JPH02216763A - Alkaline storage battery and manufacture thereof - Google Patents

Alkaline storage battery and manufacture thereof

Info

Publication number
JPH02216763A
JPH02216763A JP1037763A JP3776389A JPH02216763A JP H02216763 A JPH02216763 A JP H02216763A JP 1037763 A JP1037763 A JP 1037763A JP 3776389 A JP3776389 A JP 3776389A JP H02216763 A JPH02216763 A JP H02216763A
Authority
JP
Japan
Prior art keywords
powder
cobalt
storage battery
cadmium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1037763A
Other languages
Japanese (ja)
Inventor
Masuhiro Onishi
益弘 大西
Masaharu Watada
正治 綿田
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1037763A priority Critical patent/JPH02216763A/en
Publication of JPH02216763A publication Critical patent/JPH02216763A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance the utilization of active material and high rate discharge performance by mixing specific divalent cobalt compound powder and metallic cobalt powder with nickel hydroxide powder, and filling an alkali resistant porous substrate with the mixture. CONSTITUTION:One of CoO, alpha-Co(OH)2, and beta-Co(OH)2 powder which are divalent cobalt compounds and metallic cobalt powder are mixed with nickel hydroxide powder. An alkali resistant porous substrate is filled with this mixture to form a nickel electrode. An alkali storage battery is manufactured by using this nickel electrode. In the mixture of divalent cobalt compound powder and metallic cobalt powder, it is preferable that the content of the metallic cobalt powder is 75wt.% or less. The alkaline storage battery in which the utilization of active material and high rate discharge performance are enhanced is obtained. Discharge reserving amount is easily controlled and productivity is increased.

Description

【発明の詳細な説明】 産業上の利用分計 本発明は、アルカリ蓄電池及びその製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application The present invention relates to an alkaline storage battery and a method for manufacturing the same.

従来技術とその問題点 アルカリ蓄電池に用いられる各種ニッケル電極の一つと
して1多孔性の耐アμカリ性集電停に、水酸化工フケμ
を主体とする活物質をスラリー状として充填するペース
ト式極板がある。
Conventional technology and its problems As one of the various nickel electrodes used in alkaline storage batteries, hydroxide dandruff μ is used as a porous alkali-resistant current collector.
There is a paste-type electrode plate that is filled with an active material mainly composed of , in the form of a slurry.

周知のようにこれらペースト式極板においては、活物質
の利用率同上のために、Coos a−00(OH)2
sβ−Co(OH)2 *の二価コバルト化合物の添加
が有効である。
As is well known, in these paste-type electrode plates, Coos a-00(OH)2
Addition of a divalent cobalt compound of sβ-Co(OH)2* is effective.

二価コバルト化合物は、ア〃カリ電解液中で一日以上放
置することにより完全に溶解し、二価のコバルト錯イオ
ンを介して集電体及び活物質粉、子間を接続する形でβ
−Co(OH)2として再析出する。再析出したβ−C
o(OH)2は1初充電により高い導電率をもつ三個の
0oOOH化合物に変化する。この一連の反応によって
、活物質と集電体との導電性ネットツークが形成される
The divalent cobalt compound is completely dissolved by leaving it in an alkaline electrolyte for more than a day, and β
It is redeposited as -Co(OH)2. β-C redeposited
o(OH)2 changes into three OoOOH compounds with high conductivity after one initial charge. This series of reactions forms a conductive network between the active material and the current collector.

このエフケル正極とカドミ9ム負極を用いて電池を構成
した場合、対極であるカドミウム負極において、このニ
ッケ〃正極でのスパμト化合物の0OOOHへの酸化に
相当する電気量分だけ水酸化カドミウムから金属カドミ
ウムへの還元を生じる。ニッケル正極で酸化生成された
GoOOHは、電気化学的に不可逆であり、この時カド
ミウム負極で還元生成された金属カドミウムは、密閉形
電池において放電リザーブとして作動する。第1図に、
この時のニッケル正極における二価コバルト化合物から
二価のcoooa化合物への酸化とそれに対応するカド
ミウム負極における水酸化カドミウムから金属カドミウ
ムへの還元によって形成される放電リザーブ量の関係を
示した。
When a battery is constructed using this EFCEL positive electrode and a cadmium 9M negative electrode, at the cadmium negative electrode which is the counter electrode, only the amount of electricity corresponding to the oxidation of the spat compound to 0OOOH at the nickel positive electrode is transferred from cadmium hydroxide. This results in reduction to metallic cadmium. GoOOH produced by oxidation at the nickel positive electrode is electrochemically irreversible, and at this time, metallic cadmium produced by reduction at the cadmium negative electrode operates as a discharge reserve in the sealed battery. In Figure 1,
The relationship between the amount of discharge reserve formed by the oxidation of a divalent cobalt compound to a divalent coooa compound at the nickel positive electrode and the corresponding reduction of cadmium hydroxide to metal cadmium at the cadmium negative electrode is shown.

しかし、このようにして得られる放電リザーブは二価の
コバルト化合物を使用する限りその量が限定される。そ
のため、多量に放電リザーブを必要とする高率放電用電
池や非常灯電池では放電リザーブ量が不充分な電池とな
る。従来このような場合には、電池の組立て前にカドミ
ウム負極を部分充電し、予め一部分の水酸化カドミウム
を金属カドミウムに変換させることによって補っていた
。しかし、部分充電法はその製造工程が煩雑であり、ま
たバラツキも大きいという欠点がある。
However, the amount of discharge reserve obtained in this way is limited as long as a divalent cobalt compound is used. Therefore, high rate discharge batteries and emergency light batteries that require a large amount of discharge reserve become batteries with insufficient discharge reserve. Conventionally, such cases have been compensated for by partially charging the cadmium negative electrode before assembling the battery, thereby converting some of the cadmium hydroxide into metallic cadmium. However, the partial charging method has the disadvantage that the manufacturing process is complicated and has large variations.

そこで、酸化時の価数変化の異なる二価コバルト化合物
(価数変化:2価→3価)と金属コバルト(価数変化:
O価→3価)を組み合わせ添加することにより、対極カ
ドミウム負極で還元生成される金属カドミウム量(放電
リザーブ量)を調節し得ることを見出した。しかし、放
電リザーブ調節に用いる金属コバルトはアルカリ電解液
中でほとんど化学的に溶解しないので、二価コバルト化
合物のように溶解により活物質層に一様に分散・再析出
した後に電気化学的に形成される均一な導電性ネットワ
ークの観点からは不利となる。このため、均一な導電性
ネフトツークの形成に伴う、活物質利用率の低下を生じ
ることになり、コバルト添加剤に占める金属コバ/I/
)−の混合比率が重要な問題となる。
Therefore, divalent cobalt compounds with different valence changes during oxidation (valence change: divalent → trivalent) and metal cobalt (valence change:
It has been found that the amount of metallic cadmium (discharge reserve amount) produced by reduction at the counter electrode cadmium negative electrode can be adjusted by adding a combination of O valence → trivalence). However, the metal cobalt used to adjust the discharge reserve is hardly chemically dissolved in alkaline electrolyte, so it is formed electrochemically after being uniformly dispersed and reprecipitated in the active material layer like divalent cobalt compounds. This is disadvantageous from the point of view of a uniform conductive network. For this reason, the active material utilization rate decreases due to the formation of uniform conductive Neftzug, and the proportion of metal cobalt/I/I/
)- is an important issue.

発明の目的 本発明は活物質利用率と高率放電性に優れたアμカリ蓄
電池と電池の放電リザーブ量が容易に11節できる生産
性の高い製造法を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an a-kaline storage battery with excellent active material utilization and high rate discharge performance, and a highly productive manufacturing method that can easily reduce the discharge reserve of the battery to 11 nodes.

発明の構成 本発明は上記目的を達成するべく、水酸化エフケル粉末
に、二価コバルト化合物である、OoO、a −Co(
OH)2 、β−Co(OH)2粉末の内の一種以上と
金属コバルト粉末を混合し、これを耐アルカリ性多孔体
に充填したニッケル電極を用いたことを特徴とするアル
カリ蓄電池である。
Structure of the Invention In order to achieve the above object, the present invention adds a divalent cobalt compound, OoO, a -Co(
This is an alkaline storage battery characterized by using a nickel electrode in which a metal cobalt powder is mixed with one or more of OH)2 and β-Co(OH)2 powder and the mixture is filled into an alkali-resistant porous body.

より詳細には、前記二個コバ〃ト化合物粉末と金属コバ
ルト粉末との混合において金属コバルト粉末の比率が7
5vt%以下であることを特徴としたアルカリ蓄電池用
エフケ〃電極であり、更には前記二フケμ電極IC添加
する二価コバルト化合物粉末と金属コバルト粉末の比率
を、前記範囲内で変化させることで、対極であるカドミ
ウム電極の放電リザーブ量を調節することを特徴とする
7〜カリ蓄電池である。
More specifically, in the mixing of the two cobalt compound powders and the metallic cobalt powder, the ratio of the metallic cobalt powder is 7.
5vt% or less, and furthermore, by changing the ratio of the divalent cobalt compound powder and the metal cobalt powder added to the above-mentioned divalent cobalt μ electrode IC within the above range. , is a potash storage battery characterized in that the discharge reserve amount of the cadmium electrode, which is the counter electrode, is adjusted.

実施例 以下、本発明の一実施例について詳述する。Example An embodiment of the present invention will be described in detail below.

水酸化エフケル粉末に、添加剤として一酸化コバルト粉
末と金属コバルト粉末の15vt%を水酸化エフケル粉
末と混合し、力〃ボキVメチ〃セ〃冒−スを増粘剤とす
る水溶液を加えてスラリー状とした。添加剤に占める金
属コバルト粉末の割合は、o、 25.50.75.1
00vt%とした。
15vt% of cobalt monoxide powder and metal cobalt powder as additives are mixed with Efkel hydroxide powder as additives, and an aqueous solution containing methane resin as a thickener is added. It was made into a slurry. The proportion of metallic cobalt powder in the additive is o, 25.50.75.1
00vt%.

これを多孔度95%、厚さ1.3ms、平均細孔径1o
opmの多孔質耐ア〃カリ性金yxm維焼結体に充填し
、乾燥後0.7龍の厚さにプレスし、正極とした。この
ニフケ/l/極と対極としてペースト式カドミウム極な
組み合わせて、比重1.261OH水溶液に50g/l
のLiOHを溶解させた電解液を注液しCサイズの電池
を得た。この電池を24時間放置後、温度20℃におい
て、充電0.1 CmA115時間、放[0,20mA
 (終止電圧1.00V)で、5サイク〃充放電試験を
行なった。まりq 0.20mAで完全放電した後のカ
ドミウム極の残存金属カドミウム量について調査を行な
った。第二図にコバルト添加剤に占める一酸化コパ〃ト
及び金属コバルトの割合とカドミウム極の残存金属カド
ミウム量の関係、及びニッケル極の活物質利用率の関係
を示した。
This has a porosity of 95%, a thickness of 1.3ms, and an average pore diameter of 1o.
It was filled into a porous alkali-resistant gold YXM fiber sintered body of OPM, dried, and then pressed to a thickness of 0.7mm to form a positive electrode. In combination with this Nifke/l/electrode and a paste-type cadmium electrode as a counter electrode, 50 g/l was added to a specific gravity 1.261OH aqueous solution.
An electrolytic solution in which LiOH was dissolved was injected to obtain a C-sized battery. After leaving this battery for 24 hours, it was charged at 0.1 CmA for 115 hours at a temperature of 20°C, and discharged at 0.20 mA.
(Final voltage: 1.00 V), a 5-cycle charge/discharge test was conducted. The amount of metallic cadmium remaining in the cadmium electrode after complete discharge at a current of 0.20 mA was investigated. Figure 2 shows the relationship between the ratio of copper monoxide and metallic cobalt in the cobalt additive, the amount of residual metallic cadmium in the cadmium electrode, and the relationship between the active material utilization rate in the nickel electrode.

第二図の結果は、コバルト添加剤に占める金属コバルト
の−1合の増加に伴いカドミウム極の残存金属カドミウ
ム量が増加し、金属コバルトの割合が100wt%の場
合に最大となることを示している。残存金属カドミウム
量の増加は、放電リザーブ量が増加したことを示してい
る。しかし、ニフケ/V極の活物質利用率はコバルト添
加剤に占める金属コバルトの割合の増加と共に減少する
ので、この結果からコバルト添加剤に占める金属コバル
トの割合は75wt%以下の範囲でなければならないこ
とがわかる・ 尚、上記実施例において、添加剤として一酸化コパμト
を用いたが、a−Co(OH)2 、β−CO(OH)
2を用いても類似の傾向を示した。
The results in Figure 2 show that the amount of residual metallic cadmium in the cadmium electrode increases as the -1 ratio of metallic cobalt in the cobalt additive increases, and reaches its maximum when the proportion of metallic cobalt is 100 wt%. There is. An increase in the amount of residual metal cadmium indicates that the amount of discharge reserve has increased. However, the active material utilization rate of Nifke/V electrodes decreases as the proportion of metallic cobalt in the cobalt additive increases, so from this result, the proportion of metallic cobalt in the cobalt additive must be in the range of 75 wt% or less. In the above example, copper monoxide μ was used as an additive, but a-Co(OH)2, β-CO(OH)
2 showed a similar tendency.

上述した如く、二価コバルト化合物粉末と金属コバルト
粉末の比率を予め調節しておくことで、対極であるカド
ミウム極に必要に応じた放電リザーブ量を得ることがで
き、従来法のカドミウム極の部分還元尋の工程を省略す
ることができる。この方法により、従来法に比べ容易に
カドミウム極の放電リザーブ量を調節することができ、
生産性が高く且つ高性能で高容量なア〃カリ蓄電池を得
ることができる。
As mentioned above, by adjusting the ratio of the divalent cobalt compound powder and the metal cobalt powder in advance, it is possible to obtain the required amount of discharge reserve for the cadmium electrode, which is the counter electrode, and the cadmium electrode part of the conventional method The reduction process can be omitted. With this method, the amount of discharge reserve of the cadmium electrode can be adjusted more easily than with conventional methods.
A high-productivity, high-performance, and high-capacity alkali storage battery can be obtained.

発明の効果 本発明は、活物質利用率及び高率放電性に優れたアμカ
リ蓄電池と、電池の放電リザーブ量が容易に調節できる
生産性の高い製造法が提供できるので、その工業的価値
は極めて大である。
Effects of the Invention The present invention can provide an alkali storage battery with excellent active material utilization rate and high rate discharge performance, and a highly productive manufacturing method that allows easy adjustment of the discharge reserve amount of the battery, thereby increasing its industrial value. is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第一図は、ニッケμ正極における二価コバルト化合物か
ら三価の0OOOH化合物への酸化と、それに対応する
カドミウム負極における水酸化カドミウムから金属カド
ミウムへの還元によって生じる放電リザーブ量の関係を
、第二図は一酸化コバルトと金属コバルトの混合比率と
カドミウム極で生成される金属カドミウム量、及び活物
質利用率の関係を示した図である。 第1図
Figure 1 shows the relationship between the amount of discharge reserve generated by the oxidation of a divalent cobalt compound to a trivalent 0OOOH compound at the nickel μ positive electrode and the corresponding reduction of cadmium hydroxide to metal cadmium at the cadmium negative electrode. The figure shows the relationship between the mixing ratio of cobalt monoxide and metal cobalt, the amount of metal cadmium produced in the cadmium electrode, and the active material utilization rate. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)水酸化ニッケル粉末に二価コバルト化合物のCo
O、α−Co(OH)_2、β−Co(OH)_2粉末
の内の一種以上と金属コバルト粉末を混合し、耐アルカ
リ性多孔体に充填したニッケル電極を用いたことを特徴
とするアルカリ蓄電池。
(1) Co of divalent cobalt compound in nickel hydroxide powder
An alkaline storage battery characterized by using a nickel electrode made by mixing one or more of O, α-Co(OH)_2, and β-Co(OH)_2 powders with metal cobalt powder and filling an alkali-resistant porous body. .
(2)二価コバルト化合物と金属コバルトの混合比率に
おける金属コバルト比率が75wt%以下である請求項
1記載のアルカリ蓄電池。
(2) The alkaline storage battery according to claim 1, wherein the proportion of metal cobalt in the mixing ratio of the divalent cobalt compound and metal cobalt is 75 wt% or less.
(3)二価コバルト化合物と金属コバルトの比率により
対極の放電リザーブ量を調節することを特徴とする請求
項1及び2記載のアルカリ蓄電池の製造法。
(3) The method for producing an alkaline storage battery according to Claims 1 and 2, characterized in that the discharge reserve amount of the counter electrode is adjusted by the ratio of the divalent cobalt compound and metal cobalt.
JP1037763A 1989-02-16 1989-02-16 Alkaline storage battery and manufacture thereof Pending JPH02216763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1037763A JPH02216763A (en) 1989-02-16 1989-02-16 Alkaline storage battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1037763A JPH02216763A (en) 1989-02-16 1989-02-16 Alkaline storage battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02216763A true JPH02216763A (en) 1990-08-29

Family

ID=12506511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1037763A Pending JPH02216763A (en) 1989-02-16 1989-02-16 Alkaline storage battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02216763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196163A (en) * 1992-12-24 1994-07-15 Furukawa Battery Co Ltd:The Alkaline storage battery
EP0638520A1 (en) * 1993-08-12 1995-02-15 H.C. Starck GmbH & Co. KG Cobalt-cobalt oxide powder, process for its preparation and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351449A (en) * 1976-10-20 1978-05-10 Matsushita Electric Ind Co Ltd Nickel electrode
JPS6188453A (en) * 1984-10-04 1986-05-06 Matsushita Electric Ind Co Ltd Nickel positive electrode for alkaline storage battery
JPH02144850A (en) * 1988-11-26 1990-06-04 Yuasa Battery Co Ltd Nickel electrode and alkali battery using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351449A (en) * 1976-10-20 1978-05-10 Matsushita Electric Ind Co Ltd Nickel electrode
JPS6188453A (en) * 1984-10-04 1986-05-06 Matsushita Electric Ind Co Ltd Nickel positive electrode for alkaline storage battery
JPH02144850A (en) * 1988-11-26 1990-06-04 Yuasa Battery Co Ltd Nickel electrode and alkali battery using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196163A (en) * 1992-12-24 1994-07-15 Furukawa Battery Co Ltd:The Alkaline storage battery
JP2530281B2 (en) * 1992-12-24 1996-09-04 古河電池株式会社 Alkaline storage battery
EP0638520A1 (en) * 1993-08-12 1995-02-15 H.C. Starck GmbH & Co. KG Cobalt-cobalt oxide powder, process for its preparation and use thereof

Similar Documents

Publication Publication Date Title
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JPH02216763A (en) Alkaline storage battery and manufacture thereof
JPH0221098B2 (en)
JPS5916269A (en) Manufacture of positive plate for alkaline battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPH02234356A (en) Sealed-type alkali battery
JP3454274B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPH02109261A (en) Active material for nickel electrode, nickel electrode, and alkaline battery using this electrode
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPH04109557A (en) Non-sintered type positive electrode plate for alkaline storage battery
JPS601759A (en) Alkaline storage battery
JPS63158750A (en) Zink electrode for alkaline storage battery
JPH0568068B2 (en)
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3063159B2 (en) Nickel electrode for alkaline battery and battery using the same
JPH02144850A (en) Nickel electrode and alkali battery using same
JPS58137963A (en) Alkaline zinc storage battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPH04129171A (en) Manufacture of nickel-hydrogen storage battery
JPH0378966A (en) Nickel electrode for alkaline storage battery
JPH0230062A (en) Alkaline storage battery
JPS5918574A (en) Manufacture of positive plate for alkaline battery
JPH0239063B2 (en)