JPS5983348A - Manufacture of nickel positive electrode - Google Patents

Manufacture of nickel positive electrode

Info

Publication number
JPS5983348A
JPS5983348A JP57194090A JP19409082A JPS5983348A JP S5983348 A JPS5983348 A JP S5983348A JP 57194090 A JP57194090 A JP 57194090A JP 19409082 A JP19409082 A JP 19409082A JP S5983348 A JPS5983348 A JP S5983348A
Authority
JP
Japan
Prior art keywords
nickel
active material
positive electrode
metallic
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57194090A
Other languages
Japanese (ja)
Other versions
JPH0139192B2 (en
Inventor
Hideo Kaiya
英男 海谷
Shingo Tsuda
津田 信吾
Minoru Yamaga
山賀 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57194090A priority Critical patent/JPS5983348A/en
Publication of JPS5983348A publication Critical patent/JPS5983348A/en
Publication of JPH0139192B2 publication Critical patent/JPH0139192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture a nickel positive electrode which improves chargedischarge performance of a battery by anodically electrolyzing a weakly alkaline active material mixed paste containing nickel hydroxide, metallic cobalt, and metallic nickel at a specified potential. CONSTITUTION:A past-like active material mixture containing nickel hydroxide, metallic nickel powder, and metallic cobalt powder is made in weak alkali, and they are anodically electrolyzed at a potential which is lower than the oxidation potential of nickel hydroxide but higher than the oxidation potential of metallic cobalt. The positive active material mixture paste obtained by electrochemically oxidizing metallic cobalt is filled in a sponge-like nickel substrate to form a nickel positive electrode. A nickel-cadmium storage battery is assembled by using this nickel positive electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルーカドミウム’4ta、ニッケルー
亜鉛蓄電池等のアルカリ蓄電池に用いるニッケル正極の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a nickel positive electrode for use in alkaline storage batteries such as nickel-cadmium '4ta and nickel-zinc storage batteries.

従来例の(14成とその問題点 アルカリ蓄電池に使用するニッケル正極には、通常多孔
性ニッケル焼結基板に、電解析出法、化学含浸法等の手
段によって、止部活物質となる水酸化ニッケルあるいは
さらに水酸化コバルト等を充填した焼結式のニッケル正
極、あるいはポケット式のニッケル正極が唱X1られて
いる。
Conventional nickel positive electrodes used in alkaline storage batteries are made by depositing nickel hydroxide, which serves as a stop active material, on a porous sintered nickel substrate by means such as electrolytic deposition or chemical impregnation. Alternatively, a sintered type nickel positive electrode filled with cobalt hydroxide or the like or a pocket type nickel positive electrode has been suggested.

焼結式ニッケル正極の活物質充填工程は、例えば化学含
浸法のように、含浸工程、アルカリ処理玉枠、水洗工稈
、乾燥工程等数多くの工程が必要であり、所定の容量の
正極板を得るためには、またーこれらの工程の数回に及
ぶ繰り返しが必要となり、一般に非常に煩雑なものとな
っている。捷た電極活、物質を保持する焼結ニッケル基
板の多孔度は、80係程度が限界であり、従って電顕の
容量密度もそれに応じた限界がある。
The process of filling the active material of a sintered nickel positive electrode, such as the chemical impregnation method, requires many steps such as an impregnation process, an alkali treatment frame, a water washing process, and a drying process. In order to obtain this, it is necessary to repeat these steps several times, which is generally very complicated. The limit of the porosity of the sintered nickel substrate that holds the shredded electrode active material is about 80 modulus, and therefore the capacitance density of the electron microscope has a corresponding limit.

また、金属容器に電極活物質を保持させるポケット式正
衝は、製造方法は簡単であるが、活物質の利用率あるい
は大電流放電特性は焼結式に比べ劣っており、またその
構造上の問題から、放電特性を向上させるための薄形化
あるいは小形電池への適用は困難である。
In addition, although the manufacturing method of the pocket-type positive electrode in which the electrode active material is held in a metal container is simple, the utilization rate of the active material or the large current discharge characteristics are inferior to the sintered type, and its structure is Due to these problems, it is difficult to make the battery thinner or to apply it to smaller batteries in order to improve discharge characteristics.

以上のような問題から、最近では水酸化ニッケルを主と
するペースト状の活物質混合物を約96係程度の多孔度
を有するスポンジ状の金属ニッケル基板に直接充填する
方法や、同様な活物質混合物をロール加圧により、開孔
金属板のような導電性支持体に塗着する方法しこよるニ
ッケル正極が提案さね、でいる。これらの正極は、従来
の焼結式正極に比べ製造が非常に簡単であること、捷た
高い容量密度が得c−)fl、ること、をらに薄形化、
小形化に適し、充放電特性も焼結式正極と同レベルであ
ることなどから注目を集めている。
Due to the above-mentioned problems, recently a method of directly filling a sponge-like metallic nickel substrate with a porosity of about 96 coefficients with a paste-like active material mixture mainly composed of nickel hydroxide, and a method of directly filling a paste-like active material mixture mainly consisting of nickel hydroxide, and a method of filling a similar active material mixture A method of applying nickel to a conductive support such as a perforated metal plate using roll pressure has been proposed. These positive electrodes are much easier to manufacture than conventional sintered positive electrodes, have a high capacitance density, and are thinner.
It is attracting attention because it is suitable for miniaturization and its charge/discharge characteristics are on the same level as sintered positive electrodes.

焼結式正極は、正極活物質の活性化、あるいは衝板製造
時に−fW、板中に浸入する硝酸根のような無機塩類除
去のために、アルカリ電解液中で充電放電を行う、いわ
ゆる化成という工程を採っている。
The sintered positive electrode uses so-called chemical conversion, in which charging and discharging are performed in an alkaline electrolyte to activate the positive electrode active material, or to remove inorganic salts such as nitrate radicals that penetrate into the board during -fW and board manufacturing. The process is adopted.

一方、前記のようなペーストを用いるニッケル正(1r
では、極板製造後に、焼結式正極と同様な方法による化
成は困難である。これはこの正極の活物質の基板への保
持状態が焼結式正極に比べて弱いためであり、焼結式正
極と同様な方法で化成を行えば、正極中の活物質かパア
ルカリ電解液中へ脱落してしまうという結果になるため
である。
On the other hand, nickel positive (1r
Then, after manufacturing the electrode plate, it is difficult to perform chemical formation using the same method as for the sintered positive electrode. This is because the retention state of the active material of this positive electrode on the substrate is weaker than that of a sintered positive electrode, and if chemical formation is performed in the same manner as the sintered positive electrode, the active material in the positive electrode can be removed from the alkaline electrolyte. This is because the result will be that it will fall off.

ベース1一式正顕は、先に述べたように、焼結式正極に
比べて数多くの利点を持っているが、上記のような理由
により衝板の化成が困難であるため、活物質の活性化は
、従来電池構成後の充電、放電の繰り返しによって行っ
ていた。しかし、電池構成後の活性化を行う前の正極活
物質の状態は不安定4であり、電池構成から充放電まで
の期間、あるいは雰囲気温度などにより変化し、後の電
池特性に大きな影響を及ぼす。また、電池構成後に正極
活物質を活性化させるために行う充電は、小電流で長時
間行う必要があり、工作管理の難しさ等工数面で問題が
あった。
As mentioned earlier, the base 1 set positive electrode has many advantages over the sintered positive electrode, but due to the reasons mentioned above, it is difficult to chemically form the impact plate, so it is difficult to activate the active material. Conventionally, this was done by repeating charging and discharging after battery construction. However, the state of the positive electrode active material before activation after battery construction is unstable4, and changes depending on the period from battery construction to charging/discharging or the ambient temperature, which has a large effect on later battery characteristics. . Furthermore, charging to activate the positive electrode active material after battery construction requires a long period of time with a small current, which poses problems in terms of man-hours, such as difficulty in manufacturing control.

発明の目的 本発明は、以上のようなベース1−ヲ用いる正極の活物
質の活性化の問題を解決し、特性の向−ヒを図ることを
目的とする。
OBJECTS OF THE INVENTION The present invention aims to solve the above-mentioned problem of activating the active material of the positive electrode using the base 1 and to improve its characteristics.

発明の構成 本発明は、水酸化ニッケル、金属ニッケル粉末及び金属
コバルト粉末を含むペースト状活物質混合物を弱アルカ
リ性にして、陽電解し、金属コバルトを電気化学的に酸
化することを特徴とする0以下に本発明の詳細な説明す
る。
Structure of the Invention The present invention is characterized in that a paste-like active material mixture containing nickel hydroxide, metallic nickel powder, and metallic cobalt powder is made weakly alkaline and subjected to positive electrolysis to electrochemically oxidize metallic cobalt. The present invention will be explained in detail below.

水酸化ニッケル、金属二ソケル、金属コバルトからなる
活物質混合物において、水酸化ニッケルはiE能の活物
質、金属ニッケルは主に導電材、金1冥コバル1−は金
属ニッケルとの相互作用によって活物質である水酸化ニ
ッケルの充電放電に寄与し、いわゆる活物質の利用率向
上に作用している。
In an active material mixture consisting of nickel hydroxide, metal disokel, and metal cobalt, nickel hydroxide is an active material with iE ability, metal nickel is mainly a conductive material, and gold 1-metal cobal 1- is activated by interaction with metal nickel. It contributes to the charging and discharging of the substance nickel hydroxide, and works to improve the utilization rate of the so-called active material.

上記正極活物質混合物をペースト状にして7ボンジ状金
属ニツケル基板等に充填した正極ヲ用いてニッケルーカ
ドミウム蓄電池等の電池を購成し、充電を行えば、まず
金属コバルトが電気化学的に酸化され、ひきつづき、正
極活物質の水酸化ニッケルが酸化、すなわち充電される
When a battery such as a nickel-cadmium storage battery is purchased and charged using a positive electrode in which the above positive electrode active material mixture is made into a paste and filled in a bond-shaped metal nickel substrate, etc., the metal cobalt is electrochemically oxidized. Then, the nickel hydroxide of the positive electrode active material is oxidized, that is, charged.

水酸化ニッケルの正極活物質としての利用率は、その充
電状態あるいは放電状態の結晶形により異なる。充電状
態にあるオキシ水酸化ニッケルの結晶形がγ型のものは
利用率が低く、β型であるものは利用率が高い。丑た充
電状態の正極中に存在するオキシ水酸化ニッケルのγ、
βの結晶形の比率は、1F園中の金属コバルトの比率、
金属ニッケル比率に大きく影響される。すなわち正極活
物質利用率向上の目的で添加するコバルト比率と金属ニ
ッケル比率が大きいほど、β型のオキシ水酸化ニッケル
の比率が人きくなり、正極活物質の利用率も向上する。
The utilization rate of nickel hydroxide as a positive electrode active material varies depending on its crystal form in its charged or discharged state. When the crystal form of nickel oxyhydroxide in a charged state is γ type, the utilization rate is low, and when the crystal form is β type, the utilization rate is high. γ of nickel oxyhydroxide present in the positive electrode in the charged state,
The ratio of the crystal form of β is the ratio of metallic cobalt in the 1F garden,
It is greatly influenced by the metal nickel ratio. That is, the larger the cobalt ratio and metal nickel ratio added for the purpose of improving the utilization rate of the positive electrode active material, the higher the ratio of β-type nickel oxyhydroxide, and the higher the utilization rate of the positive electrode active material.

、金属コバルトは、先(・ζも述べ通り、初期充電の段
階で酸化さn1以後充放電に寄与しない安定な酸化コバ
ルトとなるわけであるが、正極製造前の正極ペースト中
に金属コバルトの代わりに、酸化コバルトを添加してお
いても、正極活物質の利用率向上に寄与しない。
As stated earlier (・ζ), metallic cobalt is oxidized during the initial charging stage and becomes stable cobalt oxide that does not contribute to charging and discharging after n1. Even if cobalt oxide is added, it does not contribute to improving the utilization rate of the positive electrode active material.

以上のことから、正銹活物質の水酸化ニッケルの利用率
を向上させるためには、水酸化ニッケル。
From the above, in order to improve the utilization rate of nickel hydroxide as a Seisho active material, nickel hydroxide must be used.

金属ニッケル、金属コバルトの3成分が共存する状態で
、金属コバルトを電気化学的に酸化することによって、
水酸化ニッケルの結晶形を利用率の高いものに変化させ
るのが有効であるものと思われる。
By electrochemically oxidizing metallic cobalt in a state where the three components of metallic nickel and metallic cobalt coexist,
It seems to be effective to change the crystal form of nickel hydroxide to one with a higher utilization rate.

しかし、先に述べ通り、充電前の水酸化ニッケル、金属
コバルト、金属ニッケルの3成分の状態は不安定であり
、活性化を行うための充電々流が大きい場合は、第1図
に示すように水酸化ニッケルの最終的な利用率が開端に
低下する。第1図は0.05 C〜1Cイ゛l」当の電
流で電池容量の160係の電気量を充電したときの充電
々流と活物質利用率の関係を示す、これは、正極活物質
利用率の向1−に寄与する金属コバルトが大電流の充電
によりアルカリ中に溶出するか、あるいは活物質利用率
面子に奇怪しない高次の酸化物に変化するためであると
思われる。従って、正極活物質活性化のための充電は、
小電流で行わなければならんい。
However, as mentioned earlier, the state of the three components of nickel hydroxide, metallic cobalt, and metallic nickel before charging is unstable, and if the charging current for activation is large, as shown in Figure 1, The final utilization rate of nickel hydroxide decreases to the open end. Figure 1 shows the relationship between the charging current and the active material utilization rate when charging an amount of electricity equivalent to 160 times the battery capacity with a current of 0.05 C to 1 C. This seems to be because metallic cobalt, which contributes to the direction of the utilization rate, is eluted into the alkali by charging with a large current, or is changed into a higher-order oxide which does not affect the utilization rate of the active material. Therefore, charging for activating the positive electrode active material is
It has to be done with a small current.

従来は、正極活物質活性化のために行う電池構成後の初
充電は、0.05 G −0,1G相当の電流で行い、
充電時間は16〜30時間を要し、電池製造−[稈の時
間短縮化の面で問題があった。
Conventionally, the initial charge after battery configuration to activate the positive electrode active material was performed with a current equivalent to 0.05 G - 0.1 G.
The charging time required 16 to 30 hours, and there was a problem in terms of shortening the battery manufacturing time.

活物質活性化のための電気化学的なコバルトの酸化は、
必ずしも電池構成後でなくてもよいと思わ)する7、例
えば、極板構成後アルカリ電解液中で陽電解してもよい
わけであるが、このような化成では、後にも述べたよう
に、極板からの活物質の脱落が激しく、困難である。
Electrochemical cobalt oxidation for active material activation
For example, positive electrolysis may be carried out in an alkaline electrolyte after forming the electrode plates, but as mentioned later, in such chemical formation, The active material falls off from the electrode plate severely and is difficult.

そこで、本発明者らは、正極活物質混合物のペースト製
造時の化成による、活物質の活性化の可能性Qこついて
検討した。水酸化ニッケル、金属コバルト、金属ニッケ
ルからなる正極活物質混合物の池性化は、先にも述べた
ように、前記3成分が共存する状態で金曜コバルトヲ徐
々に電気化学的に酸化させることによって達成される。
Therefore, the present inventors investigated the possibility of activation of the active material by chemical conversion during paste production of the positive electrode active material mixture. As mentioned above, the formation of a positive electrode active material mixture consisting of nickel hydroxide, metallic cobalt, and metallic nickel is achieved by gradually electrochemically oxidizing the Friday cobalt in the presence of the three components. be done.

これは、正極活物質が、電池内の極板中の状態でも、あ
るいは摩板溝成前のペーストの状態でも同様であると思
われる。従って正(1T活物質ベースト中の金属コバル
トを電気化学的に酸化すれば、正極活物質の活性化が達
成きれるはずである。
This seems to be the same whether the positive electrode active material is in the state of an electrode plate in a battery or in the state of a paste before forming grooves on the plate. Therefore, activation of the positive electrode active material should be achieved by electrochemically oxidizing the metallic cobalt in the positive (1T active material base).

第2図は電解装置を示す。1はペースト電解用の電源、
2はマイナス電極を兼ねる金属容器、3はプラス電極、
4はペースト6とマイナス電極2を隔離する多孔性の電
解隔膜である。また、6はペースト6から隔膜4を通し
て流出する水溶液である。ペースト5を電解が容易にな
るように弱アルカリ性にして電解を行うと、ペースト中
の成分が電気化学的に酸化される。酸化の順序は、最も
酸化を受けやすいペースト中の金属コバルトから始寸り
、後に水酸化ニッケルの酸化が進行する。
Figure 2 shows the electrolyzer. 1 is a power supply for paste electrolysis,
2 is a metal container that also serves as a negative electrode, 3 is a positive electrode,
4 is a porous electrolytic diaphragm that isolates the paste 6 and the negative electrode 2. Further, 6 is an aqueous solution flowing out from the paste 6 through the diaphragm 4 . When the paste 5 is made weakly alkaline to facilitate electrolysis and electrolysis is performed, components in the paste are electrochemically oxidized. The oxidation sequence starts with the metal cobalt in the paste, which is most susceptible to oxidation, followed by the oxidation of nickel hydroxide.

1「(”+γ板は、電池構成時において、放電状態すな
わち水酸化ニッケルが酸化を受けていない状態にあるこ
とが必要である。従って、ペースト化成時には、金属コ
バル1−のみが酸化され、水酸化ニッケルは酸化を受け
ない状態にある必要がある。
1"("+γ plate must be in a discharge state, that is, in a state where nickel hydroxide is not oxidized during battery construction. Therefore, during paste formation, only the metal cobal 1- is oxidized, and the nickel hydroxide is not oxidized. Nickel oxide must be in a state that does not undergo oxidation.

従って、ペーストの化成ば、プラス側すなわちペースト
側の電位が、コバルトの酸化電位板トで水酸化コバルト
の酸化電位以下の間にあることが必要である。このよう
な電解を行うためには、理想的には、ペースト側の電位
を一定にした定電位電解が必要であるが、簡易的には、
プラス極、マイナス嘆間の電圧を一定にした定電圧電解
で行うことができる。
Therefore, when forming the paste, it is necessary that the potential on the positive side, that is, on the paste side, be below the oxidation potential of cobalt hydroxide on the oxidation potential plate of cobalt. To carry out such electrolysis, ideally constant potential electrolysis with a constant potential on the paste side is required, but in simple terms,
This can be done using constant voltage electrolysis, where the voltage between the positive and negative poles is kept constant.

本発明者らは以北のような原理にもとづき、正1餠ペー
ストの定電圧定電流電解を行い、正極ベース]−すなわ
ち正側活物質の活性化を試みたところ、−ベース1−中
の金属コバルトのみが電気化学的に酸化され、またこの
ようにして製造した正極活物質は、電池内で活性化した
場合と同様に、活性化され、水酸化ニッケルの電極活物
質としての利用率も非常に高いものになることを見出し
た。
The present inventors performed constant voltage and constant current electrolysis of the positive electrode base based on the principle similar to that described above, and attempted to activate the positive active material in the positive electrode base. Only metallic cobalt is electrochemically oxidized, and the positive electrode active material produced in this way is activated in the same way as when activated in a battery, and the utilization rate of nickel hydroxide as an electrode active material is also low. I found it to be very expensive.

実施例の説明 正極活物質混合物としては、水酸化ニッケル。Description of examples The positive electrode active material mixture is nickel hydroxide.

金属コバルト、金属ニッケルを重量比率で1o○:6:
18の割合で混合したものを用い、水、及びカルボキシ
メチルセルロースを加え、練合してペースト状態とした
Metallic cobalt and metallic nickel in a weight ratio of 1o○:6:
Using a mixture of 18 parts, water and carboxymethyl cellulose were added and kneaded to form a paste.

電解槽としては、第2図に示したものを用いた。The electrolytic cell shown in FIG. 2 was used.

ペーストのpHば7〜8の弱アルカリ性であったが、電
解が容易になるように水酸化ナトリウム水溶液を加えて
pH全9〜10に調整した。電解槽の電極2,3は金属
ニッケルとし、隔膜4はナイロンの不織布を用いた。
The pH of the paste was slightly alkaline at 7 to 8, but the total pH was adjusted to 9 to 10 by adding an aqueous sodium hydroxide solution to facilitate electrolysis. The electrodes 2 and 3 of the electrolytic cell were made of metal nickel, and the diaphragm 4 was made of nylon nonwoven fabric.

電解は20℃の雰囲気で行った0先に述べた通り、金属
コバルトの電解酸化は、大電流で行うことができず、ま
たブラヌ極の電位は、水酸化ニッケルの酸化電位以下に
することが必要であるため、電解は、定電■r、定電流
で行った。このような電解tq−〒えは、初期は定電流
で、金属コバル1−の酸化が徐々に進行し、電解電圧が
上昇し、ひきつづき定電圧電1!+’ilとなって残存
する金属コ・・ル1−がすべて酸化される。定電流部分
は、電池内での正瞳活物′tり活性化のときの電流値(
o、1G )から換算し、ペースl−I CG当たり6
0mA とし、定電圧部分は、プラス糊の電位が水酸化
ニッケルの酸化電位以下と力るようにca/cao 衝
基準で1.4■以Fとなるように設定した。
Electrolysis was carried out in an atmosphere of 20°C. As mentioned earlier, electrolytic oxidation of metallic cobalt cannot be carried out with a large current, and the potential of the Branne electrode cannot be lower than the oxidation potential of nickel hydroxide. Because it was necessary, electrolysis was carried out at constant voltage (r) and constant current. In this type of electrolysis, the current is constant at the beginning, and as the oxidation of the metal cobal 1- gradually progresses, the electrolytic voltage increases, and continues to become a constant voltage 1! The remaining metal core 1- is all oxidized as +'il. The constant current part is the current value (
o, 1G), pace l-I 6 per CG
The voltage was 0 mA, and the constant voltage part was set to be 1.4 µF or less on a ca/cao basis so that the potential of the positive glue was below the oxidation potential of nickel hydroxide.

以)−のような条件で電解した結果、約2時間の量定′
屯流で電解が進み、定電圧の電解に入り、電解?li流
が徐々に低下し、約2時間後に電流がOとなった。
As a result of electrolysis under the following conditions, the amount was determined in about 2 hours.
Electrolysis progresses in the torrent flow, enters constant voltage electrolysis, and electrolysis? The li current gradually decreased and the current reached O after about 2 hours.

以−にのようにして電解したペーストを、多孔度96%
のスポンジ状ニッケル基板に充填し、正極に加工し、1
600mAh相当の密閉ニッケルーカドミウム蓄電池を
溝底した。このようにして製作した電l+hば、1「庵
活物質が活性化され、かつ安定しているブcめ、従来法
により製作した電池に見られだような構成後電池の放置
時の温度あるいは期間により電池特性が変動するような
現象もなく、正極活物質水酸化ニッケルの利用率も電池
内で活物質を活性化し7たものと同等のレベルにあった
The paste electrolyzed as described above was heated to a porosity of 96%.
filled into a sponge-like nickel substrate, processed into a positive electrode, and
A sealed nickel-cadmium storage battery equivalent to 600 mAh was placed in the trench bottom. The battery manufactured in this way has a temperature of 100% or less when the battery is left after construction, as seen in batteries manufactured by conventional methods, because the active material is activated and stable. There was no phenomenon in which the battery characteristics varied depending on the period, and the utilization rate of the positive electrode active material nickel hydroxide was at the same level as when the active material was activated within the battery.

また、従来法による電池は、先に電述べた通り活物質利
用等の低下があるため、初期段階での大電流の充電がで
きなかったのに対し、本発明によるものは、初期段階で
大電流充電をしても活物質利用率低下の現象も見られず
、浸れた特性を示した。
In addition, as mentioned above, batteries made using the conventional method could not be charged with a large current at the initial stage due to a decline in the utilization of active materials, etc., whereas the battery according to the present invention could not be charged at a large current at the initial stage. Even with current charging, no decrease in the active material utilization rate was observed, and the battery exhibited excellent characteristics.

発明の効果 以上のように、本発明によれば、正極活物質の活性化を
ペースト状態で多量に一度に行えるため、従来の電池内
での活性化に比ベニ枠上非常に効率のよいものとなる。
Effects of the Invention As described above, according to the present invention, a large amount of positive electrode active material can be activated at once in a paste state, which is extremely efficient compared to conventional activation within a battery. becomes.

また、電池の構成後の状態が従来のものに比べて安定で
あり、初期から大電流の充電が可能になる等多くの利点
を有するものである。
In addition, the battery has many advantages, such as being more stable after construction than conventional batteries and being able to charge with a large current from the beginning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はベースト式正庵を用いた密閉形二ノケル−カド
ミラ1.電池の初期の充電々流値と、水酸化ニッケル活
物質利用率との関係を示す図、第2し]は重囲活物質の
電解装置の略図である。 1・・・・電解用電源、2・・・マイナス際を兼ねる金
属容器、3・・・・プラス衝、4・・・・・・電解隔膜
。 5  ・正iヶ活物質べ=スI−0
Figure 1 shows the closed type Ninokel-Cadmira 1. Figure 2, which shows the relationship between the initial charging current value of a battery and the utilization rate of a nickel hydroxide active material, is a schematic diagram of an electrolysis device using a heavy-walled active material. 1... Power supply for electrolysis, 2... Metal container that also serves as a negative terminal, 3... Positive opposition, 4... Electrolytic diaphragm. 5 ・Positive active material base I-0

Claims (1)

【特許請求の範囲】[Claims] 水酸化ニッケル、金属コバルト及び金属ニッケルを含む
弱アルカリ性の活物質混合物ペーストを水酸化ニッケル
の酸化電位以下で、かつ金属コバル1−の酸化電位以上
の電位で陽電解する工程を有するニッケル正極の製造法
Production of a nickel positive electrode comprising the step of positively electrolyzing a weakly alkaline active material mixture paste containing nickel hydroxide, metallic cobalt, and metallic nickel at a potential below the oxidation potential of nickel hydroxide and above the oxidation potential of metallic cobal 1- Law.
JP57194090A 1982-11-04 1982-11-04 Manufacture of nickel positive electrode Granted JPS5983348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194090A JPS5983348A (en) 1982-11-04 1982-11-04 Manufacture of nickel positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194090A JPS5983348A (en) 1982-11-04 1982-11-04 Manufacture of nickel positive electrode

Publications (2)

Publication Number Publication Date
JPS5983348A true JPS5983348A (en) 1984-05-14
JPH0139192B2 JPH0139192B2 (en) 1989-08-18

Family

ID=16318780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194090A Granted JPS5983348A (en) 1982-11-04 1982-11-04 Manufacture of nickel positive electrode

Country Status (1)

Country Link
JP (1) JPS5983348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601759A (en) * 1983-06-17 1985-01-07 Japan Storage Battery Co Ltd Alkaline storage battery
EP0571630A1 (en) * 1991-10-21 1993-12-01 Yuasa Corporation Method for production of nickel plate and alkali storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601759A (en) * 1983-06-17 1985-01-07 Japan Storage Battery Co Ltd Alkaline storage battery
EP0571630A1 (en) * 1991-10-21 1993-12-01 Yuasa Corporation Method for production of nickel plate and alkali storage battery
EP0571630A4 (en) * 1991-10-21 1995-04-19 Yuasa Battery Co Ltd Method for production of nickel plate and alkali storage battery.
US5489314A (en) * 1991-10-21 1996-02-06 Yuasa Corporation Manufacturing method of nickel plate and manufacturing method of alkaline battery

Also Published As

Publication number Publication date
JPH0139192B2 (en) 1989-08-18

Similar Documents

Publication Publication Date Title
JPH09237630A (en) Active material and positive electrode for alkali storage battery
JPS5983348A (en) Manufacture of nickel positive electrode
JPS5916269A (en) Manufacture of positive plate for alkaline battery
JPH0221098B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP4404447B2 (en) Method for producing alkaline storage battery
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
JPS60124368A (en) Sealed nickel cadmium storage battery
JP2730137B2 (en) Alkaline secondary battery and charging method thereof
JP4049484B2 (en) Sealed alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS5838459A (en) Manufacture of plate for enclosed alkaline battery
JPH0945323A (en) Active material for alkaline secondary battery and its manufacture and electrode for alkaline secondary battery and alkaline secondary battery
JPS5923467A (en) Manufacture of sealed type nickel cadmium storage battery anode plate
JPH02262244A (en) Sealed alkaline battery
JPH10214619A (en) Manufacture of unsintered nickel electrode for alkaline storage battery
JP2865397B2 (en) Manufacturing method of alkaline storage battery
JP3691257B2 (en) Method for producing sintered cadmium negative electrode for alkaline storage battery
JPH1021905A (en) Non-sintered type nickel electrode for alkaline storage battery
JP2000228190A (en) Sintered nickel positive electrode for alkaline storage battery and alkaline storage battery using it
JPH04332469A (en) Manufacture of sintered nickel electrode for alkaline secondary battery