JPS6045701B2 - Composite aluminum-tin bearing alloy material - Google Patents

Composite aluminum-tin bearing alloy material

Info

Publication number
JPS6045701B2
JPS6045701B2 JP16240781A JP16240781A JPS6045701B2 JP S6045701 B2 JPS6045701 B2 JP S6045701B2 JP 16240781 A JP16240781 A JP 16240781A JP 16240781 A JP16240781 A JP 16240781A JP S6045701 B2 JPS6045701 B2 JP S6045701B2
Authority
JP
Japan
Prior art keywords
alloy
bearing
hardness
alloys
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16240781A
Other languages
Japanese (ja)
Other versions
JPS57114633A (en
Inventor
保 奈良
荘司 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP16240781A priority Critical patent/JPS6045701B2/en
Publication of JPS57114633A publication Critical patent/JPS57114633A/en
Publication of JPS6045701B2 publication Critical patent/JPS6045701B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 本発明は、高温状態におけるSn(スズ)粒子の成長お
よび硬さの低下が少なく、耐疲労性に優れかつ耐摩耗性
に優れたアルミニウム(Al)軸受合金に裏金鋼板を圧
接してなる複合アルミニウム−スズ系軸受合金材料に関
するもので、特に鋳造後数回の圧延と焼鈍を行なつた後
使用する場合に好適な軸受合金材料を提供するものであ
る。
Detailed Description of the Invention The present invention provides an aluminum (Al) bearing alloy that exhibits less growth of Sn (tin) particles and less decrease in hardness in high-temperature conditions, has excellent fatigue resistance, and has excellent wear resistance. The present invention relates to a composite aluminum-tin bearing alloy material formed by pressure welding, and provides a bearing alloy material suitable for use after being rolled and annealed several times after casting.

従来のアルミニウム軸受合金としては、主としてAl−
Sn系合金、たとえばAl−SΠ(20%)−Cu(銅
)1%、Al−Sn(20%)−Pb(鉛)3%一Cu
(1%)−Si(ケイ素)3%等が使用されているが、
この合金を裏金銅板に圧接して成る軸受合金材料を自動
車用内燃機関の軸受に使用した場合、内燃機関の高負荷
運転が継続したとき等に短時間で疲労破壊の起ることが
あつた。これは内燃機関内のオイルが高負荷連続運転時
に特に高温となり、たとえばオイルパン内のオイルの温
度は130℃〜150℃にも達するため、軸受はそのす
べり面においてかなり高温度になることが予想され、こ
の結果従来のAl−Sn系合金では高温下て硬さ・が急
激に低下してSnの溶融や移動がおこり、このことが疲
労強度も低下することの原因てあると考えられる。本発
明の発明者等が高温下で硬さの高い合金やSnの動きに
くい合金を内燃機関軸受の形状に加工し、高温油下て動
荷重疲労試験を行・なつた結果、疲労強度の向上が認め
られたことは上記考察を裏付けている。また、以上の高
温硬さの低下に基く疲労強度の低下とは■11に、従来
のA1−Sn系合金では合金組織におけるSn粒子の粗
大化も疲労強度の低下の原因となつている。
Conventional aluminum bearing alloys are mainly Al-
Sn-based alloys, such as Al-SΠ (20%)-Cu (copper) 1%, Al-Sn (20%)-Pb (lead) 3%-Cu
(1%)-Si (silicon) 3% etc. are used,
When a bearing alloy material made by press-bonding this alloy to a copper backing plate is used in a bearing for an automobile internal combustion engine, fatigue failure may occur in a short period of time, such as when the internal combustion engine continues to operate under high load. This is because the oil in the internal combustion engine becomes particularly hot during continuous high-load operation, for example, the temperature of the oil in the oil pan reaches 130°C to 150°C, so it is expected that the bearing will reach a considerably high temperature on its sliding surface. As a result, in conventional Al-Sn alloys, the hardness rapidly decreases at high temperatures, causing melting and movement of Sn, which is thought to be the cause of the decrease in fatigue strength. The inventors of the present invention fabricated an alloy with high hardness or an alloy in which Sn does not easily move under high temperatures into the shape of an internal combustion engine bearing, and conducted a dynamic load fatigue test under high temperature oil. As a result, the fatigue strength improved. The fact that this was observed supports the above consideration. Further, regarding the decrease in fatigue strength due to the above-mentioned decrease in high-temperature hardness, (11), in conventional A1-Sn alloys, the coarsening of Sn particles in the alloy structure is also a cause of the decrease in fatigue strength.

すなわち、アルミニウム軸受合金材料は、N−Sn系合
金を裏金鋼板に圧接して形成するものであるが、両金属
の接着強度を増すために圧接後これを焼鈍する工程が不
可欠であり、一般的にはこの焼鈍は、A1−Feの金属
間化合物の析出する温度(約475℃)以下で、温度が
高く時間が長い程接着強度が大となる。ところが、従来
のA1−Sn系合金は焼鈍によつて高温下におかれると
、合金組織中でA1粒界およびSn粒子の移動が起り、
この結果時間の経過とともにSn粒子の粗大化が進行し
てしまうという欠点があつた。つまり従来のアルミニウ
ム軸受合金材料ては、裏金鋼板との接着強度を増すため
に焼鈍すれは、Sn粒子の粗大化を招き、この粗大化は
A1一Sn系合金の疲労強度を低下させる原因となつて
いる。本発明の発明者等は、N−Sn系合金に種々の添
加元素を加えてその高温硬さ、疲労強度についての改良
を進めた結果、既にA1にSnの他所要量のCr(クロ
ム)またはZr(ジルコニウム)、およびCu等を加え
た合金を開発し、特許出願(特願昭52−26(6)号
)している。
In other words, the aluminum bearing alloy material is formed by pressure-bonding an N-Sn alloy to a backing steel plate, but in order to increase the bonding strength of both metals, it is essential to anneal the material after pressure-welding, and the general method is This annealing is performed at a temperature below the precipitation temperature of the A1-Fe intermetallic compound (approximately 475° C.), and the higher the temperature and the longer the time, the greater the adhesive strength. However, when conventional A1-Sn alloys are subjected to high temperatures during annealing, movement of A1 grain boundaries and Sn particles occurs in the alloy structure.
As a result, there was a drawback that the Sn particles became coarser with the passage of time. In other words, in conventional aluminum bearing alloy materials, annealing to increase the adhesive strength with the back metal steel plate causes the Sn particles to become coarser, and this coarsening causes a decrease in the fatigue strength of the A1-Sn alloy. ing. The inventors of the present invention have added various additive elements to the N-Sn alloy to improve its high-temperature hardness and fatigue strength. As a result, the inventors have already added a required amount of Cr (chromium) or We have developed an alloy containing Zr (zirconium), Cu, etc., and have filed a patent application (Japanese Patent Application No. 1982-26 (6)).

さらにSn,CrおよびCu等の他、PbまたはIn(
インジウム)を加え、耐疲労性を同等に維持したまま特
になじみ性を向上させた合金を開発し、特許出願(特願
昭52−18255)している。本発明は、さらに研究
を進めた結果、A1−Sn系合金に特にCrの含有量を
増すことにより、相.手材質を選ばずに耐摩耗性を著し
く向上させることができる材料を見出してなされたもの
である。
Furthermore, in addition to Sn, Cr, Cu, etc., Pb or In(
Indium) was added to develop an alloy with particularly improved conformability while maintaining the same fatigue resistance, and a patent application (Japanese Patent Application No. 52-18255) was filed. As a result of further research, the present invention has revealed that by increasing the Cr content in the A1-Sn alloy, the phase can be reduced. This was achieved by discovering a material that can significantly improve wear resistance regardless of the material used.

本発明のA1−Sn系軸受合金材料は、基本的には重量
%で3.5%〜35%のSnと、1.0%を越え7.0
%のCrとからなるAl−Sn系合金を基本とし、こ.
れにCuおよび(または)Mg(マグネシウム)3.0
%以下(0を含ます)、9%以下(0を含まず)のPb
,In,Bi(ビスマス)の少なくとも1種とから構成
され、かつ、Sn量は添加元素中最大となるようにした
合金に裏金鋼板を圧接して成・ることを特徴とするもの
で、従来のA1−Sn系軸受合金材料に比べCr,Pb
,Bi,Inを加えたことによつてSnが微細化される
とともになじみ性が向上し、加えて硬さが上昇し、特に
高温状態におけるSnの移動と成長がほとんどないこと
が認められた。また高温硬さの低下も少ない。さらに動
荷重疲労試験を行なつたところ、高油温下での疲労強度
の向上が確認された。また、特に軸受の摺動性能に大き
な影響を及ぼす相手材質、すなわち軸材質を選ばず、ど
んな材料であつても充分な耐摩耗性を持つことも確認さ
れた。Snの含有量を重量%で3.5〜35%に限定し
た理由は、Snは潤滑を主目的として添加される元素塵
であるが、これを35%以上添加するとなじみ性、潤滑
性は向上するが硬さが低下し、これが3.5%以下では
逆に軸受合金としてはなじみ性等に劣るからである。
The A1-Sn bearing alloy material of the present invention basically contains 3.5% to 35% Sn in terms of weight percent, and more than 1.0% Sn and 7.0% by weight.
% of Cr.
Cu and/or Mg (magnesium) 3.0
% or less (including 0), 9% or less (not including 0) of Pb
, In, and Bi (bismuth), and the amount of Sn is the largest among the added elements. Cr, Pb compared to A1-Sn bearing alloy material
, Bi, and In made the Sn finer and improved the conformability. In addition, the hardness increased, and it was observed that there was almost no movement or growth of Sn, especially at high temperatures. Also, there is little decrease in high temperature hardness. Furthermore, when a dynamic load fatigue test was conducted, it was confirmed that the fatigue strength was improved under high oil temperatures. It was also confirmed that the material has sufficient wear resistance regardless of the material of the bearing, that is, the material of the shaft, which has a particularly large effect on the sliding performance of the bearing. The reason for limiting the Sn content to 3.5 to 35% by weight is that Sn is an elemental dust added primarily for lubrication, but adding 35% or more of this improves compatibility and lubricity. However, the hardness decreases, and if this is less than 3.5%, the conformability as a bearing alloy will be poor.

なお、このSnの添加量はSnを弧立分散させるために
、従来のA1−Sn系合金では15%程度が上限とされ
ており、その理由はこれを15%以上添加すると合金中
のSn粒子がA1中に弧立して分散できなくなり連続状
態で存在し始めるため、硬さが低下するからとされてい
たが、本発明では後述する他の元素の添加効果によつて
これを35%迄添加した場合でもSn粒子が弧立分散し
実用上支障がなくなつた。また、Snの添加量を3.5
〜35%の範囲でどのように定めるかは、用途に応じ適
宜決定されるべきものであるが、一般的には軸受に加わ
る荷重(負荷)の大なるときはSn量を少なく、荷重の
小なるときはSn量を多くすると良い。また別の観点か
らは、焼付きが懸念される状態で使用されるときはSn
量を多く、この心配のないときはSn量を少なくするの
が良い。しかし最近は高油温により軸受が高温になり、
これが原因て軸受が変形し焼付、疲労を起すことが問題
であるので、高温での変形が少ないという点からSn量
を定める必要もある。Crは硬さの上昇と高温時の軟化
を防ぐ点、および焼鈍によつてもSn粒子の粗大化を招
かないという点、また相手材質を選ばずに充分な耐摩耗
性を持つという点について特に添加効果が高い。
The upper limit of the amount of Sn added in conventional A1-Sn alloys is about 15% in order to disperse Sn vertically, and the reason for this is that if more than 15% is added, the Sn particles in the alloy It was believed that this was because the hardness decreased because the particles could no longer be dispersed in A1 and began to exist in a continuous state, but in the present invention, this could be reduced to 35% by the effect of adding other elements, which will be described later. Even when it was added, the Sn particles were dispersed vertically and there was no practical problem. In addition, the amount of Sn added was 3.5
- 35% should be determined appropriately depending on the application, but in general, when the load applied to the bearing is large, the amount of Sn should be reduced, and when the load is small. If this occurs, it is better to increase the amount of Sn. From another point of view, when used in conditions where seizure is a concern, Sn
It is better to increase the amount of Sn, and reduce the amount of Sn when there is no concern about this. However, recently, bearings have become hot due to high oil temperatures.
Since this causes the bearing to deform, seize, and cause fatigue, it is necessary to determine the amount of Sn from the viewpoint of minimizing deformation at high temperatures. Cr is particularly effective in that it prevents increase in hardness and softening at high temperatures, does not cause coarsening of Sn particles even during annealing, and has sufficient wear resistance regardless of the material used. Additive effect is high.

まず硬さの上昇と高温時の軟化防止について述べると、
このCrの添加量が重量で1.0%以下では高温硬さの
改良は期待てきるが耐摩耗性の向上が望めない。7.0
%以上添加するとCr,Al等のA1−Cr金属間化合
物が析出し過ぎ、軸受合金としては硬くなり過ぎ、耐摩
耗性は向上してもなじみ性が極端に低下し過ぎることか
らその添加量を1.0を越え7.0%に限定したもので
ある。
First, let's talk about increasing hardness and preventing softening at high temperatures.
If the amount of Cr added is less than 1.0% by weight, improvement in high temperature hardness can be expected, but improvement in wear resistance cannot be expected. 7.0
If more than % is added, A1-Cr intermetallic compounds such as Cr and Al will precipitate too much, making the bearing alloy too hard, and although the wear resistance may be improved, the conformability will be extremely low. It exceeds 1.0 and is limited to 7.0%.

この高温硬さの向上についてさらに詳述すると、Crは
Al中に固溶することによつてA1の再結晶温度を上げ
、かつ固溶すること自体でN地の硬さを上昇させるが、
これと同時に数回の圧延によつても鋳造時に比して硬さ
が上昇する。再結晶温度を上げることは内燃機関の軸受
がさらされる高温領域でも安定した機械的性質を維持さ
せるために効果があり、特に硬さについては、高温下で
の硬さの低下を少なくして高温領域での軸受の軟化を防
ぐことができ、ひいては疲労強度の向上をもたらす。ま
た固溶限を過ぎて析出するN−Crの金属間化合物は、
ウイツカース硬さで約370を示しこのためこの化合物
が分散析出することは高温硬さの維持を助け、これが適
量分散することは良い効果を生ずる。次にCr添加によ
るSn粒子の粗大化阻止効果について述べる。
To explain this improvement in high-temperature hardness in more detail, Cr increases the recrystallization temperature of A1 by being dissolved in Al, and the solid solution itself increases the hardness of the N base.
At the same time, the hardness also increases by rolling several times compared to when it is cast. Increasing the recrystallization temperature is effective in maintaining stable mechanical properties even in the high temperature range to which internal combustion engine bearings are exposed. This can prevent the bearing from softening in this region, which in turn improves fatigue strength. In addition, N-Cr intermetallic compounds that precipitate beyond the solid solubility limit are
It has a Utzkers hardness of about 370, and therefore, the dispersion and precipitation of this compound helps maintain high-temperature hardness, and dispersing an appropriate amount of this compound produces a good effect. Next, the effect of inhibiting the coarsening of Sn particles by adding Cr will be described.

Sn粒子の粗大化はN−Sn系合金が高温下におかれた
場合N粒界およびSn粒子の移動が起るために生ずる現
象であるが、Crは上記のようにA1−Crの金属間化
合物の析出物を作り、この析出物がA1地金中に細かく
分散して存在するため、この金属間化合物が直接的には
Al粒界の移動を妨げ、同時にN結晶粒の成長を妨けて
Sn粒子の移動、つまりSn粒子の粗大化を防ぐからで
あると考えられる。このことは、圧延、焼鈍等により微
細化されたSn粒子を、そのまま保つことにつながり、
前記種々の効果を持つのである。そしてこのような現象
は比較的Sn量の多い場合(約10%以上)において、
またより顕著な効果はSnが連続して存在しはじめる約
15%前後以上において効果がある。しかし、Sn量が
10%以下てあつてもその使用条件、用途によつては上
記Crの添加による効果が充分必要とされることはもち
ろんである。また、Sn粒子が微細のまま保持されてA
1地金中に存在するということは、同時に23′!′C
という低い融点をもつSn粒子の高温下での溶出現象を
防止するためにも効果的であると考えられ、この観点か
らしても硬さの低下防止の効果が背首される。なお、以
上は焼鈍に関してSn粒子の粗大化阻止効果を述べたも
のであるが、以上の効果は本軸受材料の使用環境が焼鈍
に匹敵する高温下である場合にもそのまま妥当し、した
がつて軟化の防止を通じ疲労強度の向上を図ることがで
きる。次に、Cr添加による耐摩耗性向上効果について
述べる。CrはN地金中において上記のようにN−Cr
の金属間化合物の析出物を作るが、この化合物は、ウイ
ツカース硬さで約370を示し、非常に硬い析出物であ
るので軸との摩擦による軸受の摩耗をこの析出物により
著しく減少させることができ、これが適量分散すること
は良い効果を生ずる。ここに適量の範囲は、前述のよう
にCrが7.0%以下を意味し、この範囲であれば上記
析出物は均一に分散し、なじみ性等他に悪影響を与える
ことなく耐摩耗性を向上さる効果が得られる。加えてA
1−Cr析出物は次のような効果をも持つ。すなわち軸
受にとつて相手材質は軸受性能を大きく左右し、たとえ
ば従来のN−Sn系軸受と球状黒鉛鋳鉄軸と組合せて使
用すると焼付性、耐摩耗性等についての軸受性能を著し
く阻害する。そしてまた昨今、鋼軸に替わり加工上安価
な球状黒鉛鋳鉄軸が多く使われるようになつてきた。と
ころが球状黒鉛鋳鉄は軟質な黒鉛が鉄地の中に点在して
いて、このためこの軸を研削するとその黒鉛の周囲に鋭
い刃形を持つた研摩バリが発生する。このような研摩バ
リの発生した軸を相手に油膜厚さと軸および軸受表面粗
さとが同じになる程度の高荷重下で軸受を摺動させると
、このバリにより軸より軟かい軸受面は切削されること
になり、この状況が進行すると軸受表面精度が粗くなつ
たり軸と軸受とのクリアランスが増大したりし、しいて
は油膜圧力が構成されなくなつたり、油膜破断により油
膜が構成されなくなつたりしノて、その結果軸と軸受と
の直接接触つまり金属接触がより多く起り焼付に至る。
ところが本発明に係る軸受合金材料は球状黒鉛鋳鉄軸の
バリよりも硬いA1−Crの析出物をA1地中に分散存
在させて、このA1−Cr析出物により球状黒鉛鋳鉄軸
の・研摩バリを取り去る効果およびN−Crの析出物が
移着、凝着現象を起しにくくする効果をも持たせてあり
、これにより軸受表面の摩耗の進行は比較的短時間で抑
えられ安定した油膜が構成されるようになり、この結果
球状黒鉛鋳鉄軸に対して特)に耐摩耗性、耐焼付性を向
上させる。次に本発明は、上記組成に加えてCuまたは
(および)Mgを重量%で3%以下加えたものである。
The coarsening of Sn particles is a phenomenon that occurs due to the movement of N grain boundaries and Sn particles when an N-Sn alloy is exposed to high temperatures, but as mentioned above, Cr Precipitates of compounds are formed and these precipitates are finely dispersed in the A1 metal, so this intermetallic compound directly prevents the movement of Al grain boundaries and at the same time prevents the growth of N crystal grains. It is thought that this is because it prevents the movement of Sn particles, that is, the coarsening of Sn particles. This leads to keeping the Sn particles that have been refined by rolling, annealing, etc.
It has the various effects mentioned above. This phenomenon occurs when the amount of Sn is relatively large (approximately 10% or more).
Further, a more significant effect occurs when Sn starts to exist continuously at about 15% or more. However, even if the amount of Sn is 10% or less, the effect of the addition of Cr may still be required depending on the usage conditions and applications. In addition, the Sn particles are kept fine and A
Existing in one bullion means 23' at the same time! 'C
It is also considered to be effective for preventing the elution phenomenon of Sn particles having a low melting point at high temperatures, and from this point of view as well, the effect of preventing a decrease in hardness is significant. The above is a description of the effect of inhibiting the coarsening of Sn particles in relation to annealing, but the above effect is also valid even when the environment in which this bearing material is used is at a high temperature comparable to that of annealing. By preventing softening, fatigue strength can be improved. Next, the effect of improving wear resistance by adding Cr will be described. Cr is N-Cr in N metal as mentioned above.
This compound produces a precipitate of an intermetallic compound, which has a Utzkers hardness of approximately 370, and is a very hard precipitate, so this precipitate can significantly reduce the wear of the bearing due to friction with the shaft. Dispersing this in an appropriate amount produces good effects. As mentioned above, the appropriate amount range here means 7.0% or less of Cr, and within this range, the above precipitates will be uniformly dispersed and the wear resistance will be improved without adversely affecting other properties such as conformability. Improved effects can be obtained. In addition A
1-Cr precipitates also have the following effects. In other words, the mating material of a bearing greatly influences the bearing performance, and for example, when a conventional N-Sn bearing is used in combination with a spheroidal graphite cast iron shaft, the bearing performance in terms of seizure resistance, wear resistance, etc. is significantly impaired. Recently, spheroidal graphite cast iron shafts, which are cheaper to process, have been increasingly used in place of steel shafts. However, in spheroidal graphite cast iron, soft graphite is scattered within the iron base, and for this reason, when the shaft is ground, grinding burrs with sharp edges are generated around the graphite. When a bearing is slid against a shaft with such abrasive burrs under such a high load that the oil film thickness is the same as the shaft and bearing surface roughness, the burrs will cut the bearing surface, which is softer than the shaft. As this situation progresses, the bearing surface accuracy becomes rougher, the clearance between the shaft and the bearing increases, and the oil film pressure is no longer formed, or the oil film is no longer formed due to oil film rupture. As a result, more direct contact, or metal contact, between the shaft and the bearing occurs, leading to seizure.
However, in the bearing alloy material according to the present invention, A1-Cr precipitates, which are harder than the burrs on the spheroidal graphite cast iron shaft, are dispersed in the A1 ground, and these A1-Cr precipitates can eliminate the polishing burrs on the spheroidal graphite cast iron shaft. It also has the effect of removing N-Cr precipitates and making it difficult for N-Cr precipitates to migrate and adhere, thereby suppressing the progress of wear on the bearing surface in a relatively short period of time and forming a stable oil film. As a result, wear resistance and seizure resistance are improved, especially for spheroidal graphite cast iron shafts. Next, in the present invention, Cu or (and) Mg is added in an amount of 3% or less by weight in addition to the above composition.

このうちCuを用いる場合にはその添加量を3%以下と
する。3%以上添加すると硬さは向上するがCuの増加
と共に圧延性、耐蝕性が低下し好ましくないからである
Among these, when Cu is used, the amount added is 3% or less. This is because adding 3% or more of Cu improves hardness, but as Cu increases, rollability and corrosion resistance decrease, which is not preferable.

ここでより好ましい添加割合は2.0以下である。また
Mgについては、これを3%以上添加すると、硬さは向
上するが圧延による硬さ上昇が大きくなり過ぎて充分な
圧延ができなくなり、このため微細なSn組織を得るこ
とが困難になる。また焼鈍時にNに固溶していたMgが
析出しやすく余分に添加された量は析出してしまうため
、固溶によるA1地の強化は期待できない。ここでより
好ましい添加割合は2.0以下てある。このCu(5M
gの上記効果はCrと同時に添加して生ずるもので、C
uまたはMg単独では高温下での硬さの上昇の効果が期
待できない。すなわちCuまたはMgはN中に添加した
場合に圧延時の硬さの上昇が大きく同一圧延率でも他の
元素を添加したAl材料に比し、硬さの上昇は顕著であ
るが、200゜C近く迄加熱すると容易に軟化し、高温
硬さの維持は期待できない。これに対してCrとCuま
たはMgを同時に添加すると、CuまたはMgの添加効
果によつて圧延時に高くなつた硬さが、焼鈍をしてもC
rの添加効果、すなわち再結晶温度の上昇によりあまり
低下しない。この硬さは高温時においても保たれ、従来
合金に比べて高温強度のある合金となり、ひいては疲労
強度の向上にもつながる。なお、CuとMgを同時に添
加する場合は、その合計量を3%以内とし、その内Cu
は2%以内とすることが好ましい。次にPb,Bj,I
nのうち少なくとも1種添加することはSnの潤滑金属
としての性質を改良するためであり、Crと一緒に添加
したときに効果が認められる。従来A1−Sn系合金の
中にこれらの元素を添加することは考えられ、また一部
行なわれているが、これらの添加元素を単独で加えると
A1−Sn系合金の中へ合金化されてしまうためSnの
融点が低くなつてしまうという欠点が避けられない。こ
のため従来のN−Sn系合金は低温でSnの溶融と移動
が起こり易くなる結果、粗大なSn粒に成長しやすく、
これを軸受として使用すると、高負荷運転が連続したと
き部分的に溶融し、ハクリすることもありうる。これに
対し本発明のようにCrを加えることによつてSn粒を
微細化し、かつその組織を高温でも維持できるようにし
ておくと、Pb,Bi,Inのうち少なくとも1種を加
えても上記のような弊害は生ぜずにSn(7)潤滑性を
改善することができ、高い疲労強度の必要とされる軸受
にも使用可能となり、さらに耐疲労性に加えてなじみ性
の向上も図ることができる。またさらに析出したN−C
r金属間化合物の軸受表面に露出した表層に、Pb,B
i,Inの添加によつて潤滑性能が改善されたSn系低
融点金属が薄く被膜を形成することにより、摩擦特性が
改善される。このような効果を得ることのできるPb,
Bi,Inのうち少なくとも1種の添加量は9%以下(
イ)を含ます)であり、好ましくは含有Sn量に対し約
15%以下程度がよい。
Here, a more preferable addition ratio is 2.0 or less. As for Mg, if it is added in an amount of 3% or more, the hardness improves, but the increase in hardness due to rolling becomes too large, making it impossible to perform sufficient rolling, making it difficult to obtain a fine Sn structure. Further, during annealing, Mg dissolved in N is likely to precipitate, and the excess amount added will precipitate, so strengthening of the A1 base by solid solution cannot be expected. Here, a more preferable addition ratio is 2.0 or less. This Cu (5M
The above effect of g occurs when it is added simultaneously with Cr, and C
U or Mg alone cannot be expected to have the effect of increasing hardness at high temperatures. In other words, when Cu or Mg is added to N, the hardness increases significantly during rolling. Even at the same rolling rate, the increase in hardness is remarkable compared to Al materials with other elements added, but at 200°C It easily softens when heated to near high temperatures and cannot be expected to maintain its hardness at high temperatures. On the other hand, when Cr and Cu or Mg are added at the same time, the hardness increased during rolling due to the effect of adding Cu or Mg is maintained even after annealing.
It does not decrease much due to the effect of adding r, that is, the increase in recrystallization temperature. This hardness is maintained even at high temperatures, resulting in an alloy with higher high-temperature strength than conventional alloys, which in turn leads to improved fatigue strength. In addition, when adding Cu and Mg at the same time, the total amount should be within 3%, of which Cu
is preferably within 2%. Next, Pb, Bj, I
The purpose of adding at least one type of n is to improve the properties of Sn as a lubricating metal, and the effect is observed when it is added together with Cr. Adding these elements to the A1-Sn alloy has been thought of and has been done in some cases, but if these elements are added alone, they will not be alloyed into the A1-Sn alloy. Due to storage, the disadvantage that the melting point of Sn becomes low cannot be avoided. For this reason, in conventional N-Sn alloys, Sn melts and moves easily at low temperatures, resulting in easy growth into coarse Sn grains.
If this is used as a bearing, it may partially melt and peel during continuous high-load operation. On the other hand, if the Sn grains are made finer by adding Cr as in the present invention, and the structure is maintained even at high temperatures, even if at least one of Pb, Bi, and In is added, It is possible to improve the Sn(7) lubricity without causing the adverse effects such as, and it can be used in bearings that require high fatigue strength, and it also aims to improve conformability in addition to fatigue resistance. I can do it. Furthermore, N-C precipitated
rThe surface layer exposed on the bearing surface of the intermetallic compound contains Pb, B.
Frictional characteristics are improved by forming a thin film of Sn-based low melting point metal whose lubricating performance has been improved by adding i,In. Pb, which can obtain such effects,
The amount of at least one of Bi and In added is 9% or less (
(b)), and preferably about 15% or less based on the amount of Sn contained.

なおPbとBi.(51nを合わせて9%以下としても
よい。さらにSn(5Pb,Bi,Inのうち少なくと
も1種との合計添加量は35%以内がよい。なおA1中
に潤滑金属を微細に存在させるためにSn量は添加元素
の中では最も多くなければならない。上記組織のN軸受
合金は、主に車輛用内燃機関のすベリ軸受として使用さ
れるが、この場合裏金鋼板に圧接して用いるのが普通で
あり、この圧接後には接着強度を増すために焼鈍を行な
つている。
Note that Pb and Bi. (The total amount of 51n may be 9% or less. Furthermore, the total amount of Sn (with at least one of 5Pb, Bi, and In) is preferably 35% or less. In addition, in order to make the lubricating metal exist finely in A1, The amount of Sn must be the highest among the additive elements.N bearing alloys with the above structure are mainly used as full bearings for internal combustion engines for vehicles, but in this case they are usually used by being pressure-welded to a backing steel plate. After this pressure bonding, annealing is performed to increase adhesive strength.

ところが前述のように従来のA1−Sn系合金では圧延
後の数回に渡る焼鈍によつて合金組織中のN粒界および
Sn粒子の移動が生じ、Sn粒子が粗大化するため、硬
さの低下、Sn粒子の溶出等の欠点が生じていた。これ
に対し本発明では、圧延、焼鈍の工程から生じるAI−
Cr金属間化合物の析出物がA1粒界の移動を妨げると
ともにA1結晶粒の成長を阻止するので、焼鈍による上
記悪影響の生ずることがなく、このため焼鈍温度を上げ
てA1−Sn系合金と裏金鋼板との接着強度を増すこと
ができる。なおこのことは、本軸受合金材料が焼鈍に匹
敵する高温下に置かれる場合にも、そのまま妥当するか
ら、軟化の防止を通じ疲労強度の向上に寄与できること
も同時に意味している。次に実施例によつて本発明を説
明する。次表は本発明に係る軸受合金材料を構成する合
金1〜17、比較材として合金18〜21の化学成分値
を示すものである。合金1から17迄は、ガス炉におい
てA1地金を溶解し、次にA1−Cr母合金やAI−C
u母合金Al5一Mg母合金を目的成分に応じて溶解し
最後にSnおよびPb等を添加したのち脱ガス処理をし
、湯温720℃で金型に鋳造を行なつたものでその後圧
延と焼鈍(350′C)を繰り返して試料を作り、高温
硬さ測定を行なつた。
However, as mentioned above, in the conventional A1-Sn alloy, the N grain boundaries and Sn particles in the alloy structure move due to several times of annealing after rolling, and the Sn particles become coarser, resulting in a decrease in hardness. There were drawbacks such as a decrease in the amount of water and elution of Sn particles. In contrast, in the present invention, AI-
Since the precipitates of Cr intermetallic compound impede the movement of A1 grain boundaries and inhibit the growth of A1 crystal grains, the above-mentioned adverse effects due to annealing do not occur. It can increase the adhesive strength with steel plate. Note that this also means that this bearing alloy material remains valid even when it is placed under high temperatures comparable to annealing, so it can also contribute to improving fatigue strength by preventing softening. Next, the present invention will be explained with reference to Examples. The following table shows the chemical composition values of Alloys 1 to 17 constituting the bearing alloy material according to the present invention and Alloys 18 to 21 as comparative materials. Alloys 1 to 17 are produced by melting A1 base metal in a gas furnace, and then melting A1-Cr master alloy or AI-C.
U master alloy Al5-Mg master alloy was melted according to the target components, and finally Sn and Pb were added, followed by degassing treatment and casting into a mold at a hot water temperature of 720°C, followed by rolling. Samples were prepared by repeated annealing (350'C) and high temperature hardness measurements were performed.

次にこの試料をさらに圧延し、その後これらの合金と裏
金鋼板とを圧接してバイメタル材とし、これを焼鈍(3
80℃)した後平面軸受に加工して動荷重疲労試験を行
なつた。また合金18〜21は、比較の便宜のために従
来の組成の合金を上記合金と同一の製造法で作製して試
料とし、同一の試験を行なつた。第1図は、上記合金1
ないし21の高温下での硬さをヴイツカース硬度で測定
した結果を示すものである。
Next, this sample was further rolled, and then these alloys and a backing steel plate were pressure-welded to form a bimetallic material, which was then annealed (3
After heating the bearings to 80°C, they were processed into flat bearings and subjected to dynamic load fatigue tests. For convenience of comparison, Alloys 18 to 21 were prepared using conventional compositions using the same manufacturing method as the above-mentioned alloys, and were subjected to the same tests. Figure 1 shows the above alloy 1.
This shows the results of measuring the hardness at high temperatures of 21 to 21 using Witzkers hardness.

これらのグラフから明らかなように、本発明に係る軸受
合金材料の合金1〜17は従来の合金18〜20に比し
てすべての温度領域において硬度が高く、また従来の合
金21との比較では、合金21の方が低温度領域におい
て硬度の高い場合も存在するが、合金21は温度の上昇
と共に急激にその硬度が低下するのに対し、本発明材料
の合金1ないし17は温度上昇に伴う硬度低下の程度が
ゆるやかてあり、したがつて温度の変化に伴う軸受状態
の変化を少なくできるという効果がある。また特にPb
,Bi,Inの他にCuまたは(および)Mgを添加し
た合金5〜13,16,17は、全温度領域において特
に硬度の高いことが認められ、かつ合金21に比して温
度上昇に伴う硬度低下が少なく特に温度200℃におい
ても高い硬度を維持している。これは明らかにCu,M
gを加えたことによる効果である。また合金組織の上か
らは、本発明に係る軸受合金材料の合金1ないし17は
、裏金鋼板との接合後の焼鈍を経ても、S電子の粗大化
は認められなかつた。第2図は、本発明材料の合金2,
5,9,14,16と従来の合金18,19,20につ
いてノ動荷重軸受疲労試験を行なつた結果を示す。
As is clear from these graphs, Alloys 1 to 17 of the bearing alloy material according to the present invention have higher hardness in all temperature ranges than conventional Alloys 18 to 20, and have higher hardness than conventional Alloy 21. Although there are cases where Alloy 21 has higher hardness in the low temperature range, the hardness of Alloy 21 decreases rapidly as the temperature rises, whereas the hardness of Alloys 1 to 17 of the present invention materials decreases as the temperature increases. The degree of decrease in hardness is gradual, which has the effect of reducing changes in the bearing condition due to changes in temperature. Also, especially Pb
, Bi, and In, alloys 5 to 13, 16, and 17 in which Cu or (and) Mg were added were found to have particularly high hardness in the entire temperature range, and compared to alloy 21, the hardness increased with increasing temperature. There is little decrease in hardness, and high hardness is maintained even at a temperature of 200°C. This is clearly Cu,M
This is the effect of adding g. Moreover, from the alloy structure, no coarsening of S electrons was observed in Alloys 1 to 17 of the bearing alloy materials according to the present invention even after annealing after joining with the backing steel plate. Figure 2 shows alloy 2 of the material of the present invention,
The results of a dynamic load bearing fatigue test are shown for alloys No. 5, 9, 14, and 16 and conventional alloys 18, 19, and 20.

この試験は、軸回転数3000r.p.m1軸材として
S55C焼入れ材を使用し、一定油温の強制潤滑下にお
いて、鉄鋼材料の疲労状況を知る107回応力繰り返し
条件で油温を異ならせて耐疲労面圧を測定したものであ
る。このグラフから明らかなように合金2,5,9,1
4,16,18,19,20とも温度が高い程耐疲労面
圧が低下するが、本発明に係る軸受合金材料の合金2,
5,9,14,16は耐疲労面圧の低下の程度が従来の
合金18,19,20程大きくなく、かつ合金2,5,
9,14,16と合金18,19,20は低温側の耐疲
労面圧での差はそれ程大きくないが、高温側の耐疲労面
圧は合金2,5,9,14,16が合金18,19,2
0を浚駕していることが明瞭に認められる。なお、第2
図は本発明に係る軸受合金材料の合金を代表させて合金
2,5,9,14,16従来の合金を代表させて18,
19,20を挙げたものであるが、他の合金も同様の傾
向を示す結果が得られている。また次表は本発明に係る
軸受合金材料の合金2,9,12と従来の合金18,1
9について焼付試験を行なつたときの焼付荷重を示すも
のである。
This test was conducted at a shaft rotation speed of 3000 r. p. S55C hardened material was used as the m1 shaft material, and the fatigue resistance surface pressure was measured under forced lubrication at a constant oil temperature and with different oil temperatures under 107 stress repetition conditions to determine the fatigue state of steel materials. As is clear from this graph, alloys 2, 5, 9, 1
4, 16, 18, 19, and 20, the fatigue resistance surface pressure decreases as the temperature increases, but alloy 2, the bearing alloy material according to the present invention,
In alloys 5, 9, 14, and 16, the degree of decrease in fatigue resistance surface pressure was not as large as in conventional alloys 18, 19, and 20, and alloys 2, 5, and
The difference in fatigue bearing pressure on the low temperature side between Alloys 2, 5, 9, 14, and 16 is not that large, but the fatigue bearing pressure on the high temperature side is higher than that of Alloy 18. ,19,2
It is clearly recognized that 0 is being overtaken. In addition, the second
The figure shows alloys 2, 5, 9, 14, 16 representing the bearing alloy material according to the present invention, and 18, representing conventional alloys.
19 and 20, but results showing similar trends have been obtained for other alloys as well. Further, the following table shows alloys 2, 9, and 12 of the bearing alloy material according to the present invention and conventional alloys 18 and 1.
9 shows the seizure load when a seizure test was conducted on No. 9.

この実験は、軸回転数1000r′.P.ml軸材とし
てS55C焼入れ材を使用し、一定油温(140℃)の
強制潤滑下において、焼付に至る迄の荷重(静荷重)を
測定したものであつて、本発明材料の合金2,9,12
は合金18,19に比しはるかに優れた焼付荷重を示し
ており、これはなじみ性を向上させる添加剤、すなわち
Pb,Bi,Inの効果であることが認められる。
In this experiment, the shaft rotation speed was 1000 r'. P. ml S55C hardened material was used as the shaft material, and the load (static load) up to seizure was measured under forced lubrication at a constant oil temperature (140 ° C.). ,12
shows a much better seizure load than Alloys 18 and 19, and this is recognized to be the effect of the additives that improve conformability, namely Pb, Bi, and In.

さらに第3図は、本発明に係る軸受合金材料の.合金2
,9と従来の合金19について、荷重を増加させた場合
の摩擦トルクの変化の状態を測定した結果を示すグラフ
である。
Further, FIG. 3 shows a bearing alloy material according to the present invention. Alloy 2
, 9 and the conventional alloy 19 are graphs showing the results of measuring changes in friction torque when the load is increased.

この実験は、上記焼付試験の際、荷重を増加させる途中
の状況をオシログラフで測定している。このグラフによ
れば、従来の合金19では荷重を増加させる度に摩擦ト
ルクはピークの発生を伴つて大きく変動しつつ増加し、
また合金2ではピークを伴う程大きな変動は認められず
滑らかに変動しているが、荷重増加の停止時に山形の摩
擦トルク変動が生じている。これに対し本発明材料の合
金9では、荷重の増加に対して極めて滑らかに追従して
摩擦トルクが増加しており、有害な摩擦トルク変動は生
じていない。これは本発明材料の合金がなじみ性に優れ
、かつ焼付の生じにくいことを示している。すなわち従
来の合金19にみられる変動の大きなピーク波形は、摺
動面の油膜が部分的に破壊され、固体接触が生じこれが
繰り返されると全体破壊(焼・付)を生じることを意味
しており、このような波形を生じない本発明材料の合金
2,9はなじみ性および耐焼付荷重が高い。なお、本発
明に係る軸受合金材料の合金組成において、Al中には
通常の精練技術ではどうしても避けられない不純物が含
まれることは勿論である。
In this experiment, the situation during the load increase during the seizure test was measured using an oscillograph. According to this graph, in the conventional alloy 19, the friction torque increases with a large fluctuation with the occurrence of a peak every time the load is increased.
Furthermore, in Alloy 2, no large fluctuations accompanied by peaks were observed, and the fluctuations were smooth, but chevron-shaped friction torque fluctuations occurred when the load stopped increasing. On the other hand, in Alloy 9, which is a material of the present invention, the friction torque increases extremely smoothly following the increase in load, and no harmful friction torque fluctuations occur. This indicates that the alloy of the material of the present invention has excellent conformability and is less prone to seizure. In other words, the peak waveform with large fluctuations seen in conventional Alloy 19 means that the oil film on the sliding surface is partially destroyed, solid contact occurs, and if this is repeated, total destruction (seizing/seizing) will occur. Alloys 2 and 9, which are materials of the present invention that do not produce such corrugations, have high conformability and seizure load resistance. In addition, in the alloy composition of the bearing alloy material according to the present invention, it goes without saying that Al contains impurities that cannot be avoided by ordinary scouring techniques.

次に第4図は本発明に係る軸受合金材料の合金1,5,
14と従来の合金18,19について摩耗試験を行なつ
たときの荷重を増加させた場合の”摩耗量の変化の状態
を測定した結果を示すグラフである。
Next, FIG. 4 shows alloys 1, 5, and 1 of bearing alloy materials according to the present invention.
14 is a graph showing the results of measuring changes in the amount of wear when the load is increased when performing a wear test on Alloys No. 14 and conventional Alloys No. 18 and No. 19. FIG.

このグラフによれば、従来の合金18と比較しCrを添
加した1,5,14また従来の合金の合金中Siを添加
した19は摩耗量が極めて少ないことが認められる。ま
たCrを添加した合金でもCr含有量の差によつて摩耗
量に差が認められる。すなわち、Cr添加量の多い5,
14の方が1より摩耗量が少ない。この実験は、軸回転
数1000r′.P.ml軸材としてS55C焼入れ材
(軸アラサ1μ)を使用し、一定油温(120′C)の
強制潤滑下において荷重を増加させた場合の、各荷重で
の摩耗量を測定したものであり、本発明材料の合金1,
5,14は合金18に比しはるかに優れた耐摩耗性を示
しており、これはCr添加による効果であることが認め
られる。
According to this graph, it is recognized that compared to the conventional alloy 18, 1, 5, and 14 to which Cr is added and 19 to which Si is added to the conventional alloy have an extremely small amount of wear. Further, even in alloys to which Cr is added, differences in the amount of wear are observed depending on the difference in Cr content. In other words, 5, which has a large amount of Cr added,
No. 14 has less wear than No. 1. In this experiment, the shaft rotation speed was 1000 r'. P. The amount of wear at each load was measured when S55C hardened material (shaft roughness 1μ) was used as the shaft material and the load was increased under forced lubrication at a constant oil temperature (120'C). Alloy 1 of the material of the present invention,
Alloy Nos. 5 and 14 exhibited much better wear resistance than Alloy 18, and this was recognized to be the effect of the addition of Cr.

次に第5図は第4図と同様の実験を軸材質として球状黒
鉛鋳鉄材を使用して行なつたものである。
Next, FIG. 5 shows an experiment similar to that shown in FIG. 4 conducted using spheroidal graphite cast iron as the shaft material.

第4図の銅軸の場合と比して、本発明に係る軸受合金材
料の合金1,5,16は、従来の合金である18と摩耗
量において大きな差が認められ、Cr添加による耐摩耗
性向上効果は、球状黒鉛鋳鉄軸を使用した場合の方が銅
軸を使用した場合より、より明確となる。なお、第4図
、第5図の結果では、本件発明品と従来材の一部とは同
様の結果を示しているが、従来材は第1〜3図で明らか
なように欠点を持ち、結局は充分な合金とはいえない。
Compared to the case of the copper shaft shown in Fig. 4, alloys 1, 5, and 16 of the bearing alloy material according to the present invention have a large difference in wear amount from the conventional alloy 18, and the wear resistance due to the addition of Cr. The effect of improving properties is more obvious when a spheroidal graphite cast iron shaft is used than when a copper shaft is used. In addition, in the results shown in FIGS. 4 and 5, the present invention product and some of the conventional materials show similar results, but the conventional materials have drawbacks as shown in FIGS. 1 to 3. In the end, it cannot be said to be a sufficient alloy.

次に第6図は本発明に係る軸受合金材料の合金1,2,
9と従来の合金18,19,20について焼付試験を相
手材質として球状黒鉛鋳鉄軸を使用して行なつたときの
、焼付に至つたときの面圧を示すグラフである。
Next, FIG. 6 shows alloys 1, 2, and bearing alloy materials according to the present invention.
9 is a graph showing the surface pressure at the time of seizure when a seizure test was conducted using a spheroidal graphite cast iron shaft as the mating material for Alloy No. 9 and conventional alloys 18, 19, and 20.

このグラフによれば従来の合金18と比較しCrを添加
合金1,2,9は焼付面圧が高いことが認められる。ま
たCrを添加した合金でもCr含有量の差によつて焼付
荷重に差が認められる。すなわちCr添加量の多い合金
2の方が1より耐焼付性に優れている。中でもPbを添
加した合金9については、すぐれた耐焼付性を示してい
る。また従来の合金19は、その化学成分中のS1によ
ると思われる耐焼付性の向上が見られ、かつPbが添加
された合金20はよりすぐれた本件発明と同様の効果が
認められる。たたし前述した如く、これら従来材は本発
明材料の合金の特徴の一つである高温硬さの低下防止、
耐疲労性の向上等は認められない。以上の通り本発明に
係る複合アルミニウム−スズ系軸受合金材料は、A1−
Sn系合金にCrを添加したことによる硬さの向上、高
温硬さの低下防止、Sn粒子の粗大化阻止効果、これら
を通しての耐疲労性向上、および耐摩耗性の向上に加え
、特に球状黒鉛鋳鉄軸を使用する場合においての耐摩耗
性、耐焼付性の向上、またCrとともに添加して効果の
あるPb,Bi,Inによりなじみ性の向上、耐焼付性
の向上を図ることができ、さらにCu,Mgを加えれは
高温強度がより向上する。
According to this graph, it is recognized that Cr-added alloys 1, 2, and 9 have higher seizure surface pressures than the conventional alloy 18. Furthermore, even in alloys to which Cr is added, differences in seizure load are observed depending on the difference in Cr content. In other words, Alloy 2 with a large amount of Cr added has better seizure resistance than Alloy 1. Among them, Alloy 9 containing Pb shows excellent seizure resistance. In addition, the conventional alloy 19 shows improved seizure resistance, which is thought to be due to S1 in its chemical components, and the alloy 20 to which Pb is added exhibits the same superior effect as the present invention. However, as mentioned above, these conventional materials can prevent a decrease in high-temperature hardness, which is one of the characteristics of the alloy of the present invention material.
No improvement in fatigue resistance was observed. As described above, the composite aluminum-tin bearing alloy material according to the present invention is A1-
Addition of Cr to Sn-based alloys improves hardness, prevents reduction of high-temperature hardness, prevents coarsening of Sn particles, improves fatigue resistance and wear resistance through these, and improves especially spheroidal graphite. When using cast iron shafts, it is possible to improve wear resistance and seizure resistance, and Pb, Bi, and In, which are effective when added with Cr, can improve conformability and seizure resistance. Addition of Cu and Mg further improves high temperature strength.

また裏金鋼板との圧接後の圧延焼鈍を高温度長時間で行
なえるので、両者の密着性を高めることができる。
Further, since rolling annealing after pressure bonding with the backing steel plate can be performed at high temperature for a long time, the adhesion between the two can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る複合アルミニウム−スズ系軸受
合金材料を構成する合金と従来の同種軸受合金等との温
度変化に伴う硬度変化の様子をプ・ロッドしたグラフ、
第2図は、同じく耐疲労面圧の変化の様子をプロットし
たグラフ、第3図は同じく荷重を増加させた場合の摩擦
トルクの変化の状態を示すグラフ、第4図は、鋼軸に対
して同じく荷重を増加させた場合の摩耗量の変化の状態
をノ示すグラフであり、第5図は同じく球状黒鉛鋳鉄軸
に対しての摩耗量を示すグラフである。
FIG. 1 is a graph showing the change in hardness due to temperature change between the alloy constituting the composite aluminum-tin bearing alloy material according to the present invention and a conventional similar bearing alloy.
Figure 2 is a graph plotting the change in fatigue resistance surface pressure, Figure 3 is a graph showing the change in friction torque when the load is increased, and Figure 4 is a graph plotting the change in fatigue resistance against the steel shaft. FIG. 5 is a graph showing how the amount of wear changes when the load is similarly increased, and FIG. 5 is a graph similarly showing the amount of wear on the spheroidal graphite cast iron shaft.

Claims (1)

【特許請求の範囲】 1 重量でスズ3.5〜35%、クロム1.0を越え7
.0%、および残部が本質的にアルミニウムからなるア
ルミニウム−スズ系軸受合金に裏金鋼板を圧接してなる
複合アルミニウム−スズ系軸受合金材料。 2 重量でスズ3.5〜35%、クロム1.0を越え7
.0%、銅および(または)マグネシウム3.0%以下
(0を含まず)、および残部が本質的にアルミニウムか
らなるアルミニウム−スズ系軸受合金に裏金鋼板を圧接
してなる複合アルミニウム−スズ系軸受合金材料。 3 重量でスズ3.5〜35%、クロム1.0を越え7
.0%、銅および(または)マグネシウム3.0%以下
(0を含まず)、Pb、Bi、Inの少なくとも1種を
9.0%以下(0を含まず)、および残部が本質的にア
ルミニウムからなるアルミニウム−スズ系軸受合金に裏
金鋼板を圧接してなる複合アルミニウム−スズ系軸受合
金材料。 4 重量でスズ3.5〜35%、クロム1.0を越え7
.0%、Pb、Bi、Inの少なくとも1種を9.0%
以下(0を含まず)、および残部が本質的にアルミニウ
ムからなるアルミニウム−スズ系軸受合金に裏金鋼板を
圧接してなる複合アルミニウム−スズ系軸受材料。
[Claims] 1 3.5 to 35% tin by weight, more than 1.0 chromium 7
.. 1. A composite aluminum-tin bearing alloy material made by press-welding a backing steel plate to an aluminum-tin bearing alloy consisting essentially of 0% aluminum and the remainder aluminum. 2 3.5 to 35% tin by weight, over 1.0 chromium 7
.. A composite aluminum-tin bearing made by press-welding a backing steel plate to an aluminum-tin bearing alloy consisting essentially of 0% copper and/or magnesium, 3.0% or less (excluding 0), and the balance essentially aluminum. Alloy material. 3 3.5 to 35% tin by weight, more than 1.0 chromium 7
.. 0%, 3.0% or less (excluding 0) of copper and/or magnesium, 9.0% or less (excluding 0) of at least one of Pb, Bi, In, and the remainder essentially aluminum A composite aluminum-tin bearing alloy material made by press-welding a backing steel plate to an aluminum-tin bearing alloy. 4 3.5 to 35% tin by weight, over 1.0 chromium 7
.. 0%, at least one of Pb, Bi, In 9.0%
A composite aluminum-tin bearing material made by press-welding a backing steel plate to an aluminum-tin bearing alloy, the following (excluding 0) and the remainder being essentially aluminum.
JP16240781A 1981-10-12 1981-10-12 Composite aluminum-tin bearing alloy material Expired JPS6045701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16240781A JPS6045701B2 (en) 1981-10-12 1981-10-12 Composite aluminum-tin bearing alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16240781A JPS6045701B2 (en) 1981-10-12 1981-10-12 Composite aluminum-tin bearing alloy material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8423278A Division JPS582577B2 (en) 1978-07-11 1978-07-11 aluminum bearing alloy

Publications (2)

Publication Number Publication Date
JPS57114633A JPS57114633A (en) 1982-07-16
JPS6045701B2 true JPS6045701B2 (en) 1985-10-11

Family

ID=15754013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16240781A Expired JPS6045701B2 (en) 1981-10-12 1981-10-12 Composite aluminum-tin bearing alloy material

Country Status (1)

Country Link
JP (1) JPS6045701B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179023A (en) * 1984-09-25 1986-04-22 Taiho Kogyo Co Ltd Material for bearing

Also Published As

Publication number Publication date
JPS57114633A (en) 1982-07-16

Similar Documents

Publication Publication Date Title
US4375499A (en) Aluminum-tin base bearing alloy and composite
US4696867A (en) Aluminum based bearing alloys
JP2535126B2 (en) Multilayer plain bearings and bearing assemblies
WO1981002025A1 (en) Aluminum-based alloy bearing
JPH0539811A (en) Multilayer sliding material for high speed and manufacture thereof
JP2769421B2 (en) Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same
JP3898619B2 (en) Copper-based alloy for sliding
JPH0810012B2 (en) Bearing material
JPS6160906B2 (en)
JPS582578B2 (en) aluminum bearing alloy
US4296183A (en) Al-Sn Base bearing alloy and composite
JPS6156305B2 (en)
JPS5844140B2 (en) Composite sliding material
JPS6144140B2 (en)
JPS6045701B2 (en) Composite aluminum-tin bearing alloy material
JPH0235020B2 (en) ALLSNNPBKEIJIKUKEGOKIN
JPS5867841A (en) Aluminum alloy bearing
GB2066846A (en) Aluminum-tin base bearing alloy
JPS6254853B2 (en)
JPH0362782B2 (en)
JPS582577B2 (en) aluminum bearing alloy
GB2067220A (en) Aluminium-tin base bearing alloy
JPH0114990B2 (en)
JPS6212298B2 (en)
JPS6134499B2 (en)