JPS6238417B2 - - Google Patents

Info

Publication number
JPS6238417B2
JPS6238417B2 JP59030797A JP3079784A JPS6238417B2 JP S6238417 B2 JPS6238417 B2 JP S6238417B2 JP 59030797 A JP59030797 A JP 59030797A JP 3079784 A JP3079784 A JP 3079784A JP S6238417 B2 JPS6238417 B2 JP S6238417B2
Authority
JP
Japan
Prior art keywords
bearing
bearing material
intermetallic compound
wear
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59030797A
Other languages
Japanese (ja)
Other versions
JPS60174842A (en
Inventor
Shinji Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59030797A priority Critical patent/JPS60174842A/en
Publication of JPS60174842A publication Critical patent/JPS60174842A/en
Publication of JPS6238417B2 publication Critical patent/JPS6238417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/14Alloys based on copper with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Supercharger (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はターボチヤージヤ(turbocharger)に
使用するフローテイングベアリング
(floatingbearing)材に関するものである。 (従来技術) 内燃機関に装着されるターボチヤージヤの軸受
部等に使用されるフローテイングベアリングは、
内燃機関の運転停止直後にタービンからの熱伝導
により300℃前後の高温になる為、ベアリング表
面に付着している潤滑油のエンジンオイルはその
耐熱温度以上加熱される。その結果例えば以下の
ような問題が生ずる。すなわち、 (1) エンジンオイル中に腐食性の酸性物質が生
じ、これにより例えばベアリング中に含まれる
鉛が選択的に腐食され、ベアリングの摩耗が大
きくなる。 (2) エンジンオイルが劣化し、ベアリングに潤滑
油を供給するための油穴内にデポジツト
(deposit、沈殿物)を形成し油穴を閉塞するた
め油膜切れを起し、潤滑不良によりベアリング
の摩耗が大きくなる。 (3) 上記において形成したデポジツトの剥離片あ
るいは、エンジン本体やターボチヤージヤの油
穴の洗浄不良により表面に付着して残つた金属
の切り粉等との摩擦によりベアリングの摩耗が
大きくなる。 ベアリングの摩耗が大きくなるとタービンホイ
ール(turbine wheel)の回転軸の偏芯が大きく
なるため、タービンホイールとタービンハウジン
グ(turbinehousing)とが干渉し異音を発生する
とか、タービンホイールが破損する等の不具合を
生ずる。 従来はターボチヤージヤのフローテングベアリ
ング用の材料としては銅、錫、鉛を主成分とする
鉛青銅(例えばLBC3,LBC4,LBC5)が主とし
て使用されているが、耐摩耗性及び潤滑停止後の
耐焼付性の点で充分満足できるものではなかつ
た。 (発明の目的) 本発明は上記従来技術における問題点を解決す
るためのものであり、その目的とするところは従
来の鉛青銅製のターボチヤージヤ用ベアリング材
よりも耐摩耗性及び耐焼付性に優れたターボチヤ
ージヤ用ベアリング材を提出することにある。 (発明の構成) すなわち本発明のターボチヤージヤ用ベアリン
グ材は、重量比で銅55ないし65%、亜鉛25ないし
35%、アルミニウム2ないし6%を含み更にニツ
ケル0.2ないし3%、鉄0.5ないし4%、チタン1
ないし2.5%、鉛2ないし10%、マンガン2ない
し4%、ケイ素0.5ないし2%、ジルコニウム0.5
ないし2%のうちの少なくとも一種ないし五種及
び残部の不純物を含む合金成分よりなり、表面に
最大長さが5ないし30μでビツカース硬さ400以
上の金属間化合物粒子を面積率3ないし15%晶出
させたことを特徴とする。好ましい組成のベアリ
ング材としては重量比で銅55ないし65%、亜鉛25
ないし35%、アルミニウム2ないし6%を含んだ
基材に、更に鉄2ないし4%、チタン1.5ないし
2.5%を添加するか、更に上記成分に加えて鉛2
ないし10%を添加した合金が挙げられる。 別の好ましい組成のベアリング材としては重量
比で銅55ないし65%、亜鉛25ないし35%、アルミ
ニウム2ないし6%を含んだ基材に、更にニツケ
ル0.2ないし3%、チタン1ないし2%を添加し
た合金が挙げられる。 更に別の好ましい組成のベアリング材としては
重量比で銅55ないし65%、亜鉛25ないし35%、ア
ルミニウム2ないし6%を含んだ基材に、更にニ
ツケル0.2ないし3%、マンガン2ないし4%、
ケイ素0.5ないし2%を添加した合金が挙げられ
る。 更に別の好ましい組成のベアリング材としては
重量比で銅55ないし65%、亜鉛25ないし35%、ア
ルミニウム2ないし6%を含んだ基材に、更にニ
ツケル0.2ないし3%、鉄0.5ないし2%、ケイ素
0.5ないし2%、ジルコニウム0.5ないし2%を添
加するか、更に上記成分に加えて鉛2ないし10%
を添加した合金が挙げられる。 本発明のベアリング材はニツケル、鉄、チタ
ン、亜鉛、マンガン、ケイ素等を所定量含むた
め、これらの成分よりなる硬い金属間化合物が生
じるが、該金属間化合物は、注湯温度1000℃以上
で鋳込み、凝固開始温度を900〜950℃とし、平均
冷却速度約100℃/分にて室温まで冷却すること
により母材合金中に針状もしくは塊状に析出させ
ることができる。この金属間化合物はビツカース
硬さ(Hv)が400以上であり、均一な合金層のビ
ツカース硬さ160ないし230よりも遥かに大きいた
め耐摩耗性が優れており、母材合金中に適当な大
きさ(最大長さ)を有するものを均一に分散させ
ることにより母材合金の耐摩耗性を向上させるこ
とができる。最大長さとしては約5ないし約30
μ、特に15μ程度のものが好ましい。又、金属間
化合物の晶出する面積率3ないし15%が好まし
い。したがつて、この合金を用いれば耐摩耗性に
優れたベアリングを得ることができる。 又、本発明のベアリング材の特徴を利用してベ
アリングの耐摩耗性を更に向上させることができ
る。すなわち、所望形状例えば円筒状に形成した
ベアリング材の摺動面を研摩した後、該摺動面を
適当なエツチング剤例えば各種の酸や塩類を用い
て食刻すると、鉄やチタン等の金属間化合物粒子
は腐食され難いので上記摺動面上に露出して残
る。このため摺動面は連続又は断続した凹所を有
する構造となり、ここに潤滑油を充填して油だま
りとすることにより潤滑性が増すので耐摩耗性が
向上する。特に始動時の初期スカツフ(scuff、
すり減り)を減少させることができる。凹所の深
さすなわち金属間粒子の露出高さは、あまり大き
いと金属間粒子の剥離を生じ、あまり小さいと充
分な潤滑効果を得られないため、約0.5μないし
約5μ、好ましくは約1μないし約3μとすると
よい。 又、上記と同様の効果を得るための別の方法と
しては円筒状に成形したベアリング材の内周側面
及び外周側面に、円周方向に沿つて所定間隔で条
痕状の溝を配設してもよい。更に表面等を精密加
工して最終製品のベアリングとしたとき、この溝
はエンジンオイル等の潤滑油を溜めておく保油効
果ばかりでなく、ベアリング摺動面をその軸方向
に沿つて分断しているので、例えば個々の分断さ
れた摺動面上にエンジンオイルの劣化によるスラ
ツジが生成しても付着面積が小さいため付着力を
弱める。このためベアリングの回転によりスラツ
ジは容易に破断されるので摺動面に固着する等の
不具合はなくなる。又、本発明のベアリング材の
場合摺動面上に硬い金属間化合物粒子が露出して
いるので、これもスラツジをかき落すのに有効で
あり、溝の効果と合わせて極めてスラツジが生成
し難いものとなる。更に溝を配設することによ
り、ターボチヤージヤ可動時にベアリングの軸方
向に流れるエンジンオイルの流量が増大するた
め、潤滑及び冷却効果が増し、ベアリング温度の
上昇を押えるので、スラツジの生成やベアリング
の摩耗を低減させることができる。エツチングに
よる摺動面の食刻と溝の配設を併用すれば更に効
果的である。 円筒状ベアリングの大きさすなわち円筒の高
さ、内径、外径はターボチヤージヤに合わせて最
適に選択する。円筒側面の一部に変形の防止、冷
却効率の増大、エンジンオイルの供給等の目的で
所望の大きさ、形状を有する孔を開けてもよい。 溝の断面形状は種々の形例えばV字形、U字
形、長方形、半円形とすることができる。又、溝
の間隔、幅、深さもベアリングの強度やエンジン
オイル保持量、加工性等を考慮して最適に選択す
るが、通常の目的に使用するターボチヤージヤ用
ベアリングに対しては溝の間隔は約1mmないし約
5mm、幅は約0.5mmないし3mm、深さは約0.5mmな
いし約3mm程度とするのがよい。 (実施例) 以下の実施例において本発明を更に詳細に説明
する。なお本発明は下記実施例に限定されるもの
ではない。 実施例1: 亜鉛(Zn)32.0重量%、アルミニウム(Al)
5.7重量%、鉄(Fe)3.0重量%、チタン(Ti)
2.2重量%及び残部銅(Cu)の割合で原料を配合
して溶融炉内に投入し、1150℃で溶解し、注湯温
度1000℃で鋳込み、水冷により平均冷却速度100
℃/分で室温まで冷却してターボチヤージヤ用ベ
アリング材1を得た。このとき凝固開始温度は
950℃であつた。 実施例 2〜7 表に示した成分割合で原料を配合し、実施例1
と同様の方法によりベアリング材2ないし7を得
た。 上記実施例1ないし7で得た本発明のターボチ
ヤージヤ用ベアリング材料及び比較のための従来
の材料の化学成分及びこれらを用いて製造したベ
アリングの耐摩耗性、焼付発生時間(耐焼付性)
をまとめて表に示す。表に示す耐摩耗性はLFW
―1摩耗試験機での比較的低回転・低荷重での各
種ベアリング材料の摩耗深さで示しており、値の
小さなものほど優れている。又、表に示す耐焼付
性は、ターボチヤージヤ用ベアリング特有の問題
である潤滑不良の状態を想定し、機械試験所型摩
擦摩耗試験機にて潤滑下の低荷重・高回転でのな
らし運転の状態より潤滑を停止し、それ以後の焼
付発生までの時間を示しており、長いものほど優
れている。
(Industrial Field of Application) The present invention relates to floating bearing materials used in turbochargers. (Prior art) Floating bearings are used in the bearings of turbochargers installed in internal combustion engines.
Immediately after the internal combustion engine stops operating, the temperature reaches around 300℃ due to heat conduction from the turbine, and the lubricating engine oil adhering to the bearing surface is heated above its heat-resistant temperature. As a result, the following problems occur, for example. That is, (1) Corrosive acidic substances are generated in the engine oil, which selectively corrodes lead contained in bearings, increasing wear on the bearings. (2) As engine oil deteriorates, deposits form in the oil holes used to supply lubricating oil to the bearings, which block the oil holes and cause an oil film to run out, causing bearing wear due to poor lubrication. growing. (3) The wear of the bearing increases due to friction with peeled pieces of the deposit formed above or with metal chips remaining on the surface due to insufficient cleaning of the engine body or turbocharger oil hole. As the wear of the bearing increases, the eccentricity of the rotating shaft of the turbine wheel increases, resulting in interference between the turbine wheel and the turbine housing, causing problems such as abnormal noise and damage to the turbine wheel. will occur. Conventionally, lead bronze (e.g. LBC3, LBC4, LBC5), whose main components are copper, tin, and lead, has been mainly used as a material for floating bearings in turbochargers, but it has poor wear resistance and seizure resistance after lubrication stops. I was not completely satisfied with my sexuality. (Object of the Invention) The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to provide a bearing material for turbochargers that is superior in wear resistance and seizure resistance to conventional lead bronze turbocharger bearing materials. The purpose of this project is to provide bearing materials for turbochargers. (Structure of the Invention) That is, the turbocharger bearing material of the present invention contains 55 to 65% copper and 25 to 65% zinc by weight.
35%, aluminum 2 to 6%, nickel 0.2 to 3%, iron 0.5 to 4%, titanium 1
to 2.5%, lead 2 to 10%, manganese 2 to 4%, silicon 0.5 to 2%, zirconium 0.5
It is made of an alloy component containing at least one to five types of impurities of 1 to 2% and the remainder, and has intermetallic compound particles with a maximum length of 5 to 30μ and a Vickers hardness of 400 or more on the surface with an area ratio of 3 to 15%. It is characterized by letting it come out. The preferred composition of the bearing material is 55 to 65% copper and 25% zinc by weight.
A base material containing 2 to 35% of aluminum and 2 to 6% of aluminum, further 2 to 4% of iron, and 1.5 to 1.5% of titanium.
Add 2.5% or add lead 2 in addition to the above ingredients.
Examples include alloys with 10% to 10% added. Another preferred bearing material has a base material containing 55 to 65% copper, 25 to 35% zinc, and 2 to 6% aluminum, to which 0.2 to 3% nickel and 1 to 2% titanium are added. Examples include alloys that are Another preferable bearing material has a base material containing 55 to 65% copper, 25 to 35% zinc, and 2 to 6% aluminum by weight, and further 0.2 to 3% nickel, 2 to 4% manganese,
Examples include alloys containing 0.5 to 2% silicon. Another preferable bearing material has a base material containing 55 to 65% copper, 25 to 35% zinc, and 2 to 6% aluminum, further 0.2 to 3% nickel, 0.5 to 2% iron, silicon
Add 0.5 to 2%, zirconium 0.5 to 2%, or add 2 to 10% lead in addition to the above ingredients.
Examples include alloys with added . Since the bearing material of the present invention contains a predetermined amount of nickel, iron, titanium, zinc, manganese, silicon, etc., a hard intermetallic compound consisting of these components is generated, but this intermetallic compound is By casting, setting the solidification start temperature to 900 to 950°C, and cooling to room temperature at an average cooling rate of about 100°C/min, it can be precipitated in the form of needles or blocks in the base alloy. This intermetallic compound has a Vickers hardness (Hv) of 400 or more, which is much higher than the 160 to 230 Vickers hardness of a uniform alloy layer, so it has excellent wear resistance. By uniformly dispersing particles having a maximum length, the wear resistance of the base alloy can be improved. The maximum length is about 5 to about 30
μ, particularly preferably about 15μ. Further, the area ratio where the intermetallic compound crystallizes is preferably 3 to 15%. Therefore, by using this alloy, a bearing with excellent wear resistance can be obtained. Further, the wear resistance of the bearing can be further improved by utilizing the characteristics of the bearing material of the present invention. That is, after polishing the sliding surface of a bearing material formed into a desired shape, for example, a cylindrical shape, etching the sliding surface using an appropriate etching agent, such as various acids or salts, creates a bond between metals such as iron and titanium. Since the compound particles are not easily corroded, they remain exposed on the sliding surface. For this reason, the sliding surface has a structure having continuous or intermittent recesses, and by filling these with lubricating oil to form oil pools, lubricity is increased and wear resistance is improved. Especially the initial scuff (scuff,
wear) can be reduced. The depth of the recess, that is, the exposed height of the intermetallic particles, is about 0.5μ to about 5μ, preferably about 1μ, because if it is too large, the intermetallic particles will peel off, and if it is too small, it will not be possible to obtain a sufficient lubrication effect. It is preferable to set the thickness to about 3μ. Another method for obtaining the same effect as above is to arrange grooves in the form of grooves at predetermined intervals along the circumferential direction on the inner and outer peripheral surfaces of a cylindrical bearing material. It's okay. Furthermore, when the surface etc. are precision-machined to create a final product bearing, these grooves not only have an oil retaining effect for storing lubricating oil such as engine oil, but also divide the bearing sliding surface along its axis. For example, even if sludge is generated on each divided sliding surface due to engine oil deterioration, the adhesion force is weakened because the adhesion area is small. Therefore, the sludge is easily broken by the rotation of the bearing, and problems such as sticking to the sliding surface are eliminated. In addition, in the case of the bearing material of the present invention, hard intermetallic compound particles are exposed on the sliding surface, which is also effective in scraping off sludge, and together with the effect of the grooves, it is extremely difficult for sludge to form. Become something. Furthermore, by providing grooves, the flow rate of engine oil flowing in the axial direction of the bearing increases when the turbocharger moves, increasing the lubrication and cooling effect and suppressing the rise in bearing temperature, reducing the generation of sludge and wear of the bearing. can be reduced. It is even more effective to use a combination of etching the sliding surface and providing grooves. The size of the cylindrical bearing, that is, the height, inner diameter, and outer diameter of the cylinder, are optimally selected according to the turbocharger. A hole having a desired size and shape may be formed in a part of the cylindrical side surface for the purpose of preventing deformation, increasing cooling efficiency, supplying engine oil, etc. The cross-sectional shape of the groove can be various shapes, such as V-shaped, U-shaped, rectangular, or semicircular. In addition, the groove spacing, width, and depth are optimally selected taking into account the strength of the bearing, the amount of engine oil retained, workability, etc., but for turbocharger bearings used for normal purposes, the groove spacing should be approximately It is preferable that the width is about 1 mm to about 5 mm, the width is about 0.5 mm to 3 mm, and the depth is about 0.5 mm to about 3 mm. (Example) The present invention will be explained in further detail in the following example. Note that the present invention is not limited to the following examples. Example 1: Zinc (Zn) 32.0% by weight, aluminum (Al)
5.7% by weight, iron (Fe) 3.0% by weight, titanium (Ti)
The raw materials were mixed at a ratio of 2.2% by weight and the balance was copper (Cu), put into a melting furnace, melted at 1150°C, poured at a pouring temperature of 1000°C, and water cooled at an average cooling rate of 100°C.
It was cooled to room temperature at a rate of °C/min to obtain bearing material 1 for turbocharger. At this time, the solidification start temperature is
It was 950℃. Examples 2 to 7 The raw materials were blended in the component proportions shown in the table, and Example 1
Bearing materials 2 to 7 were obtained in the same manner as above. Chemical components of the bearing materials for turbochargers of the present invention obtained in Examples 1 to 7 above and conventional materials for comparison, and wear resistance and seizure occurrence time (seizure resistance) of bearings manufactured using these materials.
are summarized in the table. The wear resistance shown in the table is LFW
-1 It shows the wear depth of various bearing materials at relatively low rotation speeds and low loads using a wear tester, and the smaller the value, the better. In addition, the seizure resistance shown in the table assumes a state of poor lubrication, which is a problem unique to turbocharger bearings, and was measured using a mechanical testing laboratory type friction and wear tester during break-in operation at low load and high rotation speed under lubrication. It shows the time from when lubrication is stopped until seizure occurs, and the longer the time, the better.

【表】【table】

【表】 表より明らかなように、本発明のベアリング材
は従来の鉛青銅に比べて摩耗深さが非常に小さ
く、耐摩耗性が著しく向上している。又、焼付発
生時間も長くなつており耐焼付性も向上してい
る。本発明のベアリング材の耐摩耗性が優れてい
る理由は硬い金属間化合物粒子が母材中に晶出し
ているからであり、同様な組織を有している材料
としては表中のA390に代表される高シリコンア
ルミニウム合金がある。しかしこの合金は耐摩耗
性は優れているが潤滑不足の状態での耐焼付性は
低い。これは、母材がアルミニウム(Al)であ
るため耐熱温度が低く、潤滑不良による摩擦面の
温度上昇により塑性流動しやすくなるためであ
る。本発明材が優れているのは母材が銅(Cu)
であるため耐熱温度がアルミニウムに比べて高
く、塑性流動しにくいためである。従来の鉛青銅
であるLBC3,4,5が耐焼付性に優れているの
は比較材PBPと比べると判るように鉛(Pb)を
含むためであり、合金組織中に含まれる鉛が摩擦
熱によつて溶出し潤滑効果を示すためである。し
かし、耐摩耗性は本発明材のように硬い金属間化
合物粒子が合金組織中に晶出していないため劣つ
ている。本発明材においても鉛を添加することに
より上記と同様の効果が生じ、耐焼付性は更に向
上する。 第1図は本発明のターボチヤージヤ用ベアリン
グ材の表面の研摩後及びエツチング後の一部拡大
断面図である。円筒状に成形したベアリング材の
摺動面を研摩後更に、塩化ナトリウム105g/
、塩化アンモニウム30g/を含む水溶液を用
いて常温で数分間エツチングを行い、母材1の表
面上に金属間化合物粒子2を表面より1ないし3
μ露出させた。 第2図は摺動面に溝を配設した本発明のターボ
チヤージヤ用ベアリング材を用いて製造したベア
リングの一実施例の断面図である。ターボチヤー
ジヤ用ベアリング3は内径10mm外径16mm、高さ9
mmの円筒状であり、その軸方向中央部に6個の孔
4を有する。又、内周側面及び外周側面には円周
方向に沿つて3mm間隔で幅1mm、深さ1mmの断面
がV字形の溝5を有する。このような条痕状の溝
5を設けると接触面積が低下する為、単位面積当
りの圧力(面圧)が大きくなり、従来の材料で製
造したベアリングでは摩耗が増大し問題となる
が、本発明のベアリング材は耐摩耗性が優れてい
るために面圧が大きくなつても摩耗がほとんど増
大せず問題はない。 第3図は第2図の一点鎖線で囲んだ部分の拡
大断面図である。 (発明の効果) 上述のように、本発明のターボチヤージヤ用ベ
アリング材は母材合金よりも遥かに硬度の大きな
適切な平均粒径を有する金属間化合物粒子が表面
に露出しているため従来の鉛青銅等のターボチヤ
ージヤ用ベアリング材に比べて耐摩耗性及び耐焼
付性が向上し、ターボチヤージヤの信頼性及び品
質向上に大きな効果を奏する。
[Table] As is clear from the table, the bearing material of the present invention has a much smaller wear depth and significantly improved wear resistance than conventional lead bronze. Furthermore, the time required for seizure to occur has become longer, and the seizure resistance has also improved. The reason why the bearing material of the present invention has excellent wear resistance is that hard intermetallic compound particles are crystallized in the base material, and A390 in the table is a typical example of a material with a similar structure. There are high-silicon aluminum alloys. However, although this alloy has excellent wear resistance, it has low seizure resistance under conditions of insufficient lubrication. This is because the base material is aluminum (Al), which has a low heat resistance temperature, and is susceptible to plastic flow due to an increase in the temperature of the friction surface due to poor lubrication. The superiority of the inventive material is that the base material is copper (Cu).
This is because it has a higher heat resistance temperature than aluminum and is less likely to undergo plastic flow. Conventional lead bronze LBC3, 4, and 5 have excellent seizure resistance because they contain lead (Pb), as can be seen when compared with the comparative material PBP, and the lead contained in the alloy structure absorbs frictional heat. This is because it is eluted and exhibits a lubricating effect. However, the wear resistance is poor because hard intermetallic compound particles are not crystallized in the alloy structure as in the material of the present invention. In the material of the present invention, the same effect as described above is produced by adding lead, and the seizure resistance is further improved. FIG. 1 is a partially enlarged sectional view of the surface of the turbocharger bearing material of the present invention after polishing and etching. After polishing the sliding surface of the cylindrical bearing material, add 105 g of sodium chloride/
, etching is performed for several minutes at room temperature using an aqueous solution containing 30 g of ammonium chloride to form intermetallic compound particles 2 on the surface of the base material 1 from 1 to 3 from the surface.
μ exposed. FIG. 2 is a cross-sectional view of an embodiment of a bearing manufactured using the turbocharger bearing material of the present invention having grooves on its sliding surface. Turbocharger bearing 3 has an inner diameter of 10 mm, an outer diameter of 16 mm, and a height of 9.
It has a cylindrical shape with a diameter of mm, and has six holes 4 in its axial center. Furthermore, grooves 5 having a V-shaped cross section and a width of 1 mm and a depth of 1 mm are provided on the inner circumferential side surface and the outer circumferential side surface at intervals of 3 mm along the circumferential direction. Providing such striated grooves 5 reduces the contact area, which increases the pressure per unit area (surface pressure), which causes increased wear and problems with bearings made from conventional materials. Since the bearing material of the invention has excellent wear resistance, even if the surface pressure increases, the wear hardly increases and there is no problem. FIG. 3 is an enlarged sectional view of a portion surrounded by a dashed line in FIG. 2. FIG. (Effects of the Invention) As described above, the bearing material for turbochargers of the present invention has intermetallic compound particles having an appropriate average particle size and a much greater hardness than the base metal alloy exposed on the surface, so it has a hardness that is higher than that of the conventional lead alloy. Compared to bearing materials for turbochargers such as bronze, it has improved wear resistance and seizure resistance, and has a significant effect on improving the reliability and quality of turbochargers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のターボチヤージヤ用ベアリン
グ材の表面の研摩後及びエツチング後の一部拡大
断面図、第2図は摺動面に溝を配設した本発明の
ターボチヤージヤ用ベアリング材を用いて製造し
たベアリングの一実施例の断面図、第3図は第2
図の一点鎖線で囲んだ部分の拡大断面図であ
る。 図中、1……母材、2……金属間化合物粒子、
3……ターボチヤージヤ用ベアリング、4……
孔、5……溝。
Fig. 1 is a partially enlarged sectional view of the surface of the turbocharger bearing material of the present invention after polishing and etching, and Fig. 2 is manufactured using the turbocharger bearing material of the present invention with grooves provided on the sliding surface. A sectional view of one embodiment of the bearing shown in FIG.
FIG. 3 is an enlarged cross-sectional view of a portion surrounded by a dashed line in the figure. In the figure, 1...base material, 2...intermetallic compound particles,
3... Bearing for turbo charger, 4...
Hole, 5...groove.

Claims (1)

【特許請求の範囲】 1 重量比で銅55ないし65%、亜鉛25ないし35
%、アルミニウム2ないし6%を含み、更にニツ
ケル0.2ないし3%、鉄0.5ないし4%、チタン1
ないし2.5%、鉛2ないし10%、マンガン2ない
し4%、ケイ素0.5ないし2%、ジルコニウム0.5
ないし2%のうちの少なくとも一種ないし五種及
び残部の不純物を含む合金成分よりなり、表面に
最大長さが5ないし30μでビツカース硬さ400以
上の金属間化合物粒子を面積率で3ないし15%晶
出させたことを特徴とするターボチヤージヤ用ベ
アリング材。 2 金属間化合物粒子を表面上に所定高さ露出さ
せたことを特徴とする特許請求の範囲第1項記載
のターボチヤージヤ用ベアリング材。
[Claims] 1. Copper 55 to 65%, zinc 25 to 35% by weight
%, aluminum 2 to 6%, nickel 0.2 to 3%, iron 0.5 to 4%, titanium 1
to 2.5%, lead 2 to 10%, manganese 2 to 4%, silicon 0.5 to 2%, zirconium 0.5
It is made of an alloy component containing at least one to 5 types of impurities of 3 to 2% and the remainder, and has intermetallic compound particles on the surface with a maximum length of 5 to 30μ and a Vickers hardness of 400 or more in an area ratio of 3 to 15%. A bearing material for turbochargers characterized by crystallization. 2. The bearing material for a turbocharger according to claim 1, wherein the intermetallic compound particles are exposed at a predetermined height on the surface.
JP59030797A 1984-02-20 1984-02-20 Bearing material for turbo charger Granted JPS60174842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59030797A JPS60174842A (en) 1984-02-20 1984-02-20 Bearing material for turbo charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030797A JPS60174842A (en) 1984-02-20 1984-02-20 Bearing material for turbo charger

Publications (2)

Publication Number Publication Date
JPS60174842A JPS60174842A (en) 1985-09-09
JPS6238417B2 true JPS6238417B2 (en) 1987-08-18

Family

ID=12313668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030797A Granted JPS60174842A (en) 1984-02-20 1984-02-20 Bearing material for turbo charger

Country Status (1)

Country Link
JP (1) JPS60174842A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635635B2 (en) * 1984-08-11 1994-05-11 アイシン精機株式会社 Gear-driven oil pump
JPS6186535U (en) * 1984-11-13 1986-06-06
JPH0826423B2 (en) * 1987-02-24 1996-03-13 三菱マテリアル株式会社 Wear-resistant Cu alloy with excellent synchronization characteristics with mating members
KR910003882B1 (en) * 1988-12-21 1991-06-15 풍산금속공업주식회사 Cu-alloy for electric parts and the process for making
JPH03215642A (en) * 1990-01-22 1991-09-20 Daido Metal Co Ltd Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance
JP2001146922A (en) 1999-09-07 2001-05-29 Nsk Ltd Cage
JP3507388B2 (en) * 2000-02-08 2004-03-15 大同メタル工業株式会社 Copper-based sliding material
JP4638090B2 (en) * 2001-08-03 2011-02-23 株式会社アキタファインブランキング Method for manufacturing variable blade profile in VGS type turbocharger
JP5342882B2 (en) 2009-01-06 2013-11-13 オイレス工業株式会社 High strength brass alloy for sliding member and sliding member
DE102015003687A1 (en) * 2015-03-24 2016-09-29 Diehl Metall Stiftung & Co. Kg Copper-zinc alloy and its use

Also Published As

Publication number Publication date
JPS60174842A (en) 1985-09-09

Similar Documents

Publication Publication Date Title
KR100538977B1 (en) Composite multilayer material for sliding elements and method for the production thereof
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
US4978587A (en) Multilayer sliding material
JPS6238417B2 (en)
JP2733736B2 (en) Copper-lead alloy bearings
JP2000345258A (en) Sliding bearing
JPS5864336A (en) Aluminum alloy bearing
JPH03215642A (en) Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance
JPS6041695B2 (en) Bearings for internal combustion engines and their manufacturing method
JPH0813072A (en) Aluminum alloy bearing
JPH0555729B2 (en)
JPS6254853B2 (en)
JPS6144140B2 (en)
JPS5867841A (en) Aluminum alloy bearing
JPH0235020B2 (en) ALLSNNPBKEIJIKUKEGOKIN
JPS6212298B2 (en)
JPS63201388A (en) Vane type compressor
JPS6220915A (en) Plain bearing
JPS6256938B2 (en)
JPH0159360B2 (en)
JPH0372692B2 (en)
JPH07133825A (en) Sliding bearing
JPS6045701B2 (en) Composite aluminum-tin bearing alloy material
JPS6144141B2 (en)
JPH0362781B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term