JP4752401B2 - Manufacturing method of cylindrical alkaline storage battery - Google Patents
Manufacturing method of cylindrical alkaline storage battery Download PDFInfo
- Publication number
- JP4752401B2 JP4752401B2 JP2005254781A JP2005254781A JP4752401B2 JP 4752401 B2 JP4752401 B2 JP 4752401B2 JP 2005254781 A JP2005254781 A JP 2005254781A JP 2005254781 A JP2005254781 A JP 2005254781A JP 4752401 B2 JP4752401 B2 JP 4752401B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- battery
- alkaline storage
- storage battery
- cylindrical alkaline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は円筒型アルカリ蓄電池の製造方法に関し、より詳しくは大型化した場合においても水酸化ニッケルの利用率および寿命特性を維持しうる技術に関する。 The present invention relates to a method for manufacturing a cylindrical alkaline storage battery, and more particularly to a technique capable of maintaining the utilization rate and life characteristics of nickel hydroxide even when the size is increased.
近年、情報機器の著しい普及にともない、エネルギー密度の高い二次電池の開発が要望されている。このような要望に応えるために、ニッケル・カドミウム電池(以下ニカド電池という)の分野においては、焼結式ニッケル正極の高容量化に加えて非焼結式ニッケル正極の開発が進んでおり、焼結式ニッケル正極を用いたニカド電池に対して30〜60%の高容量化がなされている。さらに負極に水素吸蔵合金を用い、ニカド電池よりも高容量なニッケル水素蓄電池(以下Ni/MHという)の開発も進んでいる。焼結式ニッケル正極は、焼結式ニッケル多孔体に水酸化ニッケル粉末を高密度に充填したものであり、一方非焼結式ニッケル正極は、発泡ニッケル多孔体やニッケル繊維などの高多孔度な3次元金属多孔体に水酸化ニッケル粉末を高密度に充填したものである。 In recent years, with the remarkable spread of information equipment, development of a secondary battery with high energy density has been demanded. In order to meet these demands, in the field of nickel cadmium batteries (hereinafter referred to as “nickel batteries”), in addition to increasing the capacity of sintered nickel cathodes, non-sintered nickel cathodes have been developed. The capacity has been increased by 30 to 60% with respect to a nickel-cadmium battery using a bonded nickel positive electrode. Furthermore, the development of a nickel-metal hydride storage battery (hereinafter referred to as Ni / MH) that uses a hydrogen storage alloy for the negative electrode and has a higher capacity than the nickel-cadmium battery is also progressing. A sintered nickel positive electrode is a sintered nickel porous body filled with nickel hydroxide powder at a high density, while a non-sintered nickel positive electrode has a high porosity such as a foamed nickel porous body or nickel fiber. A three-dimensional porous metal body is filled with nickel hydroxide powder at a high density.
正極の高容量化とともに正極利用率の向上検討も行われ、種々の添加剤が用いられるようになった。一般的な事例として、活物質である水酸化ニッケルは導電性が低いので、利用率を向上するために導電性の高いコバルトあるいはコバルト化合物が添加されている。コバルトおよびコバルト化合物は、アルカリ電解液中の水酸イオンと反応して水溶性のコバルト錯イオンを形成し、初充電時に酸化されてニッケル正極内に導電性のオキシ水酸化コバルトとして析出し、導電ネットワークを形成して活物質である水酸化ニッケル粒子間や支持体との導電性を高めるので、活物質の利用率を向上することができる。この効果を高めるために、初期充電条件によって導電ネットワークを最適化し、電池の利用率向上を高める方法が提案されている。具体的には、初期充電の電流を1〜20時間率で行う方法(例えば、特許文献1)や高温雰囲気で初期充電を実施する方法(例えば、特許文献2)が提案されている。
近年は環境保全の観点から、容量の大きな据置用の円筒型アルカリ蓄電池が開発されている。これらの電池は内容積が大きいので、電池内の反応不均一が懸念されるが、実際に特許文献1および2の技術をもってしても、例えば電池容量が50Ah以上の円筒型アルカリ蓄電池の場合、コバルトの酸化効率が不十分なために正極の導電ネットワークを均一に形成することができず、高い利用率が得られず短寿命であるという課題があった。 In recent years, from the viewpoint of environmental conservation, a cylindrical alkaline storage battery having a large capacity has been developed. Since these batteries have a large internal volume, there is a concern about non-uniform reaction in the batteries, but even with the techniques of Patent Documents 1 and 2, for example, in the case of a cylindrical alkaline storage battery having a battery capacity of 50 Ah or more, Since the oxidation efficiency of cobalt is insufficient, the positive electrode conductive network cannot be formed uniformly, and there is a problem that a high utilization rate cannot be obtained and the life is short.
本発明は上記の課題を解決するものであり、大型化した場合でもコバルトの酸化効率を高めて正極の導電ネットワークを均一に形成することにより、水酸化ニッケルの利用率および寿命特性に優れた円筒型アルカリ蓄電池を提供することを目的とする。 The present invention solves the above-mentioned problems, and even when the size is increased, a cylinder excellent in utilization rate and life characteristics of nickel hydroxide is obtained by increasing the oxidation efficiency of cobalt and uniformly forming a positive electrode conductive network. It aims at providing a type alkaline storage battery.
上記課題を解決するために、本発明の円筒型アルカリ蓄電池の製造方法は、水酸化ニッケルおよび金属コバルトを含む正極と、水素吸蔵合金を主成分とする負極からなる円筒型アルカリ蓄電池に対して、正負極とセパレータとで電極群を構成する第1の工程と、電極群および電解液を電槽に収納して電池体を構成する第2の工程と、この電池体を回転させながら初期充電する第3の工程とからなることを特徴とする。 In order to solve the above-mentioned problems, the cylindrical alkaline storage battery manufacturing method of the present invention is a cylindrical alkaline storage battery comprising a positive electrode containing nickel hydroxide and metallic cobalt and a negative electrode mainly composed of a hydrogen storage alloy. A first step of forming an electrode group with positive and negative electrodes and a separator, a second step of storing the electrode group and an electrolyte in a battery case to form a battery body, and initial charging while rotating the battery body It consists of a 3rd process, It is characterized by the above-mentioned.
例えば電池容量が50Ah以上の円筒型アルカリ蓄電池の場合、電槽の直径が極端に大きいために電池体内での電解液分布が不均一になり、初期充電時に生成されるオキシ水酸化コバルトが正極中で局所的に析出するために、正極の導電ネットワークが均一にならず、直径の小さい民生用途の円筒型アルカリ蓄電池と比較して、利用率が低下するとともに短寿命になる。ここで初期充電を終えて円筒型アルカリ蓄電池を完成させるに当たり、初期充電時に前駆体の電池体を回転させることで、電解液分布を均一にして導電ネットワークを均一に形成することが可能となる。 For example, in the case of a cylindrical alkaline storage battery with a battery capacity of 50 Ah or more, the electrolyte solution distribution in the battery body becomes non-uniform because the diameter of the battery case is extremely large, and the cobalt oxyhydroxide generated during the initial charge is in the positive electrode. Therefore, the conductive network of the positive electrode is not uniform, and the utilization rate is reduced and the life is shortened as compared with a cylindrical alkaline storage battery for consumer use having a small diameter. Here, when completing the initial charging and completing the cylindrical alkaline storage battery, the precursor battery body is rotated during the initial charging, so that the distribution of the electrolyte can be made uniform and the conductive network can be formed uniformly.
以上のように本発明によれば、高容量化によって直径が極端に大きくなった円筒型アルカリ蓄電池の正極における導電ネットワークを均一にすることができるので、利用率が高い上に長寿命な円筒型アルカリ蓄電池を提供することができる。 As described above, according to the present invention, since the conductive network in the positive electrode of the cylindrical alkaline storage battery whose diameter has become extremely large due to the increase in capacity can be made uniform, the cylindrical type has a high utilization rate and a long life. An alkaline storage battery can be provided.
以下に、本発明の各請求項について詳述する。 Below, each claim of the present invention will be described in detail.
請求項1に記載の発明は、水酸化ニッケルおよび金属コバルトを含む正極と、負極からなる円筒型アルカリ蓄電池に対して、正負極とセパレータとで電極群を構成する第1の工程と、電極群および電解液を電槽に収納して電池体を構成する第2の工程と、この電池体を回転させながら初期充電する第3の工程とからなることを特徴とする。 The invention according to claim 1 is a first step of forming an electrode group with a positive and negative electrode and a separator for a cylindrical alkaline storage battery comprising a positive electrode containing nickel hydroxide and metallic cobalt and a negative electrode, and an electrode group And a second step of forming a battery body by storing the electrolytic solution in a battery case, and a third step of initial charging while rotating the battery body.
初期充電時に電池体を回転させることで、電解液分布が均一となり、正極中のオキシ水酸化コバルトによって形成される導電ネットワークを均一に形成することができるので、水酸化ニッケルの利用率を高めることができる。金属コバルトはアルカリ電解液中でコバルト錯イオンとして溶解し、初期充電時に酸化されて導電性の高いオキシ水酸化コバルトとなり、水酸化ニッケルの近傍に析出する。ここで導電剤として、金属コバルトと併せて水酸化コバルトや酸化コバルトを用いてもよいが、金属コバルトは水酸化コバルトや酸化コバルトに比べて溶解析出反応が確実に行えるので、正極に強固な導電ネットワークを形成するための必須要素となる。本発明のように正極に強固な導電ネットワークを持たせることで、充放電の繰り返しによる容量低下をも抑制することができる。 By rotating the battery body during initial charging, the electrolyte distribution becomes uniform, and a conductive network formed by cobalt oxyhydroxide in the positive electrode can be formed uniformly, thus increasing the utilization rate of nickel hydroxide. Can do. Cobalt metal dissolves in the alkaline electrolyte as cobalt complex ions, and is oxidized during initial charging to become highly conductive cobalt oxyhydroxide, which is deposited in the vicinity of nickel hydroxide. Here, cobalt hydroxide or cobalt oxide may be used in combination with metallic cobalt as the conductive agent. However, metallic cobalt can perform a dissolution and precipitation reaction more reliably than cobalt hydroxide or cobalt oxide. It is an essential element to form a network. By providing the positive electrode with a strong conductive network as in the present invention, it is possible to suppress a decrease in capacity due to repeated charge and discharge.
第3の工程において電池体を回転させるための装置については後ほど詳述するが、その回転速度は5〜30rpmが好ましい。5rpm未満であれば本発明の効果が得られにくくなり、30rpmを超えると回転過多による接触不良が起こりやすくなり、初期充電を安定して行うことが困難になる。 The device for rotating the battery body in the third step will be described in detail later, but the rotation speed is preferably 5 to 30 rpm. If it is less than 5 rpm, it is difficult to obtain the effect of the present invention. If it exceeds 30 rpm, contact failure due to excessive rotation tends to occur, and it is difficult to stably perform initial charging.
請求項2に記載の発明は、請求項1の記載内容を前提として、第2の工程における電解液の量が正極理論容量に対して1.7〜2.5ml/Ah以上であることを特徴とする。従来から円筒型アルカリ蓄電池において、粘性の高いアルカリ水溶液からなる電解液を電極群に均一に滲み渡らせることが課題視されてきた。本発明では初期充電時に電池体を回転させることにより、電解液分布が確実に均一になるので、従来では不可能であった多量の電解液添加が可能となり、寿命特性を改善することが可能となる。ただし電解液量が過多になると、電池体内の空間体積が減少し、電池体内でガス発生が生じた場合に内圧が上昇しやすくなるという不具合が生じる。請求項2の条件にすることにより、寿命特性と内圧特性とのバランスを高次元で保つことが可能になる。なおここで正極理論容量は、正極内の水酸化ニッケル(活物質)重量をα(g)としたときにα×289で求めることができる。 The invention according to claim 2 is characterized in that the amount of the electrolyte solution in the second step is 1.7 to 2.5 ml / Ah or more with respect to the theoretical capacity of the positive electrode on the premise of the description in claim 1. And Conventionally, in a cylindrical alkaline storage battery, it has been regarded as a problem to uniformly spread an electrolytic solution made of a highly viscous aqueous alkali solution to an electrode group. In the present invention, by rotating the battery body during initial charging, the distribution of the electrolyte is surely uniform, so that a large amount of electrolyte can be added, which is impossible in the past, and the life characteristics can be improved. Become. However, when the amount of the electrolyte is excessive, the space volume in the battery body is reduced, and there is a problem that the internal pressure is likely to increase when gas is generated in the battery body. By using the conditions of claim 2, it is possible to maintain a high balance between the life characteristics and the internal pressure characteristics. Here, the theoretical capacity of the positive electrode can be obtained by α × 289 when the weight of nickel hydroxide (active material) in the positive electrode is α (g).
請求項3に記載の発明は、請求項1の記載内容を前提として、正極理論容量が50Ah
以上であり、第3の工程における初期充電電流を正極理論容量の20%に達するまでは25〜100時間率とすることを特徴とする。本発明の製造方法はあらゆる円筒型アルカリ蓄電池に有用であるが、特に電池容量が50Ah以上になると、円筒のサイズにもよるが直径が40mm以上となり、本発明の製造方法を用いない限り電解液分布を良化して正極中の導電ネットワークを均一に形成することができない。またこのような大型電池の場合は電解液分布を均一化するのに時間を要するので、初期充電電流を正極理論容量の20%に達するまでは25〜100時間率とするのが好ましい。この初期充電電流が25時間率未満の場合は電解液分布が均一になりきる前に初期充電が終了するので正極中の導電ネットワークが不均一となり、100時間率を超える場合は生産性が過度に低下する。請求項3の条件にすることにより、大型電池における正極中の導電ネットワークを、適切な時間内に均一に形成することができる。なおここで、初期充電電流の規制を正極理論容量の20%に達するまでとしたのは、この領域でオキシ水酸化コバルトの析出反応が十分に行われるからであり、その後に電流値を大きくしても水酸化ニッケルの利用率は低下することはない。
The invention described in claim 3 has a positive electrode theoretical capacity of 50 Ah on the premise of the description in claim 1.
The initial charge current in the third step is 25 to 100 hours until reaching 20% of the positive electrode theoretical capacity. The production method of the present invention is useful for all cylindrical alkaline storage batteries. Particularly, when the battery capacity is 50 Ah or more, the diameter is 40 mm or more depending on the size of the cylinder, and the electrolytic solution is used unless the production method of the present invention is used. The distribution cannot be improved and the conductive network in the positive electrode cannot be formed uniformly. In such a large battery, since it takes time to make the electrolyte distribution uniform, it is preferable to set the initial charging current to a rate of 25 to 100 hours until it reaches 20% of the positive electrode theoretical capacity. If the initial charging current is less than 25 hours, the initial charging is completed before the electrolyte solution distribution becomes uniform, so the conductive network in the positive electrode becomes non-uniform, and if it exceeds 100 hours, the productivity is excessive. descend. By making it the condition of Claim 3, the conductive network in the positive electrode in a large sized battery can be formed uniformly within a suitable time. The reason why the regulation of the initial charging current is set to 20% of the theoretical capacity of the positive electrode is that the precipitation reaction of cobalt oxyhydroxide is sufficiently performed in this region, and then the current value is increased. However, the utilization rate of nickel hydroxide does not decrease.
請求項4に記載の発明は、請求項1の記載内容を前提として、水酸化ニッケル100重量部に対する金属コバルトの添加量が3〜10重量部であることを特徴とする。導電剤である金属コバルトの添加量が水酸化ニッケル100重量部に対して3重量未満であれば正極中に十分な導電ネットワークを形成することができずに正極利用率が低下し、10重量部を超えると活物質の充填量低減(電池容量低下)を招くだけでなく、アルカリ電解液へ溶解した過剰のコバルト錯イオンが負極側で析出して化学的微小短絡を引き起こす懸念が生じる。請求項4の条件にすることにより、電池容量・正極利用率ともに十分なアルカリ蓄電池を提供することが可能となる。 The invention described in claim 4 is characterized in that, based on the description in claim 1, the amount of metallic cobalt added is 3 to 10 parts by weight with respect to 100 parts by weight of nickel hydroxide. If the addition amount of metallic cobalt as a conductive agent is less than 3 parts by weight with respect to 100 parts by weight of nickel hydroxide, a sufficient conductive network cannot be formed in the positive electrode, and the positive electrode utilization rate decreases and 10 parts by weight. Exceeding not only causes a reduction in the amount of active material (battery capacity), but also causes the possibility that excessive cobalt complex ions dissolved in the alkaline electrolyte precipitate on the negative electrode side and cause a chemical minute short circuit. By satisfying the conditions of claim 4, it is possible to provide an alkaline storage battery having both sufficient battery capacity and positive electrode utilization rate.
本発明の主構成要素について、図を用いて説明する。 Main components of the present invention will be described with reference to the drawings.
図1は本発明のアルカリ蓄電池の模式断面図である。負極1と正極2の間にセパレータ3を介して渦巻き状に捲回した電極群を、負極端子を兼ねるケース4に挿入し、アルカリ電解液を注入した後、安全弁5および端子部6を備えた封口板7により封口している。8はガスケット、9は正極2と封口板7とを電気的に接続する正極集電体を示す。 FIG. 1 is a schematic cross-sectional view of an alkaline storage battery of the present invention. An electrode group wound in a spiral shape between the negative electrode 1 and the positive electrode 2 via a separator 3 was inserted into a case 4 serving also as a negative electrode terminal, and after injecting an alkaline electrolyte, a safety valve 5 and a terminal portion 6 were provided. Sealing is performed by a sealing plate 7. Reference numeral 8 denotes a gasket, and 9 denotes a positive electrode current collector that electrically connects the positive electrode 2 and the sealing plate 7.
負極1は、Ni/MHの場合は水素吸蔵合金を活物質として用い、これにカーボンブラックなどの導電剤と、必要に応じてカルボキシメチルセルロース(以下、CMCと略記)などの増粘剤や、スチレン−ブタジエン共重合体(以下、SBRと略記)などの結着剤を適量加えてペーストにし、これをパンチングメタルなどの二次元多孔体からなる芯材に塗布することにより作製される。ニカド電池の場合はカドミウム化合物を主成分とする負極合剤ペーストをパンチングメタルなどの二次元多孔体からなる芯材に塗布することにより作製される。 In the case of Ni / MH, the negative electrode 1 uses a hydrogen storage alloy as an active material, a conductive agent such as carbon black, and a thickener such as carboxymethylcellulose (hereinafter abbreviated as CMC) as necessary, styrene -It is produced by adding an appropriate amount of a binder such as a butadiene copolymer (hereinafter abbreviated as SBR) to make a paste, and applying this to a core material made of a two-dimensional porous material such as a punching metal. In the case of a nickel-cadmium battery, it is produced by applying a negative electrode mixture paste mainly composed of a cadmium compound to a core material made of a two-dimensional porous material such as a punching metal.
正極2は水酸化ニッケルを活物質として用い、これに水酸化コバルトや金属コバルト粉末などの導電剤と、酸化イッテルビウム粉末などの希土類化合物、必要にCMCなどの増粘剤やポリテトラフルオロエチレンなどの結着剤を適量加えてペーストにし、これを発泡ニッケル三次元多孔体などの芯材に塗布あるいは充填した後、これを乾燥・圧延・切断することにより作製される。 The positive electrode 2 uses nickel hydroxide as an active material, and includes a conductive agent such as cobalt hydroxide and metal cobalt powder, a rare earth compound such as ytterbium oxide powder, a thickener such as CMC, and polytetrafluoroethylene. An appropriate amount of a binder is added to form a paste, which is applied or filled into a core material such as a foamed nickel three-dimensional porous body, and then dried, rolled and cut.
セパレータ3は、ポリプロピレンなどのポリオレフィンからなる不織布を用いることができる。なおこの不織布は、電解液との親和性を高めるためにスルホン化処理等がなされているのが好ましい。 The separator 3 can be a nonwoven fabric made of polyolefin such as polypropylene. In addition, it is preferable that this nonwoven fabric is sulfonated etc. in order to improve affinity with electrolyte solution.
電解液は、KOHとNaOHとLiOHとを適宜混合して溶解させた水溶液を用いるこ
とができる。
As the electrolytic solution, an aqueous solution in which KOH, NaOH, and LiOH are appropriately mixed and dissolved can be used.
図2は本発明の製造方法にて電池体を回転させる装置の一例を示す概略図である。円筒型アルカリ蓄電池11を、2本の円筒型の回転体12に載せて矢印の方向に回転させることにより、注入した電解液を均一に分布させる。一方で支持体13から突出した2対の突起部14(一方は図示せず)により円筒型アルカリ蓄電池11を挟み込み、コード15より電流を流すことにより初期充電を行う。 FIG. 2 is a schematic view showing an example of an apparatus for rotating a battery body in the manufacturing method of the present invention. The cylindrical alkaline storage battery 11 is placed on two cylindrical rotating bodies 12 and rotated in the direction of the arrow, thereby uniformly distributing the injected electrolyte. On the other hand, the cylindrical alkaline storage battery 11 is sandwiched between two pairs of protrusions 14 (one not shown) protruding from the support 13, and current is supplied from the cord 15 to perform initial charging.
以下に実施例をあげて、本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
(実施例1)
水酸化ニッケル粉末100重量部に対し、金属コバルト粉末を5重量部と、酸化イッテルビウム粉末を4重量部と、酸化亜鉛粉末を2.5重量部とを混合し調整した正極合剤ペーストを導電性支持体に充填し、乾燥後、プレスによって所定の厚みにし、理論容量が52Ahになるよう所定のサイズに切断し、ニッケル正極を作製した。この正極と水素吸蔵合金を使用した理論容量80Ahの負極との間に介入させたスルホン化ポリプロピレンセパレータを渦巻き状に捲回して電極群を作製し、この電極群を負極端子を兼ねるケースに挿入した後、比重が1.27である水酸化カリウム、水酸化ナトリウム、水酸化リチウムからなるアルカリ電解液を正極容量に対して1.8ml/Ahの割合で注入し、図1に示すNi/MHを作製した。
Example 1
Conductive positive electrode mixture paste prepared by mixing 5 parts by weight of metallic cobalt powder, 4 parts by weight of ytterbium oxide powder, and 2.5 parts by weight of zinc oxide powder with respect to 100 parts by weight of nickel hydroxide powder The support was filled, dried, pressed to a predetermined thickness, cut to a predetermined size so that the theoretical capacity was 52 Ah, and a nickel positive electrode was produced. A sulfonated polypropylene separator intervened between this positive electrode and a negative electrode having a theoretical capacity of 80 Ah using a hydrogen storage alloy was spirally wound to produce an electrode group, and this electrode group was inserted into a case also serving as a negative electrode terminal. Thereafter, an alkaline electrolyte composed of potassium hydroxide, sodium hydroxide and lithium hydroxide having a specific gravity of 1.27 was injected at a rate of 1.8 ml / Ah with respect to the positive electrode capacity, and Ni / MH shown in FIG. Produced.
このNi/MHを25℃の雰囲気下で24時間保管した後、図2に示す電池ホルダにセットして、図の矢印の方向に15rpmの回転数で回転させながら25℃の雰囲気下で30時間率の電流値で正極理論容量に対して20%の電気量を初期充電を行った。その後、2時間率の電流値で正極理論容量に対して130%の電気量を充電し、25℃の雰囲気下で5時間率の電流値で1.0Vに達するまで放電した。このNi/MHを実施例1の電池とする。 After storing this Ni / MH for 24 hours in an atmosphere at 25 ° C., the Ni / MH is set in the battery holder shown in FIG. 2 and rotated for 30 hours in an atmosphere at 25 ° C. while rotating at a rotation speed of 15 rpm in the direction of the arrow in the figure. The initial charge was performed with the amount of electricity of 20% of the positive electrode theoretical capacity at a current value of rate. Thereafter, an amount of electricity of 130% with respect to the theoretical capacity of the positive electrode was charged at a current value of 2 hours and discharged until reaching 1.0 V at a current value of 5 hours at 25 ° C. in an atmosphere. This Ni / MH is used as the battery of Example 1.
(実施例2〜5)
実施例1に対し、アルカリ電解液の注入量を1.4、1.7、2.5および2.8ml/Ahとした以外は、実施例1と同様にして作製したNi/MHを実施例2〜5の電池とする。
(Examples 2 to 5)
In contrast to Example 1, the Ni / MH produced in the same manner as in Example 1 except that the injection amount of the alkaline electrolyte was 1.4, 1.7, 2.5 and 2.8 ml / Ah. The battery is 2-5.
(実施例6〜10)
実施例1に対し、正極理論容量に対して20%までの充電電流値を20、25、70、100および120時間率とした以外は、実施例1と同様にして作製したNi/MHを実施例6〜10の電池とする。
(Examples 6 to 10)
For Example 1, Ni / MH produced in the same manner as in Example 1 except that the charging current value up to 20% of the positive electrode theoretical capacity was set to 20, 25, 70, 100, and 120 hour rate. The batteries of Examples 6 to 10 are used.
(実施例11)
実施例1に対し、正極理論容量に対して20%以降の充電電流値を30時間率とした以外は、実施例1と同様にして作製したNi/MHを実施例11の電池とする。
(Example 11)
The battery of Example 11 is made of Ni / MH manufactured in the same manner as in Example 1 except that the charging current value after 20% with respect to the positive electrode theoretical capacity is set to a 30-hour rate with respect to Example 1.
(実施例12〜13)
実施例1に対し、正極の理論容量が40および70Ahとなるよう正負極、セパレータ、電解液およびケースの寸法と量を調整し、かつ正極理論容量に対して20%までの充電電流値を20時間率とした以外は、実施例1と同様にして作製したNi/MHを実施例12〜13の電池とする。
(Examples 12 to 13)
For Example 1, the dimensions and amounts of the positive and negative electrodes, the separator, the electrolyte, and the case are adjusted so that the theoretical capacity of the positive electrode is 40 and 70 Ah, and the charging current value up to 20% of the theoretical capacity of the positive electrode is 20 Except for the time rate, Ni / MH produced in the same manner as in Example 1 was used as the batteries of Examples 12-13.
(実施例14〜17)
実施例1に対し、水酸化ニッケル粉末100重量部に対する金属コバルト粉末の添加量を2、3、10および12重量部とした以外は、実施例1と同様にして作製したNi/MHを実施例14〜17の電池とする。
(Examples 14 to 17)
In contrast to Example 1, Ni / MH produced in the same manner as in Example 1 except that the amount of metallic cobalt powder added was 2, 3, 10 and 12 parts by weight relative to 100 parts by weight of nickel hydroxide powder. The batteries are 14-17.
(実施例18〜21)
実施例1に対し、初期充電時の回転数を3、5、30および35rpmとした以外は、実施例1と同様にして作製したNi/MHを実施例18〜21の電池とする。
(Examples 18 to 21)
The batteries of Examples 18 to 21 are made of Ni / MH manufactured in the same manner as in Example 1 except that the number of rotations at the time of initial charging was set to 3, 5, 30, and 35 rpm.
(比較例)
実施例1に対し、電池体を回転をせずに初期充電を実施すること以外は、実施例1と同様にして作製したNi/MHを比較例の電池とする。
(Comparative example)
Compared to Example 1, Ni / MH produced in the same manner as in Example 1 except that initial charging is performed without rotating the battery body is used as a comparative battery.
以上の各電池を用いて以下の評価を行った。 The following evaluation was performed using each battery described above.
(利用率測定)
25℃雰囲気下で以下に示す充放電を行い、得られた放電容量を正極理論容量で除した値を利用率として(表1)に示した。
充電:10時間率にて16時間、放置:1時間、放電:5時間率にて1.0Vに達するまで。
(Utilization measurement)
The charge / discharge shown below was performed in an atmosphere at 25 ° C., and the value obtained by dividing the obtained discharge capacity by the positive electrode theoretical capacity was shown in Table 1 as the utilization factor.
Charging: 16 hours at 10 hour rate, standing: 1 hour, discharging: 1.0 hour at 5 hour rate.
(間欠充電試験)
10時間率にて10時間の充電を25℃雰囲気下で行った後、以下に示す休止および補充電を繰り返し行った。1ヶ月毎に5時間率にて1.0Vに達するまで放電してその容量を測定した。利用率測定時に対する放電容量比が80%を下回るまで間欠充電試験を繰り返し、この期間を寿命期間として(表1)に示した。
休止:65℃雰囲気下で24時間放置、補充電:65℃雰囲気下で10時間率にて2時間。
(Intermittent charging test)
After charging for 10 hours at a rate of 10 hours in a 25 ° C. atmosphere, the following pause and supplementary charging were repeated. Each month, the battery was discharged at a 5-hour rate until it reached 1.0 V, and its capacity was measured. The intermittent charge test was repeated until the discharge capacity ratio at the time of measuring the utilization rate was less than 80%, and this period is shown in Table 1 as the lifetime.
Rest: left in a 65 ° C. atmosphere for 24 hours, supplementary charge: 2 hours at a 10 hour rate in a 65 ° C. atmosphere.
これに対し回転させながら初充放電を行った本発明の各実施例は、電池体内の液分布をより均一にすることができた結果、正極中のオキシ水酸化コバルトによって形成される導電ネットワークが均一になって水酸化ニッケルの利用率が高まり、充放電の繰り返しによる容量低下をも抑制した。ただし、電解液の注入量が少ない実施例2は、水酸化ニッケルの利用率が上がったものの、水素吸蔵合金の腐食にともなうセパレータの枯渇を早期に引き起こすため寿命期間は若干短くなった。また、電解液の注液量が多い実施例5は、電池体内での空間体積が減少し、初充電時に内圧が上昇したために封口板の弁が作動した。そのため電解液の一部が流出し、寿命期間は若干短くなった。 On the other hand, each example of the present invention in which the initial charge / discharge was performed while rotating was able to make the liquid distribution in the battery body more uniform, resulting in a conductive network formed by cobalt oxyhydroxide in the positive electrode. It became uniform, the utilization rate of nickel hydroxide increased, and the capacity reduction due to repeated charge and discharge was also suppressed. However, in Example 2 in which the injection amount of the electrolyte was small, the utilization rate of nickel hydroxide was increased, but the lifetime was slightly shortened because the separator was exhausted early due to corrosion of the hydrogen storage alloy. Further, in Example 5 in which the injection amount of the electrolytic solution was large, the space volume in the battery body decreased, and the internal pressure increased during the initial charge, so that the valve of the sealing plate was operated. As a result, part of the electrolyte flowed out and the lifetime was slightly shortened.
初期充電の電流値が高い実施例6は、オキシ水酸化コバルトによる導電ネットワークの形成が不十分となり、利用率が若干低下する結果となった。また初期充電の電流値が低い実施例10は、利用率および寿命期間は良好であるが初期充電に時間を要するので好ましくない。ここで初期充電時に正極理論容量に対して20%以降も電流値を変化させない実施例11は、20%以降の電流値を高くして高速化した実施例1と比較して特性向上が見られないので、生産性の観点から初期充電時に20%以降の電流値を高くして高速化することが好ましい。 In Example 6 having a high initial charging current value, the formation of a conductive network by cobalt oxyhydroxide was insufficient, and the utilization rate was slightly reduced. Further, Example 10 having a low initial charge current value is not preferable because the utilization factor and lifetime are good, but it takes time for the initial charge. Here, in Example 11 in which the current value is not changed after 20% with respect to the theoretical capacity of the positive electrode during initial charging, the characteristics are improved as compared with Example 1 in which the current value after 20% is increased to increase the speed. Therefore, from the viewpoint of productivity, it is preferable to increase the current value after 20% during initial charging to increase the speed.
初期充電の電流値が比較的高い場合、正極の理論容量が小さい実施例12に対し理論容量が大きい実施例13は利用率の低下が比較的低い値となった。このことから初期充電の電流値を低くすることの効果は、50Ah以上の容量の大きな電池において顕著であることがわかる。 When the current value of the initial charge was relatively high, Example 13 with a large theoretical capacity had a relatively low decrease in utilization rate compared to Example 12 with a small positive electrode theoretical capacity. From this, it can be seen that the effect of reducing the current value of the initial charge is significant in a battery having a large capacity of 50 Ah or more.
正極において金属コバルトが少ない実施例14は、本発明の製造方法をもってしても導電ネットワークの形成がやや不十分となり、利用率が若干低下した。また金属コバルトが多い実施例17は間欠充電保存試験の途中で化学的微小短絡が発生し、寿命特性が若干低下した。 In Example 14, where the metal cobalt was low in the positive electrode, the formation of the conductive network was slightly insufficient even with the production method of the present invention, and the utilization rate was slightly reduced. Further, in Example 17 with a large amount of metallic cobalt, a chemical minute short circuit occurred during the intermittent charge storage test, and the life characteristics slightly decreased.
初充放電時の電池体の回転速度が遅い実施例18は、電池体内での液分布が均一になりきらずに利用率が若干低下した。また回転速度が速い実施例21は、初充電時に細かな断線が連続的に発生したために導電ネットワークが不十分となり、利用率が若干低下した。以上、本発明のように初期充電時に電池体を回転させることで、正極の利用率および電池の寿命特性を向上させることができる。この時、電池体の回転数が5〜30rpm、正極の金属コバルトの添加量が水酸化ニッケル100重量部に対して3〜10重量部、初期充電電流を正極理論容量の20%に達するまでは25〜100時間率、電解液の量が正極理論容量に対して1.7〜2.5ml/Ah、正極理論容量が50Ahの場合に本発明の効果がより大きくなることがわかる。 In Example 18 in which the rotation speed of the battery body at the time of initial charge / discharge was slow, the liquid distribution inside the battery body was not uniform, and the utilization rate was slightly reduced. Moreover, in Example 21 with a high rotation speed, fine disconnection occurred continuously at the time of initial charge, so that the conductive network was insufficient and the utilization rate was slightly reduced. As described above, by rotating the battery body during initial charging as in the present invention, the utilization factor of the positive electrode and the life characteristics of the battery can be improved. At this time, until the number of revolutions of the battery body is 5 to 30 rpm, the amount of metallic cobalt added to the positive electrode is 3 to 10 parts by weight with respect to 100 parts by weight of nickel hydroxide, and the initial charging current reaches 20% of the theoretical capacity of the positive electrode It can be seen that the effect of the present invention is further enhanced when the rate is 25 to 100 hours, the amount of the electrolyte is 1.7 to 2.5 ml / Ah with respect to the theoretical capacity of the positive electrode, and the theoretical capacity of the positive electrode is 50 Ah.
本発明にかかる製造方法はアルカリ蓄電池用正極にもちいる金属コバルトの添加効果を高めて高容量化することや、電解液分布を均一にすることで長寿命化が可能であり、特に大型電池を用いる機器の電源として利用可能性は高く、その効果は大きい。 The manufacturing method according to the present invention can increase the capacity by increasing the effect of addition of metallic cobalt used for the positive electrode for alkaline storage batteries, and can extend the life by making the electrolyte distribution uniform, especially for large batteries. The applicability is high as the power source of the equipment used, and the effect is great.
1 負極
2 正極
3 セパレータ
4 ケース
5 安全弁
6 端子部
7 封口板
8 ガスケット
9 正極集電体
11 円筒型アルカリ蓄電池
12 回転体
13 支持体
14 突起部
15 コード
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Separator 4 Case 5 Safety valve 6 Terminal part 7 Sealing plate 8 Gasket 9 Positive electrode collector 11 Cylindrical alkaline storage battery 12 Rotating body 13 Support body 14 Protrusion part 15 Code
Claims (4)
前記正極と、前記負極と、セパレータとで電極群を構成する第1の工程と、
前記電極群および電解液を電槽に収納して電池体を構成する第2の工程と、
この電池体を回転させながら初期充電する第3の工程とからなる、円筒型アルカリ蓄電池の製造方法。 A method for producing a cylindrical alkaline storage battery comprising a positive electrode comprising nickel hydroxide and metallic cobalt and a negative electrode,
A first step of forming an electrode group with the positive electrode, the negative electrode, and a separator;
A second step of constructing a battery body by storing the electrode group and the electrolytic solution in a battery case;
A method for manufacturing a cylindrical alkaline storage battery, comprising a third step of initial charging while rotating the battery body.
前記第3の工程における初期充電電流を、正極理論容量の20%に達するまでは25〜100時間率とすることを特徴とする、請求項1記載の円筒型アルカリ蓄電池の製造方法。 The theoretical capacity of the positive electrode is 50 Ah or more,
2. The method for manufacturing a cylindrical alkaline storage battery according to claim 1, wherein the initial charging current in the third step is set to a rate of 25 to 100 hours until it reaches 20% of the theoretical capacity of the positive electrode.
2. The method for producing a cylindrical alkaline storage battery according to claim 1, wherein the addition amount of the metallic cobalt is 3 to 10 parts by weight with respect to 100 parts by weight of the nickel hydroxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005254781A JP4752401B2 (en) | 2005-09-02 | 2005-09-02 | Manufacturing method of cylindrical alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005254781A JP4752401B2 (en) | 2005-09-02 | 2005-09-02 | Manufacturing method of cylindrical alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007066836A JP2007066836A (en) | 2007-03-15 |
JP4752401B2 true JP4752401B2 (en) | 2011-08-17 |
Family
ID=37928769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005254781A Expired - Fee Related JP4752401B2 (en) | 2005-09-02 | 2005-09-02 | Manufacturing method of cylindrical alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4752401B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2975815B1 (en) | 2011-05-27 | 2014-02-21 | Accumulateurs Fixes | NEGATIVE ELECTRODE FOR ASYMMETRIC SUPERCONDENSOR WITH POSITIVE ELECTRODE BASED ON NICKEL HYDROXIDE AND ALKALI ELECTROLYTE AND PROCESS FOR PRODUCING THE SAME |
JP2017076470A (en) * | 2015-10-13 | 2017-04-20 | 湘南Corun Energy株式会社 | Alkali storage battery and method for manufacturing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3748122B2 (en) * | 1996-02-06 | 2006-02-22 | 東芝電池株式会社 | Method for producing alkaline storage battery |
JPH10308215A (en) * | 1997-05-06 | 1998-11-17 | Shin Kobe Electric Mach Co Ltd | Manufacture of sealed lead-acid battery |
JPH11250930A (en) * | 1998-03-03 | 1999-09-17 | Fuji Photo Film Co Ltd | Manufacturing system of metallic lithium secondary battery and its manufacture |
JP3902330B2 (en) * | 1998-06-05 | 2007-04-04 | 三洋電機株式会社 | Cylindrical battery |
-
2005
- 2005-09-02 JP JP2005254781A patent/JP4752401B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007066836A (en) | 2007-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100405658C (en) | Nickel electrode and alkali storage battery using the same | |
JP4710225B2 (en) | Method for producing nickel electrode material | |
JPH10106556A (en) | Nickel positive electrode and nickel-hydrogen storage battery using it | |
JP2007012572A (en) | Nickel hydrogen battery | |
JP2012069510A (en) | Cylindrical nickel-hydrogen storage battery | |
JP4698291B2 (en) | Alkaline storage battery | |
JP4752401B2 (en) | Manufacturing method of cylindrical alkaline storage battery | |
JP2002216752A (en) | Cobalt compound, method for manufacturing the same, positive electrode plate for alkaline storage battery using the same and alkaline storage battery | |
JP4474722B2 (en) | Alkaline storage battery and positive electrode for alkaline storage battery used therefor | |
JP2007066697A (en) | Manufacturing method of alkaline storage battery | |
JP4930674B2 (en) | Sealed alkaline storage battery and its assembled battery | |
JPH11135112A (en) | Positive electrode for alkaline storage battery | |
JP3895984B2 (en) | Nickel / hydrogen storage battery | |
JP3625655B2 (en) | Hydrogen storage alloy electrode and nickel metal hydride storage battery | |
JP4334783B2 (en) | Negative electrode plate for nickel / hydrogen storage battery, method for producing the same, and nickel / hydrogen storage battery using the same | |
JP2003257425A (en) | Nickel hydrogen storage battery and manufacturing method thereof | |
JP4147748B2 (en) | Nickel positive electrode and nickel-hydrogen storage battery | |
JP3088649B2 (en) | Manufacturing method of hydrogen storage alloy electrode | |
WO2012014895A1 (en) | Sintered nickel cathode, method of manufacturing same, and alkaline storage battery employing the sintered nickel cathode | |
WO2012004943A1 (en) | Nickel hydride battery and manufacturing method for same | |
JP2000106184A (en) | Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode | |
JP3789702B2 (en) | Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery | |
JP2004014427A (en) | Alkaline accumulator | |
JP2591986B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JPH09219214A (en) | Alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080701 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110509 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140603 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140603 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |