JPS60174842A - Bearing material for turbo charger - Google Patents

Bearing material for turbo charger

Info

Publication number
JPS60174842A
JPS60174842A JP59030797A JP3079784A JPS60174842A JP S60174842 A JPS60174842 A JP S60174842A JP 59030797 A JP59030797 A JP 59030797A JP 3079784 A JP3079784 A JP 3079784A JP S60174842 A JPS60174842 A JP S60174842A
Authority
JP
Japan
Prior art keywords
bearing material
bearing
wear
inches
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59030797A
Other languages
Japanese (ja)
Other versions
JPS6238417B2 (en
Inventor
Shinji Kato
愼治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59030797A priority Critical patent/JPS60174842A/en
Publication of JPS60174842A publication Critical patent/JPS60174842A/en
Publication of JPS6238417B2 publication Critical patent/JPS6238417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/14Alloys based on copper with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Supercharger (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To provide a bearing material for a turbo charger having the higher resistance to wear and seizure than the bearing material made of the conventional lead bronze by consisting said material of respectively prescribed ratios of Cu, Zn, Al and further 1-3 kinds among Ni, Fe, Ti, Pb, Mn, Si and Zr and specifying surface length, etc. CONSTITUTION:The above-described bearing material contains, by weight %, 55-65 Cu, 25-35 Zn, 2-6 Al and consists further of alloy components contg. at least 1-3 kinds among 0.2-3 Ni, 0.5-4 Fe, 1-2.5 Ti, 2-10 Pb, 2-4 Mn, 0.5-2 Si and 0.5-2 Zr. The bearing material is crystallized with the intermetallic compd. particles having 5-30mu max. length and >=400 Vickers hardness on the surface at 3-15% area rate. Since such bearing material contains prescribed amt. of Ni, Fe, Ti, Zn, Mn, etc., the intermetallic compd. consisting of these components is produced and is precipitated in a needle-like or lump state into the base alloy by selecting optimum conditions for production, cooling, etc. The resistance to wear is thus improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はターボチャージャ(turbocharger
)に使−用するフローティングベアリング(float
ingbear ing)材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a turbocharger (turbocharger).
floating bearings used in
ingbearing) material.

(従来技術) 内燃機関に装着されるターボチャージャの軸受部等に使
用されるフローテングベアリングは、内燃機関の運転停
止直後にタービンからの熱伝導により300℃前後の高
温になる為、ベアリング表面に付着している潤滑油のエ
ンジンオイルはその耐熱温度以上に加熱される。その結
果例えば以下のよう表問題が生ずる。すなわち、(1)
 エンジンオイル中に腐食性の酸性物質が生じ、これに
よシ例えばベアリング材に含まれる鉛が選択的に腐食さ
れ、ベアリングの摩耗が大きくなる。
(Prior art) Floating bearings used in the bearings of turbochargers installed in internal combustion engines reach a high temperature of around 300°C due to heat conduction from the turbine immediately after the internal combustion engine stops operating, so the bearing surface The attached lubricating oil, engine oil, is heated above its heat-resistant temperature. As a result, table problems such as the following may occur. That is, (1)
Corrosive acidic substances are produced in engine oil, which selectively corrode, for example, lead contained in bearing materials, increasing wear on the bearings.

(2〉 エンジンオイルが劣化し、ベアリングに潤滑油
を供給するための油入内にデポジット(deposiζ
沈殿物)を形成し油入を閉塞するため油膜切れを起し、
潤滑不良によシベーアリノグの摩耗が大きくなる。
(2) The engine oil deteriorates and deposits are formed in the oil tank that supplies lubricating oil to the bearings.
Precipitates) form and block the oil inlet, causing an oil film breakage.
Insufficient lubrication increases wear on the chive line log.

(3) 上記において形成したデポジットの剥離片ある
いは、エンジン本体やターボチャージャの油入の洗浄不
良によシ表面に付着して残った金属の切シ粉等との摩擦
によシベアリングの摩耗が大きくなる。
(3) Abrasion of the bearings may occur due to friction with flakes of deposits formed in the above process or metal chips remaining on the surface of the engine body or turbocharger due to improper cleaning. growing.

ベアリングの摩耗が大きくなるとタービンホイーA/ 
(turbine wheel)の回転軸の偏芯が大き
くなるため、タービンホイールとタービンハウジング(
turbinehouaing)とが干渉し異音を発生
するとか、タービンホイールが破損する等の不具合を生
ずる。
When bearing wear increases, turbine wheel A/
The eccentricity of the rotating shaft of the turbine wheel (turbine wheel) increases, so the turbine wheel and turbine housing (
This may cause problems such as abnormal noise or damage to the turbine wheel.

従来はターボチャージャの70−テングベアリング用の
材料としては銅、錫、鉛を生成分とする鉛青銅(例えば
LB(j、LBC4゜LBC5)が主として使用されて
いるが、耐摩耗性及び潤滑停止後の耐焼付性の点”そ充
分満足できるものではなかつた。
Conventionally, lead bronze containing copper, tin, and lead (for example, LB (j, LBC4°LBC5)) has been mainly used as a material for 70-length bearings in turbochargers, but it has poor wear resistance and lubrication resistance. The subsequent seizure resistance was not fully satisfactory.

(発明の目的) 本発明は上記従来技術における問題点を解決するための
ものであル、その目的とするところは従来の鉛青銅製の
ターボチャージャ用ベアリング材よりも耐摩耗性及び耐
焼付性に優れたターボチャージ。ヤ用ベアリング材を提
出することにある。 ゛ (発明の構成) すなわち本発明のターボチャージャ用ベアリンク材は、
重量比で銅55ないし65%、亜鉛zsないし55チ、
アルミニウム2ないシロT。
(Object of the Invention) The present invention is intended to solve the problems in the prior art described above, and its purpose is to provide a material with better wear resistance and seizure resistance than conventional lead bronze turbocharger bearing materials. Excellent turbocharging. The objective is to submit bearing materials for bearings. (Structure of the invention) That is, the bearing link material for a turbocharger of the present invention is
Copper 55 to 65%, zinc zs to 55% by weight,
Aluminum 2 Shiro T.

を含み更にニッケルα2ないし5%、鉄α5ないし4チ
、チタン1ないし2.5%、鉛2ないし10チ、マンガ
ン2ないし4チ、ケイ素α5ないし2qI、、ジルコニ
ウムα5ないし2%のうちの少なくとも一種ないし三種
及び残部の不純物を含む合金成分よシなシ、表面に最大
長さが5ないし30μでビッカース硬さ400以上の金
属間化合物粒子を面積率3ないし15チ晶出させたこと
を特徴とする。好ましい組成のベアリング材としては重
量比で銅55ないし65チ、亜鉛25ないし35チ、ア
ルミニウム2ないし611IIを含んだ基材に、更に鉄
2ないし4%、チタン1.5ないし2−5チを添加する
か、更に上記成分に加えて鉛2ないし10チを添加した
合金が挙げられる。
Furthermore, at least 2 to 5% of nickel α, 5 to 4% of iron, 1 to 2.5% of titanium, 2 to 10% of lead, 2 to 4% of manganese, 5 to 2qI of silicon, and 5 to 2% of zirconium It is characterized by having an alloy component containing one or three types of impurities and the remainder, and crystallized on the surface of intermetallic compound particles with a maximum length of 5 to 30 μ and a Vickers hardness of 400 or more at an area ratio of 3 to 15. shall be. A preferred bearing material has a base material containing 55 to 65 inches of copper, 25 to 35 inches of zinc, and 2 to 611 II of aluminum, and further contains 2 to 4% iron and 1.5 to 2-5 inches of titanium. Examples include alloys in which 2 to 10 parts of lead are added or in addition to the above components.

別の好ましい組成のベアリング材としては重量比で銅5
5ないし65チ、亜鉛25ないし35チ、アルミニウム
2ないし6チを含んだ基材に、更にニッケル+lL2な
いし3チ、チタン1ないし2%を添加した合金が挙けら
れる。
Another preferable bearing material has a composition of copper 5 by weight.
Examples include alloys in which 2 to 3% of nickel + 1L and 1 to 2% of titanium are added to a base material containing 5 to 65 inches of zinc, 25 to 35 inches of zinc, and 2 to 6 inches of aluminum.

更に別の好ましい組成のベアリング材としては重量比で
銅55ないし65 %、亜鉛25ないし55 %、アル
ミニウム2ないし6qbを含んだ基材に、更にニッケル
α2ないし3%、マンガン2ないし4チ、ケイ素115
ないし2チを添加した合金が挙げられる。
Another preferable bearing material has a base material containing 55 to 65% copper, 25 to 55% zinc, and 2 to 6 qb of aluminum, and further contains 2 to 3% nickel alpha, 2 to 4 qb manganese, and silicon. 115
Examples include alloys to which 1 to 2 chlorides are added.

更に別の好ましい組成のベアリング材としては重量比で
銅55ないし65チ、亜鉛25ないし55%、アルミニ
ウム2ないし6%を含んだ基材に、更にニッケルα2な
いし5%、鉄α5ないし2チ、ケイ素(L5ないし2%
、ジルコニウムα5ないし2%を添加するか、更に上記
成分に加えて鉛2ないし10%を添加した合金が挙けら
れる。
Another preferable bearing material has a base material containing 55 to 65% copper, 25 to 55% zinc, and 2 to 6% aluminum by weight, and further contains α2 to 5% nickel, α5 to 2% iron, Silicon (L5 to 2%
Examples include alloys to which 5 to 2% of zirconium α is added, or 2 to 10% of lead is added in addition to the above components.

本発明のベアリング材はニッケル、鉄、チタン、亜鉛、
マンガン、ケイ素等を所定量含むため、これらの成分よ
シなる硬い金属間化合物が生じ、製造及び冷却条件等を
最適に選択することによシ母材合全中に針状もしくは塊
状に析出させることができる。この金属間化合物はビッ
カース硬さくBy)が400以上であシ、均一な合中に
適尚な大きさく最大長さ)を有するものを均一に分散さ
せることによシ母材合金の耐摩耗性を向上させることが
できる。最大長さとしては約5ないし約30μ、特に1
5μ程度のものが好ましい。又、金属間化合物の晶出す
る面積率は3ないし15チが好ましい。したがって、こ
の合金を用いれば耐摩耗性に優れたベアリングを得るこ
とができる。
The bearing material of the present invention includes nickel, iron, titanium, zinc,
Because it contains a certain amount of manganese, silicon, etc., hard intermetallic compounds are formed that are similar to these components, and by optimally selecting manufacturing and cooling conditions, they can be precipitated in the form of needles or lumps during the synthesis of the base material. be able to. This intermetallic compound has a Vickers hardness (By) of 400 or more, and by uniformly dispersing the compound with an appropriate size and maximum length, it improves the wear resistance of the base alloy. can be improved. The maximum length is about 5 to about 30μ, especially 1
A thickness of about 5μ is preferable. Further, the area ratio where the intermetallic compound crystallizes is preferably 3 to 15 inches. Therefore, by using this alloy, a bearing with excellent wear resistance can be obtained.

又、本発明のベアリング材の特徴を利用してベアリング
材耐摩耗性を更に向上させることができる。すなわち、
所望形状例えば円筒状に形成したベアリング材の摺動面
を研摩した後、該摺動面を適当なエツチング剤例えば各
種の酸や塩類を用いて食刻すると、鉄やチタン等の金属
間化合物粒子は腐食され難いので上記摺動面上に露出し
て残る。このため摺動面は連続又は断続した凹所を有す
る構造となシ、とこに潤滑油を充填して油だまシとする
ことによシ潤滑性が増すので耐摩耗性が向上する。特に
始動時の初期スカッフ(S Cu ”sすシ減シ)を減
少させることができる。凹所の深さすなわち金属間粒子
の露出高さは、あまシ大きいと金属間粒子の剥離を生じ
、あまシ小さいと充分な潤滑効果を得られないため、約
α5μないし約5μ、好ましくは約1μないし約3μと
するとよい。
Further, the wear resistance of the bearing material can be further improved by utilizing the characteristics of the bearing material of the present invention. That is,
After polishing the sliding surface of a bearing material formed into a desired shape, such as a cylindrical shape, the sliding surface is etched using an appropriate etching agent, such as various acids or salts, to form particles of intermetallic compounds such as iron and titanium. Since it is difficult to corrode, it remains exposed on the sliding surface. For this reason, the sliding surface has a structure with continuous or intermittent recesses, and by filling the recesses with lubricating oil to form an oil sump, lubricity is increased and wear resistance is improved. In particular, it is possible to reduce the initial scuff (S Cu "s") at the time of startup.If the depth of the recess, that is, the exposed height of the intermetallic particles is too large, the intermetallic particles will peel off. Since a sufficient lubricating effect cannot be obtained if the thickness is too small, it is recommended that α be approximately 5μ to approximately 5μ, preferably approximately 1μ to approximately 3μ.

叉、上記と同様の効果を得るための別の方法としては円
筒状に成形したベアリング材の内周側面及び外周側面に
、円周方向に沿って所定間隔で条痕状の溝を配設しても
よい。更に表面等を精密加工して最終製品のベアリング
としたとき、この溝祉エンジンオイル等の潤滑油を溜め
ておく保油効果ばかシでなく、ベアリング摺動面をその
軸方向に沿って分断しているので、例えば個々の分断さ
れた摺動面上にエンジンオイルの劣化によるスラッジが
生成しても付着面積が小さいため付酒力を弱める。この
ためベアリングの回転によシスラツジは容易に破断され
るので摺動面に固着する等の不具合はなくなる。
Another method for obtaining the same effect as above is to arrange grooves in the form of grooves at predetermined intervals along the circumferential direction on the inner and outer peripheral surfaces of a cylindrical bearing material. It's okay. Furthermore, when the surface etc. are precision-machined to make a final product bearing, it is not only effective to store lubricating oil such as engine oil, but also to separate the sliding surface of the bearing along its axial direction. Therefore, even if sludge is generated on each divided sliding surface due to engine oil deterioration, the adhesion area is small and the sticking power is weakened. For this reason, the sysludge is easily broken by the rotation of the bearing, eliminating problems such as sticking to the sliding surface.

又、本発明のベアリング材の場合摺動面上に硬′い金属
間化合物粒子が露出しているので、これもスラッジをか
き落すのに有効で64)、溝の効果と合わせて極めてス
ラッジが生成し難いものとまる。更に溝を配設すること
により、ターボチャージャ可動時にベアリングの軸方向
に流れるエンジンオイルの流量が増大するため、潤滑及
び冷却効果が増し、ベアリング温度の上昇を押えるので
、スラッジの生成やベアリングの摩耗を低減させること
ができる。エツチングによ ゛る摺動面の食刻と溝の配
設を併用すれば更に効果的′である。
In addition, in the case of the bearing material of the present invention, hard intermetallic compound particles are exposed on the sliding surface, which is also effective in scraping off sludge64), and together with the effect of the grooves, it is extremely effective in removing sludge. Stops things that are difficult to generate. Furthermore, by providing grooves, the flow rate of engine oil flowing in the axial direction of the bearing when the turbocharger is operating is increased, increasing the lubrication and cooling effect and suppressing the rise in bearing temperature, thereby reducing the generation of sludge and bearing wear. can be reduced. It is even more effective if the sliding surface is etched and grooves are provided in combination.

円筒状ベアリングの大きさすなわち円筒の高さ、内径、
外径はターボチャージャに合わせて最適に選択する。円
筒側面の一部に変形の防止、冷却効率の増大、エンジン
オイルの供給等の目的で所望の大きさ、形状を有する孔
を開けてもよい。
The size of the cylindrical bearing, i.e. the height of the cylinder, the inner diameter,
The outer diameter is optimally selected according to the turbocharger. A hole having a desired size and shape may be formed in a part of the cylindrical side surface for the purpose of preventing deformation, increasing cooling efficiency, supplying engine oil, etc.

溝の断面形状は種々の形例えば7字形、U字形、長方形
、半円形とすることができる。又、溝の間隔、幅、深さ
もベアリングの強度やエンジンオイル保持量、加工性等
を考慮して最適に選択するが、通常の目的に使用するタ
ーボチャージャ用ベアリングに対しては溝の間隔は約1
閣ないし約5W!x1幅は約15mないし5簡、深さは
約[L5mないしめseem程度とするのがよい。
The cross-sectional shape of the groove can be various shapes, such as a 7-shape, a U-shape, a rectangle, or a semicircle. In addition, the groove spacing, width, and depth are optimally selected taking into account the strength of the bearing, the amount of engine oil retained, workability, etc.; however, for turbocharger bearings used for normal purposes, the groove spacing is Approximately 1
About 5W! The width of x1 should be about 15 m to 5 cm, and the depth should be about 5 m to about 5 cm.

<*施例) 以下の実施例において本発明を更に詳細に説明する。な
お本発明は下記実施例に限定されるものではない。
<*Example) The present invention will be explained in further detail in the following example. Note that the present invention is not limited to the following examples.

実施例1: 銅(Cu)55ないし65重量%、亜鉛(ZrB) 2
5ないし35重量%、アルミニウム(AI) 2ないし
6重量%、鉄(Fe) 2ないし4重1tlb、チタン
(Ti)t5ないし2.5重量−の割合で原料を溶融炉
内に投入し、1150℃で溶解し1000℃前後で鋳込
んだ後に室温まで冷却して本発明のターボチャージャ用
ベアリング材1を得た。
Example 1: Copper (Cu) 55 to 65% by weight, Zinc (ZrB) 2
5 to 35% by weight of aluminum (AI), 2 to 6% by weight of aluminum (AI), 1 tlb of iron (Fe) 2 to 4 times, and 5 to 2.5% of titanium (Ti) by weight. After melting at 1000° C. and casting at around 1000° C., the mixture was cooled to room temperature to obtain bearing material 1 for a turbocharger of the present invention.

実施例2: 銅、亜鉛及びアルミニウムを実施例1の原料と同量加に
、更にニッケル(Ni)(L2ないし3重量%、チタン
1ないし2重量%を加えて実施例1と同様の方法によシ
ベアリング材2を得た。
Example 2: In addition to the same amounts of copper, zinc and aluminum as the raw materials of Example 1, nickel (Ni) (L2 to 3% by weight and titanium 1 to 2% by weight) were added and the same method as in Example 1 was carried out. Yoshi bearing material 2 was obtained.

実施例3: 銅、亜鉛、アルミニウム及びニッケルを実施例2の原料
と同量加え、更にマンガン(Mn) 2ないし4重量%
、ケイ素(St)α5ないし2重量%を加えて実施例1
と同様の方法によシベアリング材3を得た。
Example 3: Copper, zinc, aluminum and nickel were added in the same amounts as the raw materials of Example 2, and 2 to 4% by weight of manganese (Mn) was added.
, by adding 5 to 2% by weight of silicon (St) α
Sea bearing material 3 was obtained in the same manner as above.

実施例4ないし7:添加成分を変えて実施例1と同様の
方法によシベアリング材4ないし7を得た。′ 上記実施例層ないし7で得た本発明のターボチャージャ
用ベアリング材料及び比較のための従来の材料の化学成
分及びこれらを用いて製造したベアリングの耐摩耗性、
焼付発生時間(耐焼付性)をまとめて表に示す。表に示
す耐摩耗性はLFW−1摩耗試験機での比較的低回転・
低荷重での各種ベアリング材料の摩耗深さで示しておシ
、値の小さなものtlど侵れている。又、表に示す耐焼
付性社、ターボチャージャ用ベアリング特有の問題であ
る潤滑不良の状態を想定し、機械試験所属摩擦摩耗試験
機にて潤滑下の低荷重・高回転でのならし運転の状態よ
シ潤滑を停止し、それ以後の焼付発生までの時間を示し
ておシ、長いものほど優れている。
Examples 4 to 7: Sea bearing materials 4 to 7 were obtained in the same manner as in Example 1 except that the additive components were changed. 'Chemical components of the bearing materials for turbochargers of the present invention obtained in the above-mentioned Example Layers to 7 and conventional materials for comparison, and wear resistance of bearings manufactured using these;
The seizure occurrence time (seizure resistance) is summarized in the table. The wear resistance shown in the table was measured at relatively low rotation speeds using the LFW-1 wear tester.
It shows the wear depth of various bearing materials under low loads, and those with small values show erosion. In addition, assuming the anti-seizure condition shown in the table, a condition of poor lubrication, which is a problem specific to bearings for turbochargers, we conducted a break-in operation at low load and high rotation under lubrication using a friction and wear tester belonging to Mechanical Testing. It shows the time from when lubrication is stopped until seizure occurs. The longer the time, the better.

表よシ明らかなように、本発明のベアリング材は従来の
鉛青銅に比べて摩耗深さが非常に小さく、耐摩耗性が著
しく向上している。又、焼付発生時間も長くなっておシ
耐焼付性も向上している。本発明のベアリング材の耐摩
耗性が優れている理由は硬い金属間化合物粒子が母材中
に晶出しているからであシ、同様な組織を有している材
料としては表中のA390に代表される高シリコンアル
ミニウム合金がある。しかしこの合金は耐摩耗性は優れ
ているが潤滑不足の状態での耐焼付性は低い。これは、
母材がアルミニウム(AI)であるため耐熱温度が低く
、潤滑不良による摩擦面の温度上昇によル塑性流動しや
すくなるためである。本発明材が優れているのは母材が
銅(Cu)であるため耐熱温度がアルミニウムに比べて
高く、層性流動しにくいためである。従来の鉛青銅であ
るLBC)、4.5が耐焼付性に優れているのは比較材
PBPと比べると判るように鉛(Pb)を含むためであ
シ、合金組織中に含まれる鉛が摩擦熱によって溶出し潤
滑効果を示すためである。しかし、耐摩耗性は本発明材
のように硬い金属間化合物粒子が合金組織中に晶出して
いないため劣っている。本発明材においても鉛を添加す
ることによシ上記と同様の効果が生じ、耐焼付性は更に
向上する。
As is clear from the table, the bearing material of the present invention has a much smaller wear depth and significantly improved wear resistance than conventional lead bronze. In addition, the time required for seizure to occur has become longer, and the seizure resistance has also been improved. The reason why the bearing material of the present invention has excellent wear resistance is that hard intermetallic compound particles are crystallized in the base material, and A390 in the table is a material with a similar structure. High-silicon aluminum alloys are representative. However, although this alloy has excellent wear resistance, it has low seizure resistance under conditions of insufficient lubrication. this is,
This is because the base material is aluminum (AI), which has a low heat resistance temperature, and is likely to undergo plastic flow due to an increase in the temperature of the friction surface due to poor lubrication. The material of the present invention is superior because the base material is copper (Cu), which has a higher heat resistance temperature than aluminum and is less likely to have laminar flow. The reason why conventional lead bronze (LBC) and 4.5 has excellent seizure resistance is because it contains lead (Pb), as can be seen when compared with the comparative material PBP. This is because it is eluted by frictional heat and exhibits a lubricating effect. However, the wear resistance is poor because hard intermetallic compound particles are not crystallized in the alloy structure as in the material of the present invention. Adding lead to the material of the present invention also produces the same effect as described above, and the seizure resistance is further improved.

第1図は本発明のターボチャージャ用ベアリング材の表
面の研摩後及びエツチング後の一部拡大断面図である。
FIG. 1 is a partially enlarged sectional view of the surface of the bearing material for a turbocharger according to the present invention after polishing and etching.

円筒状に成形したベアリング材の摺動面を研摩後更に、
塩化ナトリウムt05g/l、塩化アンモニウム30 
g /Lを含む水溶液を用いて常温で数分間エツチング
を行い、母材1の表面上に金属間化合物粒子2を表面よ
シ1ないし5μ露出させた。
After polishing the sliding surface of the cylindrical bearing material,
Sodium chloride t05g/l, ammonium chloride 30
Etching was carried out for several minutes at room temperature using an aqueous solution containing 1 to 5 g/L, and the intermetallic compound particles 2 were exposed on the surface of the base material 1 to a depth of 1 to 5 μm.

第2図は摺動面に溝を配設した本発明のターボチャージ
ャ用ベアリング材を用いて製造したベアリングの一実施
例の断面図である。ターボチャージャ用ベアリング5は
内径10箇外径16叫、島さ?簡の円筒状で1)、その
軸方向中央部に6個の孔4を有する。又、内周側面及び
外周側面には円周方向に沿って3W間隔で幅1m+11
1゜深さ111111の断面がV字形の溝5を有する。
FIG. 2 is a cross-sectional view of an embodiment of a bearing manufactured using the bearing material for a turbocharger of the present invention in which grooves are provided on the sliding surface. The bearing 5 for the turbocharger has 10 inner diameters and 16 outer diameters, is it an island? It has a simple cylindrical shape (1) and has six holes 4 in its axial center. In addition, on the inner and outer circumferential sides, there are 1 m + 11 in width at 3W intervals along the circumferential direction.
The groove 5 has a V-shaped cross section and has a depth of 1°.

このような条痕状の溝5を設けると接触面積が低下する
為、単位面積尚シの圧力(面圧)が大きくなシ、従来の
材料で製造したベアリングでは摩耗が増大し問題となる
が、本発明のベアリング材は耐摩耗性力積れているため
に面圧が大きくなっても摩耗がtlとんど増大せず問題
はない。
When such grooves 5 are provided, the contact area decreases, so the pressure (surface pressure) per unit area is large, and bearings made from conventional materials increase wear, which is a problem. Since the bearing material of the present invention has wear resistance, even if the surface pressure increases, the wear does not increase at all, causing no problem.

第3図は第2図の一点鎖線で囲んだ部分■の拡大断面図
である。
FIG. 3 is an enlarged cross-sectional view of the portion (2) surrounded by the dashed-dotted line in FIG.

(発明の効果) 上述のように、本発明のターボチャージャ用ベアリング
材は母材合金よシも遥かに硬度の大きな適切な平均粒径
を有する金属間化合物粒子が表面に無出しているため従
来の鉛青銅等の夕 ゛−ボチャージャ用ベアリング材に
比べて耐摩耗性及び耐焼付性が向上し、ターボチャージ
ャの信頼性及び品質向上に大きな効果を奏する。
(Effects of the Invention) As described above, the bearing material for turbochargers of the present invention has no intermetallic compound particles on the surface having an appropriate average particle size and is much harder than the base alloy. It has improved wear resistance and seizure resistance compared to other materials such as lead bronze bearing materials for turbochargers, and has a significant effect on improving the reliability and quality of turbochargers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のターボチャージャ用ベアリング材の表
面の研摩後及びエツチング後の一部拡大断面図、 第2図は摺動面に溝を配設した本発明のターボチャージ
ャ用ベアリング材を用いて製造したベアリングの一実施
例の断面図、 第3図は第2図の一点鎖線で囲んだ部分■の拡大断面図
である。 図中、 1・・・母材 2・・・金属間化合物粒子3・・・ター
ボチャージャ用ベアリング ′4・・・孔 5・・・溝 特許出願人 トヨタ自動車株式会社 R厚役 第2図 1図 第30
Fig. 1 is a partially enlarged sectional view of the surface of the turbocharger bearing material of the present invention after polishing and etching, and Fig. 2 shows the use of the turbocharger bearing material of the present invention with grooves provided on the sliding surface. FIG. 3 is an enlarged sectional view of a portion (2) surrounded by a dashed line in FIG. 2. In the figure, 1...Base material 2...Intermetallic compound particles 3...Bearing for turbocharger '4...Hole 5...Groove Patent Applicant Toyota Motor Corporation R Employee Figure 2 1 Figure 30

Claims (3)

【特許請求の範囲】[Claims] (1) 重量比で銅55ないし65チ、亜鉛25ないし
35チ、アルミニウム2ないし69kを含み更にニッケ
ルα2ないし3チ、鉄(L5ないし4%、チタン1ない
し15%、鉛2ないし10チ、マンガン2ないし4チ、
ケイ素α5ないし2チ、ジルコニウム(L5ないし2チ
のうちの少なくとも一種ないし三種及び残部の不純物を
含む合金成分よりなシ、表面に最大長さが5ないし30
μでビッカース硬さ400以上の金属間化合物粒子を面
積率で6ないし15チ晶出させたことを特徴とするター
ボチャージャ用ベアリング材。
(1) Contains 55 to 65 inches of copper, 25 to 35 inches of zinc, 2 to 69K of aluminum, and 2 to 3 inches of nickel, iron (L5 to 4%, titanium 1 to 15%, lead 2 to 10 inches, 2 to 4 manganese,
It is not an alloy component containing silicon α5 to 2, zirconium (at least one or three of L5 to 2, and the remaining impurities), and the maximum length on the surface is 5 to 30.
A bearing material for a turbocharger, characterized in that intermetallic compound particles having a Vickers hardness of 400 or more are crystallized in an area ratio of 6 to 15.
(2)表面を研摩後、該表面をエツチング等の腐水の範
囲第1項記載のターボチャージャ用ベアリング材。
(2) The bearing material for a turbocharger according to item 1, in which the surface is polished and then the surface is etched to remove rotten water.
(3)円筒状に成形したベアリング材の内周面及び外周
面に円周方向に条痕状の溝を設けたことを特徴とする特
許請求の範囲第1項記載のターボチャージャ用ベアリン
グ材。
(3) The bearing material for a turbocharger according to claim 1, wherein grooves in the form of grooves are provided in the circumferential direction on the inner peripheral surface and the outer peripheral surface of the bearing material formed into a cylindrical shape.
JP59030797A 1984-02-20 1984-02-20 Bearing material for turbo charger Granted JPS60174842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59030797A JPS60174842A (en) 1984-02-20 1984-02-20 Bearing material for turbo charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030797A JPS60174842A (en) 1984-02-20 1984-02-20 Bearing material for turbo charger

Publications (2)

Publication Number Publication Date
JPS60174842A true JPS60174842A (en) 1985-09-09
JPS6238417B2 JPS6238417B2 (en) 1987-08-18

Family

ID=12313668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030797A Granted JPS60174842A (en) 1984-02-20 1984-02-20 Bearing material for turbo charger

Country Status (1)

Country Link
JP (1) JPS60174842A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186535U (en) * 1984-11-13 1986-06-06
JPS61179829A (en) * 1984-08-11 1986-08-12 Aisin Seiki Co Ltd Gear driving type oil pump
JPS63206440A (en) * 1987-02-24 1988-08-25 Mitsubishi Metal Corp Wear-resistant cu alloy combining high strength with high toughness
US4944915A (en) * 1988-12-21 1990-07-31 Poongsan Corporation Copper alloys for electrical and electronic parts and its manufacturing process
JPH03215642A (en) * 1990-01-22 1991-09-20 Daido Metal Co Ltd Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance
JP2003049658A (en) * 2001-08-03 2003-02-21 Sogi Kogyo Kk Manufacturing method for preform of variable vane in vgs(variable geometry system) type turbocharger
US6652675B2 (en) * 2000-02-08 2003-11-25 Daido Metal Company Ltd. Copper alloy sliding material
US6790297B1 (en) 1999-09-07 2004-09-14 Nsk Ltd. Retainer
EP2386664B1 (en) 2009-01-06 2015-03-18 Oiles Corporation High-strength brass alloy for sliding members, and sliding members
JP2018512506A (en) * 2015-03-24 2018-05-17 ディール、メタル、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフトDiehl Metall Stiftung & Co. Kg Copper zinc alloy and its use

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179829A (en) * 1984-08-11 1986-08-12 Aisin Seiki Co Ltd Gear driving type oil pump
JPS6186535U (en) * 1984-11-13 1986-06-06
JPS63206440A (en) * 1987-02-24 1988-08-25 Mitsubishi Metal Corp Wear-resistant cu alloy combining high strength with high toughness
US4944915A (en) * 1988-12-21 1990-07-31 Poongsan Corporation Copper alloys for electrical and electronic parts and its manufacturing process
JPH03215642A (en) * 1990-01-22 1991-09-20 Daido Metal Co Ltd Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance
JPH0536486B2 (en) * 1990-01-22 1993-05-31 Daido Metal Co
US6790297B1 (en) 1999-09-07 2004-09-14 Nsk Ltd. Retainer
US6652675B2 (en) * 2000-02-08 2003-11-25 Daido Metal Company Ltd. Copper alloy sliding material
JP2003049658A (en) * 2001-08-03 2003-02-21 Sogi Kogyo Kk Manufacturing method for preform of variable vane in vgs(variable geometry system) type turbocharger
EP2386664B1 (en) 2009-01-06 2015-03-18 Oiles Corporation High-strength brass alloy for sliding members, and sliding members
US9322085B2 (en) 2009-01-06 2016-04-26 Oiles Corporation High-strength brass alloy for sliding members, and sliding members
JP2018512506A (en) * 2015-03-24 2018-05-17 ディール、メタル、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフトDiehl Metall Stiftung & Co. Kg Copper zinc alloy and its use

Also Published As

Publication number Publication date
JPS6238417B2 (en) 1987-08-18

Similar Documents

Publication Publication Date Title
AU605110B2 (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
JPS60174842A (en) Bearing material for turbo charger
GB2403780A (en) Sliding member
JPS61153286A (en) Flat bearings and its production
JP2000345258A (en) Sliding bearing
JPS5864336A (en) Aluminum alloy bearing
JPH03215642A (en) Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance
JPS6144140B2 (en)
JPS62110021A (en) Aluminum group slide bearing
JPS5867841A (en) Aluminum alloy bearing
JPS6254853B2 (en)
JPS6263635A (en) Al-sn-pb bearing alloy
JPS6212298B2 (en)
JPH0114990B2 (en)
JP3891732B2 (en) Sliding member
JPS6256938B2 (en)
JPH0159360B2 (en)
JPS63201388A (en) Vane type compressor
JPS6144141B2 (en)
JPH0413565B2 (en)
JPH0587578B2 (en)
JPS6212297B2 (en)
JPH0711046B2 (en) Al-Sn bearing alloy
JPH0389077A (en) Cylinder
JPS6220916A (en) Plain bearing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term