved.

以下、本発明の実施例ならびにその効果を詳述する。Examples of the present invention and its effects will be described in detail below.

本発明に用いた正極板は次のようにして製作した。まず
、水酸化ニッケル粉末90部とカーボニルニッケル粉末
10部にコバルト粉末、例えばシュウ酸コバルトを水素
還元して得たコバルト粉末を添加したものを、カルボキ
シメチルセルロース水溶液でペースト化し、このペース
トを平均孔径0.3mm、多孔度96%、厚さ1.2I
lllIlの三次元的に連続した構造を有するスポンジ
状ニッケル多孔体に充填する。次に80℃で1時間熱風
乾燥しさらにフッ素樹脂の分散液に浸漬してから再び8
0℃で1時間熱風乾燥した後、500KG/cnfの圧
力でプレスをして本発明による正極板を19だ。そして
、化成工程として、この正極板を、対極としてニッケル
板2枚と電解液としてS 、 G 、1,250 (2
0℃)水酸化カリウム水溶液とを用いて25℃で08i
CAで充電した。ここで、金属コバルトを含有する正極
板を充電した場合には、第1図に示すように酸化第二水
銀電極に対して一部、75 V及びOV付近のコバルト
の酸化に相当する反応があり、これらの酸化反応が終了
した後にN+(01−1>2が団00Hに酸化されて酸
素発生に至ることがわかっている。ここでは、正極電位
が酸化第二水銀電極に対して約05Vに相当する酸素発
生電位に至る前に、すなわち正極板に保持されている団
(Otl ) 2の充電率が100%以下になるように
充電を打ち切った。この場合には、正極板からの酸素ガ
スの発生は極めて少なかった。さらにこの正極板を0.
20Aで酸化第二水銀電極に対してOVまで放電した後
に洗浄乾燥してから、対極として焼結式負極板2枚と電
解液どしてS 、 G 、1,250 (20℃)水酸
化カリウム水溶液とを用いて公称容量1.OA hの本
発明によ゛るフラッデッドタイプの電池を製作した。比
較のために、初回の化成工程の充電も以後の充電と同様
に水酸化ニッケルの充電率が160%になるように充電
時間を調節した正極板を用いて、公称容ffi 1.0
Ahの従来法によるフラッデッドタイプの電池(B)を
製作した。これらの電池を0.IOAで16時間充電し
た後に0.2CAで酸化第二水銀電極に対して0■まで
放電して活物質利用率を比較した。コバルトの添加量を
変えた場合の活物質利用率の変化を第2図に示す。図か
ら本発明によると少量のコバルト添加でも極めて高い利
用率の得られることがわかる。なおどちらの電池に用い
た正極板も、充電時の酸素ガス発生等による活物質の脱
落は生じていなかった。
The positive electrode plate used in the present invention was manufactured as follows. First, 90 parts of nickel hydroxide powder and 10 parts of carbonyl nickel powder are added with cobalt powder, such as cobalt powder obtained by hydrogen reduction of cobalt oxalate, and made into a paste with an aqueous carboxymethylcellulose solution. .3mm, porosity 96%, thickness 1.2I
A sponge-like porous nickel material having a three-dimensionally continuous structure of lllIl is filled. Next, it was dried with hot air at 80℃ for 1 hour, further immersed in a fluororesin dispersion, and then heated again at 80℃.
After drying with hot air at 0° C. for 1 hour, the positive electrode plate according to the present invention was obtained by pressing at a pressure of 500 kg/cnf. Then, as a chemical formation process, this positive electrode plate was mixed with two nickel plates as a counter electrode and S, G, 1,250 (2
0°C) at 25°C using potassium hydroxide aqueous solution.
I charged it with CA. Here, when a positive electrode plate containing metallic cobalt is charged, a reaction corresponding to the oxidation of cobalt at around 75 V and OV occurs partially on the mercury oxide electrode as shown in Figure 1. It is known that after these oxidation reactions are completed, N+ (01-1>2 is oxidized to the group 00H, leading to oxygen generation. Here, the positive electrode potential is about 05 V with respect to the mercuric oxide electrode. Charging was terminated before reaching the corresponding oxygen evolution potential, that is, so that the charging rate of group (Otl) 2 held on the positive electrode plate became 100% or less.In this case, oxygen gas from the positive electrode plate The occurrence of this positive electrode plate was extremely low.
After discharging the mercuric oxide electrode to OV at 20 A, washing and drying it, and using two sintered negative electrode plates as counter electrodes and electrolyte solution, S , G , 1,250 (20°C) potassium hydroxide. Nominal capacity 1. A flooded type battery of OAh according to the present invention was manufactured. For comparison, the charging time for the first chemical conversion step was adjusted to give a charging rate of nickel hydroxide of 160%, and the charging time was adjusted to 160%.
A flooded type battery (B) was manufactured using the conventional Ah method. These batteries are 0. After charging with IOA for 16 hours, the battery was discharged to 0.2 CA with respect to a mercuric oxide electrode to compare active material utilization rates. Figure 2 shows changes in the active material utilization rate when the amount of cobalt added was changed. From the figure, it can be seen that according to the present invention, an extremely high utilization rate can be obtained even with the addition of a small amount of cobalt. It should be noted that in the positive electrode plates used in both batteries, active material did not fall off due to oxygen gas generation or the like during charging.

何故、初回の充電を正極電位が酸素発生電位に至る前に
打ち切ると高い活物質利用率が得られるのかは次のよう
な理由によるものであると考えられる。
The reason why a high active material utilization rate can be obtained when the initial charging is terminated before the positive electrode potential reaches the oxygen evolution potential is considered to be due to the following reason.

5− すなわち、金属コバルトは先にも述べたように酸化第二
水銀電極に対して−0,75VおよびOV付近の反応に
従って最終的には導電向の高いCo。
5- That is, as mentioned above, metallic cobalt reacts with the mercuric oxide electrode at -0.75V and around OV, and eventually becomes Co with high conductivity.

OHに酸化されると考えられる。しかしながら、初回の
充電過程の一部、75 Vおよび0■付近の反応に要す
る電気量の和は、コバルトが二電子反応によってCo0
OHに変化すると仮定した場合の電気量よりも少なく、
コバルトの一部分は完全に000Hに変化せずに、金属
コバルト、あるいは(支)(OH) 2の状態で極板内
に残っていると考えられる。そして、その後の充電過程
において徐々にQ100Hに変化していくと考えられる
。ここで、C0(OH)2は水と酸素の存在下で電S度
が極めて低くて電気化学的にも不活性な01 H02と
いう物質に化学的に変化することが知られている。従っ
て、コバルトが初回の充電時に充分に酸化されずC11
(OH)2として正極板内に存在している場合に正極板
から多量の酸素が発生すると、その0(Of−1>2が
On HO2に変化して極板内の良好な導電性が得られ
なくなること等の理由によって活−〇− 物質利用率が低下するものと考えられる。しかしながら
本発明によると初回の充電時にコバルトが充分に酸化さ
れずC0(OH)2として極板内に残っていても、酸素
ガスの発生が極めて少ないために、ソ(7)CO(Ol
l ) 2がC11HO2に変化することはほとんどな
く、次回の充電過程においてCo001」に円滑に変化
して添加剤としての効果が充分に発揮されるために良好
な利用率が得られるものと考えられる。
It is thought to be oxidized to OH. However, part of the initial charging process, the sum of the amount of electricity required for the reaction near 75 V and 0.
Less than the amount of electricity assuming that it changes to OH,
It is thought that a part of the cobalt does not completely change to 000H and remains in the electrode plate in the form of metallic cobalt or (support) (OH) 2 . Then, it is thought that it gradually changes to Q100H in the subsequent charging process. Here, it is known that in the presence of water and oxygen, C0(OH)2 chemically changes into a substance called 01 H02, which has an extremely low S degree and is electrochemically inert. Therefore, cobalt is not sufficiently oxidized during the first charge and C11
When a large amount of oxygen is generated from the positive electrode plate when it exists in the positive electrode plate as (OH)2, the 0(Of-1>2 changes to On HO2 and good conductivity within the electrode plate is obtained. However, according to the present invention, cobalt is not sufficiently oxidized during the first charge and remains in the electrode plate as CO(OH)2. However, since the generation of oxygen gas is extremely small, so(7)CO(Ol
It is thought that a good utilization rate can be obtained because 2 hardly changes to C11HO2, and smoothly changes to Co001 in the next charging process, fully demonstrating its effect as an additive. .

以上述べたように本発明によると水酸化ニッケル粉末と
コバルト粉末とを主体とする活物質粉末を活物質保持体
に保持させて成る正極板の利用率を向上させて、性能の
すぐれたアルカリ蓄電池を供給することができる。
As described above, according to the present invention, an alkaline storage battery with excellent performance can be achieved by improving the utilization rate of a positive electrode plate in which an active material holder holds active material powder mainly composed of nickel hydroxide powder and cobalt powder. can be supplied.

なお実施例では活物質保持体としてスポンジ状ニッケル
多孔体を用いたが、ニッケル網あるいは!I帷状状ニッ
ケル多孔体を用いても同様の効果が得られることはいう
までもない。
In the examples, a sponge-like porous nickel material was used as the active material holder, but a nickel mesh or! It goes without saying that similar effects can be obtained by using an I-shaped nickel porous body.

また実施例では正極板の初回の充電を正極板を電池に組
み込む前に行ったが、未充電の正極板を電池に組み込ん
だ後に初回の充電を行っても同様の効果が得られる。
Further, in the embodiment, the positive electrode plate was charged for the first time before the positive electrode plate was assembled into the battery, but the same effect can be obtained even if the first charge is performed after the uncharged positive electrode plate is assembled into the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコバルトを含む正極板の典型的な充電特性を示
した図、第2図はコバルトの添加量を変えた場合の活物
質利用率の変化を示した図である。 A・・・・・・本発明品、B・・・・・・従来品びφ)
l ’SA ’Aノ1妻耐了
FIG. 1 is a diagram showing typical charging characteristics of a positive electrode plate containing cobalt, and FIG. 2 is a diagram showing changes in active material utilization when the amount of cobalt added is changed. A: Invention product, B: Conventional product φ)
l 'SA'A No 1 Wife Ends Up

Claims (1)

【特許請求の範囲】 1、水酸化ニッケル粉末およびコバルト粉末を主体とす
る活物質粉末を活物質保持体、例えばスポンジ状ニッケ
ル多孔体、繊維状ニッケル多孔体あるいはニッケル網等
に保持させてなる正極板を有する電池であって、前記正
極板の初回の充電をその電位が酸素発生電位に至る前に
打ち切ることを特徴とするアルカリ′7B電池。 2、前記正極板の初回の充電を電池に組み込む前に行う
ことを特徴とする特許請求の範囲第1項記載のアルカリ
蓄電池。 3、前記正極板の初回の充電を電池に組み込んだ後に行
うことを特徴とする特許請求の範囲第1項記載のアルカ
リ蓄電池。
[Claims] 1. A positive electrode formed by holding an active material powder mainly composed of nickel hydroxide powder and cobalt powder in an active material holder, such as a sponge-like porous nickel material, a fibrous nickel porous material, or a nickel mesh. An alkaline '7B battery having a plate, characterized in that the initial charge of the positive plate is terminated before its potential reaches an oxygen evolution potential. 2. The alkaline storage battery according to claim 1, wherein the positive electrode plate is charged for the first time before being assembled into the battery. 3. The alkaline storage battery according to claim 1, wherein the first charging of the positive electrode plate is performed after the positive electrode plate is assembled into the battery.
JP58109987A 1983-06-17 1983-06-17 Alkaline storage battery Pending JPS601759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58109987A JPS601759A (en) 1983-06-17 1983-06-17 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58109987A JPS601759A (en) 1983-06-17 1983-06-17 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS601759A true JPS601759A (en) 1985-01-07

Family

ID=14524208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58109987A Pending JPS601759A (en) 1983-06-17 1983-06-17 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS601759A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816795A (en) * 1986-12-29 1989-03-28 Taiyo Kogyo Co., Ltd. Directional control device for a movable toy
US6440052B1 (en) 1997-11-13 2002-08-27 Pentax Technologies Corporation System for directing a leading edge of continuous form paper onto a stack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983348A (en) * 1982-11-04 1984-05-14 Matsushita Electric Ind Co Ltd Manufacture of nickel positive electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983348A (en) * 1982-11-04 1984-05-14 Matsushita Electric Ind Co Ltd Manufacture of nickel positive electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816795A (en) * 1986-12-29 1989-03-28 Taiyo Kogyo Co., Ltd. Directional control device for a movable toy
US6440052B1 (en) 1997-11-13 2002-08-27 Pentax Technologies Corporation System for directing a leading edge of continuous form paper onto a stack

Similar Documents

Publication Publication Date Title
US3853624A (en) High energy density iron-nickel battery
JPH0221098B2 (en)
JPS601759A (en) Alkaline storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP4752401B2 (en) Manufacturing method of cylindrical alkaline storage battery
JPH11135112A (en) Positive electrode for alkaline storage battery
JP3088649B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2000348715A (en) Manufacture of lead-acid battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS59128766A (en) Positive plate for alkaline battery
JPH11260359A (en) Alkaline storage battery
JPH0888002A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0778613A (en) Nickel hydrogen battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JPH0416905B2 (en)
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JP2003031216A (en) Method of manufacturing nickel positive electrode and method of manufacuring alkaline storage battery
JPH01289067A (en) Nickel electrode for alkaline storage battery
JP2000106179A (en) Manufacture for non-sintered nickel positive electrode
JPH02216763A (en) Alkaline storage battery and manufacture thereof
JPH03133059A (en) Manufacture of paste type cadmium negative electrode
JPH0888001A (en) Hydrogen storage alloy electrode and manufacture thereof