JPS60175229A - Photo-electro-magnetic recording medium - Google Patents

Photo-electro-magnetic recording medium

Info

Publication number
JPS60175229A
JPS60175229A JP2999884A JP2999884A JPS60175229A JP S60175229 A JPS60175229 A JP S60175229A JP 2999884 A JP2999884 A JP 2999884A JP 2999884 A JP2999884 A JP 2999884A JP S60175229 A JPS60175229 A JP S60175229A
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetic material
crystal
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2999884A
Other languages
Japanese (ja)
Other versions
JPH0572662B2 (en
Inventor
Hitoshi Nakamura
均 中村
Hajime Machida
元 町田
Fumiya Omi
文也 近江
Masahiko Naoe
直江 正彦
Yoichi Hoshi
陽一 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2999884A priority Critical patent/JPS60175229A/en
Publication of JPS60175229A publication Critical patent/JPS60175229A/en
Publication of JPH0572662B2 publication Critical patent/JPH0572662B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form a photo-electro-magnetic recording medium which has excellent reproducibility and magnetooptic effect and permits high-density recording and reproduction by forming a thin vertical magnetic anisotropic film consisting of a magnetoplumbite type magnetic material. CONSTITUTION:A thin vertical magnetic anisotropic film consisting of a magnetoplumbite type magnetic material is formed by growing epitaxially a magnetoplumbite type magnetic material 3 atop the crystal face of an underlying film 2 formed on the crystal face of a base 1 or on the base to within + or -20% the misfit rate of the crystal face of said underlying film with respect to the C face of the crystal face of said magnetic material. More specifically, the layer 3 is formed by using the magnetoplumbite type magnetic material as a target, maintaining the substrate at 550-700 deg.C and sticking said material onto the substrate by a method such as sputtering to usually about 0.1-10mum thickness. The layer 3 is thus formed as the vertical magnetic anisotropic film oriented in the C face in accordance with the crystal orientation of the film 2. A protective layer 4 is formed on such magnetic layer 3.

Description

【発明の詳細な説明】 技術分野 本発明はハードディスク、フロッピーディスク、ドキュ
メントファイル等に使用されるマグネドブラムノ々イト
型磁性体の垂直磁気異方性薄膜を有する光磁気記録媒体
に関する0 従来技術 近年〜半導体レーザー光によシ磁気記録を行う光磁気記
録媒体が高密度記録用として種々研究されている。従来
、これら光磁気記録媒体に用いられる磁性膜としては遷
移金属(F・、00)と希土類金属(Tb、Gd、・・
・)との合金よりなるアモルファス磁性合金膜が知られ
ている。これらアモルファス磁性合金膜はキュリ一温度
が低く、マたアモルファスであるため光学的ノイズが小
さい等の長所がある反面、希土類金属は酸化活性が大き
いため酸化し易く、酸化に起因する磁気特性の劣化、記
録又は再生特性の劣化が生じ易く、膜安定性に劣る欠点
を有するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a magneto-optical recording medium having a perpendicular magnetic anisotropic thin film of a magnetobramnotite type magnetic material used in hard disks, floppy disks, document files, etc. Various studies have been conducted on magneto-optical recording media that perform magnetic recording using laser light for high-density recording. Conventionally, the magnetic films used in these magneto-optical recording media include transition metals (F., 00) and rare earth metals (Tb, Gd,...
An amorphous magnetic alloy film made of an alloy with .) is known. These amorphous magnetic alloy films have advantages such as low Curie temperature and low optical noise because they are amorphous, but rare earth metals have high oxidation activity and are easily oxidized, resulting in deterioration of magnetic properties due to oxidation. However, the recording or reproducing characteristics tend to deteriorate easily, and the film stability is poor.

かかることから本発明者らは膜安定性に優れ、キュリ一
温度が低いマグネトプラムバイト型酸化物磁性体、すな
わちM@0゜n (MxFe (2−yx)0、〕、(
ここでMeiBa、Pb、Sr M: Ga、AJ 。
Therefore, the present inventors developed a magnetoplumbite-type oxide magnetic material with excellent film stability and low Curie temperature, that is, M@0゜n (MxFe (2-yx)0, ), (
Here, MeiBa, Pb, Sr M: Ga, AJ.

Mn、Oo、Nl 、Zn、TI 、In、Sc、Ou
、Bl *0rtTat几h 、Je 、 an 、G
d 、’rb 、V、Y、 8m、Mo 、Ru等の少
くとも1種以上、)C:O<X≦1sn”5≦n≦6、
m:Mのイオン価数)を光磁気記録媒体に適用する事を
種々検討を重ねてきた。これらマグネトプラムバイト型
酸化物磁性体により光磁気記録離体を作成するには一般
に支持体上にこれら礎性体をターゲットとして基板温度
500〜700Cで真空蒸着、スパッタリング、イオン
ブレーティング等の方法で膜厚0.1−10μm程度に
付着させることにより得られる。しかしながら、仁のよ
うにして得られる磁性膜は垂直磁気異方性膜になシ難<
、必ずしも光学効果に優れ再現性が良好であるとはいえ
ず、さらにビット密度も充分満足できるものではなかっ
た。
Mn, Oo, Nl, Zn, TI, In, Sc, Ou
, Bl *0rtTat几h , Je , an , G
At least one or more of d, 'rb, V, Y, 8m, Mo, Ru, etc.)C:O<X≦1sn"5≦n≦6,
Various studies have been conducted on the application of m: ion valence of M) to magneto-optical recording media. In order to create a magneto-optical recording material using these magnetoplumbite type oxide magnetic materials, generally a method such as vacuum evaporation, sputtering, ion blating, etc. is used to target these basic materials on a support at a substrate temperature of 500 to 700C. This can be obtained by depositing the film to a thickness of about 0.1-10 μm. However, the magnetic film obtained in this way is difficult to become a perpendicular magnetic anisotropic film.
However, it cannot be said that the optical effects are excellent and the reproducibility is good, and furthermore, the bit density is not fully satisfactory.

一般に光磁気記録媒体への記録、再生は次のようにして
行われる。すなわち、記録は磁性膜のキュリ一温度また
は補償温度近傍における温度変化に対応した保磁力の急
激な変化特性を利用して情報信号で変調されたレーザー
光を磁性膜に照射加熱して磁化の向きを反転させること
によル行われ、また再生はこうして反転記録された磁性
膜の磁気光学効果の差を利用して読出すことによシ行わ
れる。従って、前述したピット密度および再現性等を良
好ならしめるためにはレーザー光の入射光と同方向な垂
直磁気異方性膜、すなわちC軸配向した磁気配向性を付
与することが必要となる。
Generally, recording and reproduction on a magneto-optical recording medium is performed as follows. In other words, recording is performed by heating the magnetic film by irradiating a laser beam modulated with an information signal to change the direction of magnetization, taking advantage of the characteristics of the magnetic film's rapid change in coercive force in response to temperature changes near its Curie temperature or compensation temperature. Reproduction is performed by reversing the information, and reading is performed by utilizing the difference in the magneto-optical effect of the magnetic film recorded in this manner. Therefore, in order to improve the pit density and reproducibility described above, it is necessary to provide a perpendicular magnetic anisotropic film in the same direction as the incident laser beam, that is, to provide a C-axis magnetic orientation.

目 的 本発明の目的はマグネトプラム/マイト型磁性体の垂直
磁気異方性薄膜を叩唐することによシ、再現性、磁気光
学効果に優れ、高密度記録再生可能な光磁気記録媒体を
提供することにある。
Purpose The purpose of the present invention is to create a magneto-optical recording medium that has excellent reproducibility and magneto-optic effects and is capable of high-density recording and reproduction by punching a perpendicular magnetic anisotropic thin film of magnetoplum/mite type magnetic material. It is about providing.

構 成 本発明は支持体の結晶面もしくは支持体上に形成した下
地皮膜の結晶面がその上面にエピタキシャル成長するマ
グネトプラムバイト型磁性体の結晶面C面に対するミス
フィツト率が±30%以内とすることによシマグネトプ
2ムノ々イト型磁性体の垂直磁気異方性薄膜を形成した
光磁気記録媒体である。
Structure The present invention aims to ensure that the misfit rate of the crystal plane of the support or the crystal plane of the base film formed on the support with respect to the crystal plane C plane of the magnetoplumbite type magnetic material epitaxially grown on the upper surface thereof is within ±30%. This is a magneto-optical recording medium in which a perpendicular magnetic anisotropy thin film of a magnetic material of a yoshima magnetite type is formed.

本発明者らは一般弐Ms0. n [: MxFe (
2−rA)0、〕、(ここでMe:Ba、Sr、Pb、
Oaの少くとも1種、M : G a g A12 M
n 、Or e Z n y T i HI n +8
c、Oo、N1tan、Ou、BiyTa*G@yMg
1MO,RutRh、Gd、Tb、V@Yearn等の
少くとも1種、X:O<X≦Is n!5≦n≦6、m
:Mのイオン価数)で示されるマグネトプラムバイト型
酸化物磁性体を種々の支持体上に真空蒸着、スパッタリ
ング、イオンブレーティング等の方法で薄膜形成する過
程で、マグネトプラムバイト型酸化物磁性体の薄膜はこ
れら磁性体が被着されるべき支持体もしくは支持体上に
形成した下地皮膜の物性、特にミスフィツト率に大きく
影響され、マグネトプラムバイト型磁性薄膜を垂直磁気
異方性膜、すなわち0軸配向性をもってエピタキシャル
成長せしめるためにはこの磁性薄膜を被着されるべき支
持体の結晶面もしくは支持体上に形成した下地皮膜の結
晶面とこの上に作成するマグネトゾラムノ署イト垂直磁
気膜の結晶面0軸とが±30%以内のミスフィツト率を
有することが必要であることを知見した。
The present inventors have general 2 Ms0. n [: MxFe (
2-rA)0, ], (where Me:Ba, Sr, Pb,
At least one type of Oa, M: G a g A12 M
n , Or e Z n y T i HI n +8
c, Oo, N1tan, Ou, BiyTa*G@yMg
At least one type of 1MO, RutRh, Gd, Tb, V@Yearn, etc., X:O<X≦Is n! 5≦n≦6, m
In the process of forming a thin film of magnetoplumbite-type oxide magnetic material represented by ion valence of M) on various supports by methods such as vacuum evaporation, sputtering, and ion blating, magnetoplumbite-type oxide magnetic material The thin film of the body is greatly influenced by the physical properties of the support to which the magnetic material is attached or the underlying film formed on the support, especially the misfit rate. In order to achieve epitaxial growth with zero-axis orientation, the crystal plane of the support to which this magnetic thin film is to be deposited or the crystal plane of the base film formed on the support and the crystal of the magnetozorhamnosignature perpendicular magnetic film to be formed thereon. It has been found that it is necessary to have a misfit rate within ±30% with respect to the plane 0 axis.

ここで、ミスフィツト(MISFIT)率f1とは2つ
の適当に選ばれた境界面の方向を1=1 。
Here, the misfit rate f1 is defined as 1=1, which is the direction of two appropriately selected interfaces.

2とし、成長層とその基材結晶の原子間隔をAi、α1
とすると、 t 、 =a 辷すュXIGO−(1)α l で示される。
2, and the atomic spacing between the growth layer and its base crystal is Ai, α1
Then, t , =a 辷suXIGO-(1) α l is shown.

しかして本発明ではマグネトプラムバイト型磁性体を0
面配向させるためにはその結晶格子の原子間隔Aiとす
るならば、これら選ばれる基材の原子間隔clはミスフ
ィツト率が±30%以内のものとなる。換言すれば、本
発明ではマグネトプラムバイト型磁性体を垂直磁気異方
性薄膜とするに際して、このマグネトプラムバイト型磁
性体の0軸原子間隔とのミスフィツト率が±30%以内
とされた原子間隔を有する支持体もしくは支持体上に形
成した下地皮膜を選択することによシ、これら支持体も
しくは下地皮膜上にマグネトプラムバイト型磁性体をエ
ピタキシャル成長させることによシマグネトプラムバイ
ト型磁性体がC面配向した垂直磁気異方性薄膜を得るも
のである。
However, in the present invention, the magnetoplumbite type magnetic material is
If the atomic spacing Ai of the crystal lattice is used for plane orientation, the atomic spacing cl of these selected base materials will have a misfit rate within ±30%. In other words, in the present invention, when forming a magnetoplumbite type magnetic material into a perpendicular magnetic anisotropic thin film, the atomic spacing is such that the misfit rate with respect to the 0-axis atomic spacing of the magnetoplumbite type magnetic material is within ±30%. By selecting a support having C or a base film formed on the support, and by epitaxially growing a magnetoplumbite type magnetic substance on the support or base coat, the magnetoplumbite type magnetic substance has C. A perpendicular magnetic anisotropic thin film with plane orientation is obtained.

ここで本発明で適用し得るマグネトプラムバイト型酸化
物磁性体の具体例を示せば、(BaO)6°’ (”0
.4 Fe2−0畠 ] 、 (BaO,15,6(Z
n、。1 m ”Om。。
Here, a specific example of a magnetoplumbite type oxide magnetic material that can be applied in the present invention is (BaO)6°'("0
.. 4 Fe2-0 Hatake], (BaO,15,6(Z
n. 1 m ”Om..

”5e40s ) t [:Ba0) 6゜” ”@、
a ’ ” 1.T o、 〕*(5rO) 6−o 
(”11,4 p ”1.110. ) t (p b
 o :) s、。
"5e40s) t [:Ba0) 6゜""@,
a' ” 1. T o, ]*(5rO) 6-o
("11,4 p"1.110.) t (p b
o:)s,.

(Mn0.、 Fe、。”B ) T (B IL O
:l 6.0 (Oro、4Fet、o、] p(Ba
d)5.6 CIno、* Fe、、、O,)* (S
rO) 5.6(Sc6.1 ”” 1.101 ] 
ss(P b O) 5.6 (Alo、s Zn0.
@ *Fe 01)t(BaO)6.0(,100,B
l。、、Fe1..01l)+−6 (n a o 〕s−6[”6.II B’O,j p
 @、、、o、 ) t Csr o 〕6、OCAJ
o、 Ti。、、 Fe、、4o、 :] # I:B
a0)6.0(Ga(1,1 ”1.o OB ) * (SrQ)6、o(zn F
e1911 o、 :l +(B IL O) 6−0
 (Ooo、、 zn 0.11 F 61,860 
B :l * (B’O)” (AJ I n g、*
 @ Fe 3.、a Os −1e CS r O〕
6−1)〇− (AJ o、s 800.l、 Fe t、sa o、
 ) l (8rO)5.6 (Gao、a。
(Mn0., Fe,.”B) T (B ILO
:l 6.0 (Oro, 4Fet, o,] p(Ba
d) 5.6 CIno,*Fe,,,O,)*(S
rO) 5.6 (Sc6.1 ”” 1.101]
ss(P b O) 5.6 (Alo, s Zn0.
@ *Fe 01)t(BaO)6.0(,100,B
l. ,,Fe1. .. 01l)+-6 (n a o ]s-6["6.II B'O,j p
@,,,o, ) t Csr o ]6, OCAJ
o, Ti. ,,Fe,,4o, :] #I:B
a0)6.0(Ga(1,1"1.o OB) *(SrQ)6,o(zn F
e1911 o, :l +(BILO) 6-0
(Ooo,, zn 0.11 F 61,860
B :l * (B'O)” (AJ I n g, *
@ Fe 3. , a Os −1e CS r O]
6-1) 〇- (AJ o, s 800.l, Fe t, sa o,
) l (8rO)5.6 (Gao, a.

”o、ts Fe t、ss o、 ) + (SrO
:15.6[:Ga、、8c0.、。
"o, ts Fe t, ss o, ) + (SrO
:15.6[:Ga,,8c0. ,.

Fe1B I Om ) t CG” o) ” (A
J 6.I Z n o、t * F e s、。。
Fe1B I Om) t CG” o) ” (A
J6. I Z n o, t * F e s,. .

03、:l * (0,6BaOO,40aO:l 6
.Q CAj’o、m Zn O,1!Fe t、as
 o、 ) # (0,4BaO0,6PbO)6.0
 (AJlo、。
03, :l * (0,6BaOO,40aO:l 6
.. Q CAj'o, m Zn O,1! Fet,as
o, ) # (0,4BaO0,6PbO)6.0
(AJlo,.

Zn6.1ffiFe、。t On :l 等2>”挙
ケラレル。
Zn6.1ffiFe,. t On: l etc. 2>”Kerarel.

これらマグネドブ2ムノ々イト型酸化物磁性体の結晶面
0面とミスフィツト率が±30%以内の結晶面を有する
支持体もしくは支持体上に形成した下地皮膜としては、
例えばF・@ 04 (1! l ) gα−Fe、O
s (001) tAIMO,(001) 、ZnO(
001)tMgO(111) yMnZnFe104 
(111) tMnFe*o4(111) y Ba0
Fe10B (001) e Pb0FetOs(00
/)ySrOFa、O,(00It) e OOF@、
O,(l l I LNtpe1o4(lll)、AJ
N(001)edl挙1’j’られる。
As a support having a crystal plane with a misfit ratio within ±30% from the crystal plane 0 of these magnetobutite oxide magnetic materials, or a base film formed on the support,
For example, F・@04 (1! l) gα-Fe, O
s (001) tAIMO, (001) , ZnO(
001)tMgO(111)yMnZnFe104
(111) tMnFe*o4 (111) y Ba0
Fe10B (001) e Pb0FetOs(00
/)ySrOFa,O,(00It) e OOF@,
O, (l l I LNtpe1o4(lll), AJ
N(001)edl enumerated 1'j'.

これら結晶面に対するマグネトプラムバイト型酸化物磁
性体としてバリウム7エ2イトの結晶面C面との具体的
なミスフィツト率を例示すれば次のようである。
Specific examples of misfit ratios between these crystal planes and the crystal plane C plane of barium 7-2ite as a magnetoplumbite type oxide magnetic material are as follows.

上表より典型的なマグネトプラムバイト型歳化物磁性体
であるバリウムフェライトの0面に対し、前述の各結晶
面はいずれもミスフィツト率が±30%以内にあること
がわかる。またバリウムフェライト以外のマグネトプラ
ムバイト型酸化物磁性体の0面に対してもいずれもミス
フィツト率が±30%以内にある。このようにマグネト
プラムバイト型酸化物磁性体をC面配向させるためには
この0面とミスフィツト率が±30%以内、好ましくは
±20%以内にある結晶配向面上にエビタキ7ヤル成長
させること(よシマグネトプラムバイト型酸化物磁性体
の垂直磁化薄膜を得ることができる。逆にミスフィツト
率が±30%を越える結晶面上には垂直磁化薄膜を形成
し得なくなる。
From the above table, it can be seen that the misfit ratio of each of the above-mentioned crystal planes is within ±30% with respect to the 0 plane of barium ferrite, which is a typical magnetoplumbite type aged magnetic material. Furthermore, the misfit rate for the zero plane of magnetoplumbite type oxide magnetic materials other than barium ferrite is within ±30%. In order to make the magnetoplumbite type oxide magnetic material C-plane oriented in this way, it is necessary to grow the magnetoplumbite-type oxide magnetic material by 7 years on a crystal orientation plane whose misfit rate is within ±30%, preferably within ±20%, from this 0-plane. (A perpendicularly magnetized thin film of a magnetoplumbite type oxide magnetic material can be obtained. Conversely, a perpendicularly magnetized thin film cannot be formed on a crystal plane with a misfit ratio exceeding ±30%.

以下具体例を図面に従って説明する。Specific examples will be described below with reference to the drawings.

第1図において、lは支持体、2は下地皮膜、3は磁性
層、4は保護層である。支持体lとしては例えばアルミ
ニウム、アルミニウムーマグネシウム合金、アルミ青銅
、黄銅、クロメル、ステンレス溺、ジュラルミン等の金
属材料、あるいは石英ガラス、結晶化ガラス、単結晶シ
リコン、無機シ+Jコン、)々イコールガラス、パイレ
ックスガラス、GGGSLiタンタレート、サファイヤ
、透明セラミック材、Mg0t Mg0LIF *Bo
o、Zr01tY101tTho1 等の無機材料等が
使用し得る。これら支持体上に形成される下地皮膜2は
マグネドブ2ムノζイトm酸化物磁性体の結晶面C面に
対しミスフィツト率が±30%、好ましくは±20%以
内の結晶配向を有する材 。
In FIG. 1, l is a support, 2 is a base film, 3 is a magnetic layer, and 4 is a protective layer. Examples of the support material include metal materials such as aluminum, aluminum-magnesium alloy, aluminum bronze, brass, chromel, stainless steel, and duralumin, or equivalent glass such as quartz glass, crystallized glass, single crystal silicon, inorganic silicon + J-con, etc. , Pyrex glass, GGGSLi tantalate, sapphire, transparent ceramic material, Mg0t Mg0LIF *Bo
Inorganic materials such as Zr01tY101tTho1 and the like can be used. The base film 2 formed on these supports is a material having a crystal orientation with a misfit rate within ±30%, preferably within ±20%, with respect to the crystal plane C plane of the magnetized magnet oxide magnetic material.

料からなシ、これをスパッタリング法、反応ス、eツタ
リング法、蒸着法、CVD等により基板温度、常温〜5
00Cで通常は0.1xlOμnt程度の厚さに付着し
てなる。通常、この下地皮膜2は支持体1が結晶面を有
する場曾、前述の如きFe104.α−Fe2O3* 
klzo@ e ZnO,B a OF @081Mn
ZnFe104 等の下地材料をスパッタリング法、反
応スパッタリング法、蒸着法、0■D等により皮膜形成
するとマグネトプラムバイト型酸化物磁性体の0面に対
し建スフイツト率が±30%以内におさまる結晶配向を
もった下地皮膜として形成される。従って支持体lがミ
スフィツト率±30%よシ大きい結晶性である場合には
この支持体上に非晶質S t O,を予備形成させ、そ
のs i O,層上に下地皮膜2を形成するようにする
From scratch, it can be heated to a substrate temperature of room temperature to
At 00C, it is usually deposited to a thickness of about 0.1xlOμnt. Usually, when the support 1 has a crystal plane, this base film 2 is made of Fe104. α-Fe2O3*
klzo@ e ZnO, B a OF @081Mn
When a film is formed using a base material such as ZnFe104 by a sputtering method, a reactive sputtering method, a vapor deposition method, a 0■D method, etc., a crystal orientation with a vertical shift ratio within ±30% with respect to the zero plane of a magnetoplumbite type oxide magnetic material can be obtained. It is formed as a sticky base film. Therefore, when the support l is crystalline with a misfit rate of ±30%, an amorphous S t O, is preformed on this support, and a base film 2 is formed on the S i O, layer. I'll do what I do.

かくして形成された下地皮膜2上にはマグネトプラムバ
イト型酸化物磁性体3を形成する。この磁性N3の形成
はマグネトプラムバイト型酸化物磁性体をターゲットと
して基−板温度550〜.700Cに維持しスパッタリ
ング、真空蒸着、OVD等や方法で通常は0.1−10
μm程度の厚さに付着させることによ多形成される。こ
れによシ磁性層3は下地皮膜2の結晶配向に対応し−て
C面配向した垂直磁気異方性膜となる。この磁性層3上
に所望によ多形成される保護N4はアクリル樹脂、ポリ
ウレタン樹脂、ポリカーゼネート樹脂、プリエーテルス
ルホン樹脂、ポリアミド樹脂、エポキシ樹脂、TiN%
 81.N4%AIN%0rNs TaN5810g、
sio 等を樹脂の場合は塗布法で、その他の材料の場
合は真空蒸着、スパッタリング、反応スノぐツタリング
、OVD等の方法で磁性層3上に膜厚0.1〜10μm
程度に付着させることによシ行う。なお、下地皮膜2は
2層もしくは多層に設け、磁性層3に近い層に向うに従
ってマグネトラ2ムパイト酸化物磁性体の0面配向との
ミスフィツト率を小さくするようにしてもよい。
A magnetoplumbite type oxide magnetic material 3 is formed on the base film 2 thus formed. This magnetic N3 is formed using a magnetoplumbite type oxide magnetic material as a target at a substrate temperature of 550~. Maintaining the temperature at 700C and using methods such as sputtering, vacuum evaporation, OVD, etc., it is usually 0.1-10
A multilayer film is formed by depositing the film to a thickness of approximately μm. As a result, the magnetic layer 3 becomes a perpendicular magnetic anisotropic film oriented in the C-plane in accordance with the crystal orientation of the underlying film 2. The protective N4 formed on the magnetic layer 3 is made of acrylic resin, polyurethane resin, polycarbonate resin, preethersulfone resin, polyamide resin, epoxy resin, TiN%
81. N4%AIN%0rNs TaN5810g,
sio etc. is applied to the magnetic layer 3 to a thickness of 0.1 to 10 μm by a coating method in the case of resin, or by a method such as vacuum evaporation, sputtering, reaction snorting, or OVD in the case of other materials.
This is done by adhering to a certain degree. Note that the base film 2 may be provided in two layers or in multiple layers, and the misfit rate with respect to the zero-plane orientation of the magnetramite oxide magnetic material may be made smaller as the layers are closer to the magnetic layer 3.

第2図は支持体lそのものが磁性層3のマグネドブ2ム
ノ々イト型酸化物磁性体の0面、配向と±30%以内の
ミスフィツト率を有する結晶配向をもった材料である場
合の例を示し、この場合には下地皮膜2を設けなくとも
C面配向した、すなわち垂直磁化した磁性M3が形成さ
れる。
Figure 2 shows an example in which the support l itself is a material with a crystal orientation having a misfit rate within ±30% of the 0-plane orientation of the magnetoblast type oxide magnetic material of the magnetic layer 3. In this case, C-plane oriented, that is, perpendicularly magnetized magnetic M3 is formed even without providing the base film 2.

また第3図は反射型ファラデー効果で再生する場合の光
磁気記録媒体の例を示すもので第1図における支持体l
と下地皮膜2との間にAg。
Figure 3 shows an example of a magneto-optical recording medium for reproduction using the reflective Faraday effect.
and the base film 2.

Au、Pt、Ou、AJ等の反射層5を積層したもので
ある。
This is a stack of reflective layers 5 made of Au, Pt, Ou, AJ, etc.

なお、第1図および第2図に示される如き光磁気記録媒
体では磁性層3が比較的透光性を有さないマグネトプラ
ムバイト型酸化物磁性体である場合に好追に使用し得る
ものであり1カー効果を利用して変調または偏向された
レーザー光によシ読み出すものである。
In addition, the magneto-optical recording medium as shown in FIGS. 1 and 2 can be preferably used when the magnetic layer 3 is a magnetoplumbite type oxide magnetic material that has relatively no light-transmitting property. It is read out using a laser beam that is modulated or deflected using the Kerr effect.

効 果 以上のような本発明によれば、支持体もしくは支持体上
に形成した下地皮膜の結晶配向がその上に付着されるマ
グネドブ2ムパイ)fJ1酸化物磁性体の結晶面C面と
±30%以内のミスフィツト率を有するため、マグネト
プラムバイト型酸化物磁性体の垂直磁気異方性薄膜が得
られ、従って磁気光学効果が優れ、ビット数も増大でき
再現性が飛躍的に向上し、高密度記録再生可能な光磁気
記録媒体が得られる。
Effects According to the present invention as described above, the crystal orientation of the support or the base film formed on the support is within ±30 degrees of the crystal plane C plane of the magnetic material of the magnetic material deposited thereon. %, it is possible to obtain a perpendicular magnetic anisotropic thin film of magnetoplumbite type oxide magnetic material, which has an excellent magneto-optical effect, increases the number of bits, dramatically improves reproducibility, and improves high performance. A magneto-optical recording medium capable of density recording and reproduction is obtained.

以下に実施例を示す。Examples are shown below.

実施例1 Stウェハー支持体の表面を酸化処理して膜厚0.3μ
mのS t Olを形成し、この面に反応スパッタリン
グ法によJ) ZnO膜を0.5μm形成した。
Example 1 The surface of the St wafer support was oxidized to a film thickness of 0.3μ
A ZnO film with a thickness of 0.5 μm was formed on this surface by a reactive sputtering method.

得られたZnO膜は(001)の配向面を示した。The obtained ZnO film showed a (001) orientation plane.

次にこの面にスパッタリング法によシ基板温度550〜
700Cに維持しB a O6−0(A l 67 F
e t、y Os :1を膜厚0.3μm付着し光磁気
記録媒体を得た。
Next, sputtering is applied to this surface at a substrate temperature of 550~
B a O6-0 (A l 67 F
A magneto-optical recording medium was obtained by depositing e t,y Os :1 to a thickness of 0.3 μm.

この膜の槽造解析の結果BaO6,OCAJoog F
e、、 O,:]の結晶配向面は(001)、ただしl
は6t8t14*であり、xm回折の結果O軸に配向を
有する垂直磁化膜であることが確認された。
As a result of tank construction analysis of this membrane, BaO6, OCAJoog F
The crystal orientation plane of e,, O,:] is (001), but l
was 6t8t14*, and as a result of xm diffraction, it was confirmed that it was a perpendicular magnetization film with orientation in the O axis.

実施例2 実施例1と同様であるが下地皮膜としてZnOの代フに
AINを用い、また磁性体としてBaO6,0(Ga、
、 F@、、O,)を用いその他は同様にして光磁気記
録媒体を得た。その結果、下地皮膜のAJNの結晶配向
面は(001)であシ、またBaO6,0(G a 6
.a F e s、。0.〕の結晶面は(oog、ただ
しlは6,8,14.であ広磁性層は垂直磁化膜である
ことが確認された。
Example 2 Same as Example 1, but AIN was used instead of ZnO as the base film, and BaO6,0 (Ga,
A magneto-optical recording medium was obtained in the same manner except for the following: , F@,, O,). As a result, the crystal orientation plane of AJN in the base film was (001), and BaO6,0 (G a 6
.. a F e s,. 0. ] was confirmed to have a crystal plane of (oog, where l is 6, 8, 14.), and that the wide magnetic layer was a perpendicular magnetization film.

実施例3 石英ガラス上にスパッタリング法によシ膜厚0.3μm
の8108および反応スパッタリング法によシklNを
膜厚0.3μm形成した。次にこの面μm作成し、光磁
気記録媒体を得た0その結果、下地皮膜の、INの結晶
配向面は(001)であシ、その上の磁性層の結晶配向
面は(001)であシ、磁性層は垂直磁化膜であること
が確認された。
Example 3 Film thickness 0.3 μm formed by sputtering method on quartz glass
8108 and a reactive sputtering method to form a film of 0.3 μm thick. Next, this surface was prepared μm to obtain a magneto-optical recording medium.As a result, the crystal orientation plane of IN in the underlayer film was (001), and the crystal orientation plane of the magnetic layer above it was (001). It was confirmed that the magnetic layer was a perpendicularly magnetized film.

(以下余白) 比較例1 実施例1と同様であるがZnOの下地皮膜を形成せずに
81ウエハー上に直接スパッタリング法によシ基板温度
550〜700Cに維持してBaO6、o (Ados
 Fety o、 ]を膜厚o、sttmを作成し、光
磁気記録媒体を得た。この磁性膜のX線回折図を第4図
に示す。この第4図かられかるように得られた磁性膜は
C軸配向面の回折強度(OOS)。
(Space below) Comparative Example 1 Same as Example 1, but without forming a ZnO base film, sputtering was performed directly on the 81 wafer, maintaining the substrate temperature at 550 to 700 C, and BaO6,o (Ados
A magneto-optical recording medium was obtained by preparing a film having a film thickness of o and sttm. An X-ray diffraction diagram of this magnetic film is shown in FIG. As can be seen from FIG. 4, the obtained magnetic film has a diffraction intensity (OOS) of the C-axis oriented surface.

(oog)、(0014)のピーク強度は小さく、この
磁性膜はC軸配向性の弱い、すなわち良好な垂直磁化膜
となっていないことを示した。
The peak intensities of (oog) and (0014) were small, indicating that this magnetic film had weak C-axis orientation, that is, it was not a good perpendicular magnetization film.

また、第5図は実施例1−15の磁性膜のX線回折図を
示すもので、この第5図によるとC軸配向面の回折強度
(006)、(00B)、(OOli)のピーク強度は
大きく、実施例に従った磁性膜は0軸配向性が強く、す
なわち良好な垂直磁気異方性膜であることを示した。
Moreover, FIG. 5 shows an X-ray diffraction diagram of the magnetic film of Example 1-15. According to this FIG. The strength was large, and the magnetic film according to the example had strong 0-axis orientation, indicating that it was a good perpendicular magnetic anisotropy film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明に係る光磁気記録媒体の一例を
示す概略構成図である。 第4図は比較例により得た光磁気記録媒体磁性膜のX線
回折図である。 第5図は実施例により得た光磁気記録媒体磁性膜のX線
回折図である。 l・・・支持体 2・・・下地皮膜 3・・・磁性層 4・・・保護層 5・・・反射層 手続補正書(1幻 ゛ 昭和59年4月 0日 特許庁長官 若杉和夫 殿 東京都大田区中馬込1丁目3番6号 (674)株式会社 リ − − 代表者 浜 1) 広 4、代理人 東京都千代田区麹町4丁目5番地(〒102)5、補正
の対象 明細書の「発明の詳細な説明」7の欄 (1) 第2頁第13行目の「sr」をjarの少くと
も1種以上、」と訂正する。 (2)第3頁第1行目の「5oo」を「4oo」と訂正
する。 (3) 同頁第6行目の「光学効果」ヲ「磁気光学効果
」と訂正する。 (4)第4頁第11行目の「結晶面C面」を「結晶の大
方晶0面」と訂正する。 (5)第5頁第7行目の「物性」を「特性」と訂正する
。 (0)同頁第3行目の「基材結晶」を「基板結晶」と訂
正する。 (7) 第8頁第1行目の「α−F@lO1(001)
1、l、0. (001)、Zn0(OOIJを「α−
Fe1010面、AJ、O,0面、Zn0(002月と
訂正iる。 (8)同頁第3行目の「Ba0F*10g (001)
、pbope、o、 (ool)JをjBaOF@、O
,(100)、pbor@mos (Zoo)Jと訂正
する。 (9) 同頁第4行目オヨび第5行目Or S r O
F @106(004)Jおよび「1N(QOJ) 」
をそれぞれ「5rOF・tOm (100) Jおよび
「AIN(002)」と訂正する。 αQ 同頁表中の「α−Fe@0.(001)J、「A
IN0゜(ool) J、r AJN(oolJおよび
[Zn0(001)JヲソtL(’ h r (L−F
’etOs 0面」、f AJtOa O到、i”AJ
N(002月およびl’ Zn0(002)Jと訂正す
る。 (111第9頁第15行目の「形成し得なくなる。」を
1形成することが困難となる0」と訂正する。 117J 第10頁第9行目の「結晶面0面」を「結晶
の六方晶C面」と訂正する。 (13) 同頁第3行目の「Ba0FeOsJをjBa
 OF@10@ Jと訂正する。 圓 第11頁第9行目の「550Jをj4ooJと訂正
する。 叫 第13頁末行のr(001)jをr(002)Jと
訂正する。 ti61 g14頁第2行目(D 「5soJt−「4
ooJと訂正する。 +17) 同頁第3行目Or(oot)J t r(o
oz月と訂正する。 α秒 第15頁第4行目のr(001)Jをr(002
)Jと訂正する。 Ill 同頁第5行目の「(001)であυ、」をj(
ooz) 、ただしlは’e8s14であシ、」と訂正
する。 (4)第16頁の表中の実施例4の下地皮膜(1)の欄
のl’−(ooz)へキサ」を削除する。 (211同表中の実施例5の下地皮膜(1)の欄のr 
(oolI)へキサ」を削除する。 ■ 同表中の実施例8の下地皮膜(1)の欄の「、(o
 OJ )へΦす0面」をr(002)Jと訂正する。 (2) 同表中の実施例9の下地皮膜(1)の欄の「(
ooJ)Jを r(002)Jと訂正する。 (財)同表中の実施例11の下地皮膜(1)の桐および
マグネトゾラムノ々イト型磁性体の欄のr (0(1)
 Jおよび「(OsO)Jをそれぞれf(Zoo)Jお
よびj (BaO)Jと訂正する。 (ハ) 同表中の実施例13の下地皮膜(1)の欄のr
(OOl )Jを r(100)Jと訂正する。 (イ) 同表中の実施例14の下地皮膜(1)の欄のr
(OOJ)jをr(100)Jと訂正する。 □□□ 同表中の一実施例15の下地皮膜(1)の欄の
r(OOJ)Jを F(002月と訂正する。 (支)第17頁第4行目の「550Jを「400」と訂
正する。 囚 同頁第8行目および第14行目の「軸配向」を削除
する。 ■ 同頁第9行目の[、(oot4)Jを削除する。 C311同頁第8行目の「、(001玉)」を削除する
。 以上 昭和59年6月l!9日 特許庁長官 若 杉 和 夫 殿 1、 事件の表示 3、補正をする者 事件との関係 特許出願人 東京都大田区中馬込1丁目3番6号 (674)株式会社リ コー 代表者 浜 1) 広 4、代理人 昭和59年5月29日 8、 添付書類の目録 図 面 1講
1 to 3 are schematic configuration diagrams showing an example of a magneto-optical recording medium according to the present invention. FIG. 4 is an X-ray diffraction diagram of a magnetic film of a magneto-optical recording medium obtained in a comparative example. FIG. 5 is an X-ray diffraction diagram of the magnetic film of the magneto-optical recording medium obtained in the example. l...Support 2...Undercoat film 3...Magnetic layer 4...Protective layer 5...Reflective layer Procedural amendment (1) April 0, 1981 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office 1-3-6 Nakamagome, Ota-ku, Tokyo (674) Lee Co., Ltd. - Representative Hama 1) Hiro 4, Agent 4-5-5 Kojimachi, Chiyoda-ku, Tokyo (102) 5, Specification subject to amendment Correct "sr" in column 7 of "Detailed Description of the Invention" (1), page 2, line 13, to read "at least one type of jar". (2) Correct "5oo" in the first line of page 3 to "4oo". (3) In the 6th line of the same page, "optical effect" is corrected to "magneto-optical effect." (4) Correct "crystal plane C plane" on page 4, line 11 to "crystal crystal plane 0". (5) Correct “physical properties” on page 5, line 7 to “characteristics.” (0) "Base material crystal" in the third line of the same page is corrected to "substrate crystal." (7) “α-F@lO1(001)” in the first line of page 8
1, l, 0. (001), Zn0 (OOIJ as “α-
Fe1010 side, AJ, O, 0 side, Zn0 (corrected to February 00. (8) “Ba0F*10g (001)” in the third line of the same page
,pbope,o, (ool)J as jBaOF@,O
, (100), pbor@mos (Zoo)J. (9) Same page 4th line Oyo and 5th line Or S r O
F @106(004)J and “1N(QOJ)”
are corrected to "5rOF·tOm (100) J" and "AIN(002)", respectively. αQ “α-Fe@0.(001)J,” “A” in the table on the same page
IN0゜(ool) J, r AJN(oolJ and [Zn0(001)JwosotL(' h r (L-F
'etOs 0th side', f AJtOa O arrived, i”AJ
N (00 February and l' Zn0 (002) J. (111, page 9, line 15, "It becomes impossible to form." is corrected to 0, which makes it difficult to form.) 117J No. Correct “crystal plane 0” in the 9th line of page 10 to “hexagonal C plane of the crystal”.
Correct it as OF@10@J. En On page 11, line 9, ``Correct 550J to j4ooJ.'' Correct r(001)j on the last line of page 13 to r(002)J. ti61 g Page 14, line 2 (D ``5soJt -“4
Correct it to ooJ. +17) 3rd line of the same page Or(oot) J t r(o
Correct it to oz month. α seconds 15th page 4th line r(001)J is r(002
) Correct it as J. Ill Change “(001)deυ,” in the 5th line of the same page to j(
ooz), but l is 'e8s14,'' he corrected. (4) In the table on page 16, delete "l'-(ooz)hexa" in the column for base film (1) of Example 4. (211 r in the base film (1) column of Example 5 in the same table)
(oolI)hexa” is deleted. ■ In the column of base film (1) of Example 8 in the same table,
0 plane to Φ to OJ) is corrected to r(002)J. (2) “(
Correct ooJ)J to r(002)J. r (0(1)
J and "(OsO)J are corrected as f(Zoo)J and j (BaO)J, respectively. (c) r in the base film (1) column of Example 13 in the same table.
Correct (OOl)J to r(100)J. (b) r in the base film (1) column of Example 14 in the same table.
Correct (OOJ)j to r(100)J. □□□ r(OOJ)J in the base film (1) column of Example 15 in the same table is corrected to F (00 February). ”. Prisoner Delete “Axis orientation” in lines 8 and 14 of the same page. ■ Delete [, (oot4) J in line 9 of the same page. C311 Line 8 of the same page Delete the ", (001 ball)" in the eyes. June 1, 1980! 9 Kazuo Wakasugi, Commissioner of the Patent Office 1. Indication of the case 3. Relationship with the amended person case Patent applicant Tokyo 1-3-6 Nakamagome, Ota-ku, Tokyo (674) Ricoh Co., Ltd. Representative Hama 1) Hiro 4, Agent May 29, 1980 8 Attached document catalog drawing page 1 lecture

Claims (1)

【特許請求の範囲】[Claims] 1、 支持体と磁性層とからなる光磁気記録媒体におい
て、支持体の結晶面とマグネトゾラムノ々イト型磁性体
の結晶面(Oとの界面がミスフィツト率±30%以内で
あることを特徴とする光磁気記録媒体。
1. A magneto-optical recording medium consisting of a support and a magnetic layer, characterized in that the crystal plane of the support and the crystal plane (O) of the magnetozolamnoite type magnetic material have a misfit rate within ±30%. Magneto-optical recording medium.
JP2999884A 1984-02-20 1984-02-20 Photo-electro-magnetic recording medium Granted JPS60175229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2999884A JPS60175229A (en) 1984-02-20 1984-02-20 Photo-electro-magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2999884A JPS60175229A (en) 1984-02-20 1984-02-20 Photo-electro-magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60175229A true JPS60175229A (en) 1985-09-09
JPH0572662B2 JPH0572662B2 (en) 1993-10-12

Family

ID=12291592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2999884A Granted JPS60175229A (en) 1984-02-20 1984-02-20 Photo-electro-magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60175229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102758A (en) * 1987-10-14 1989-04-20 Ricoh Co Ltd Magneto-optical recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102758A (en) * 1987-10-14 1989-04-20 Ricoh Co Ltd Magneto-optical recording medium

Also Published As

Publication number Publication date
JPH0572662B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
US4753853A (en) Double-layered magnetooptical recording medium
US4367257A (en) Thin magnetic recording medium
US4838962A (en) Magneto-optical recording medium
GB2173964A (en) Magneto optical recording medium
JPH0118506B2 (en)
JPH0782943B2 (en) Amorphous magneto-optical layer
JPS60175229A (en) Photo-electro-magnetic recording medium
JPS63282944A (en) Thermomagneto-optical recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JPH05250742A (en) Magneto-optical recording medium and stamper employed in production thereof
JPH0343697B2 (en)
JPH0664761B2 (en) Magneto-optical recording medium
JPH0619859B2 (en) Magneto-optical recording medium
JP2777594B2 (en) Magnetic film
JP2620088B2 (en) Magneto-optical recording element and manufacturing method thereof
JP2681199B2 (en) Magneto-optical recording element
JP2707561B2 (en) Artificial lattice magneto-optical recording medium
JPS61115259A (en) Photomagnetic recording medium
KR930004331B1 (en) Optical magnetic recording materials
JP2763913B2 (en) Magnetic film and method of manufacturing the same
JPS62267949A (en) Magneto-optical recording medium
JPH0259603B2 (en)
JPS63148447A (en) Thermomagneto-optical recording medium
JPS62239447A (en) Magneto-optical recording medium
JPS6187249A (en) Photomagnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term