JPH0587578B2 - - Google Patents

Info

Publication number
JPH0587578B2
JPH0587578B2 JP31084090A JP31084090A JPH0587578B2 JP H0587578 B2 JPH0587578 B2 JP H0587578B2 JP 31084090 A JP31084090 A JP 31084090A JP 31084090 A JP31084090 A JP 31084090A JP H0587578 B2 JPH0587578 B2 JP H0587578B2
Authority
JP
Japan
Prior art keywords
overlay
layer
bearing
corrosion resistance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31084090A
Other languages
Japanese (ja)
Other versions
JPH03170631A (en
Inventor
Kyoshi Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Original Assignee
NDC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd filed Critical NDC Co Ltd
Priority to JP31084090A priority Critical patent/JPH03170631A/en
Publication of JPH03170631A publication Critical patent/JPH03170631A/en
Publication of JPH0587578B2 publication Critical patent/JPH0587578B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は内燃機関に用いられる平軸受に係り、
詳しくは、近年の内燃機関の出力増大による潤滑
油の温度上昇および高温における潤滑油の酸化等
によつて生成する有機酸の増大等の条件下で十分
に性能を発揮する平軸受に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a plain bearing used in an internal combustion engine,
Specifically, the present invention relates to a plain bearing that exhibits sufficient performance under conditions such as an increase in the temperature of lubricating oil due to the increase in output of internal combustion engines in recent years, and an increase in organic acids generated by oxidation of lubricating oil at high temperatures.

従来の技術 従来、内燃機関に使用されている軸受メタルは
半割系若しくは円筒状の鋼を裏金とし、これに銅
系若しくはアルミニウム系の軸受合金を複層化し
たものである。これら高荷重用軸受として開発さ
れた銅−鉛軸受合金、ブロンズ軸受合金およびア
ルミニウム軸受合金等は耐荷重性は優れている
が、軸受合金に必要なその他の特性、すなわち、
耐焼付性、埋収性、なじみ性等においては問題が
あり、この解決のために埋収性、なじみ性を備え
た金属を軸受合金の上にオーバレイする必要があ
る。例えば、従来の自動車用軸受では裏金上に中
間層として銅またはアルミニウム合金を焼結、鋳
造または圧接等の方法によつて密着させ、更に、
その上に厚さ10〜30μのオーバレイ層を施した3
層軸受が使用されている。このオーバレイ層は軸
受の耐摩耗性、なじみ性および異物の埋収性向上
の効果があり、オーバレイの組成としては従来か
ら、Pb−Sn系、Pb−Sn−Sb系、Pb−Sn−Cu
系、Pb−Sn−In系等が知られ、特に、米国特許
2605149号によつて開示された鉛85〜95%、錫8
〜12%、銅2〜3%のPb−Sn−Cu系オーバレイ
が最も多く使用されている。このオーバレイ中の
鉛は軸受とジヤーナルとのなじみ性および潤滑油
中の異物の埋収性を向上し、錫は耐食性を良く
し、銅は耐疲労性向上の役割を果している。
BACKGROUND ART Bearing metals conventionally used in internal combustion engines have a half-split or cylindrical steel backing metal, and a multi-layered copper-based or aluminum-based bearing alloy. These copper-lead bearing alloys, bronze bearing alloys, aluminum bearing alloys, etc. developed as bearings for high loads have excellent load resistance, but other characteristics required for bearing alloys, such as:
There are problems with seizure resistance, embeddability, conformability, etc., and in order to solve these problems, it is necessary to overlay a metal with embeddability and conformability on the bearing alloy. For example, in conventional automobile bearings, a copper or aluminum alloy is adhered as an intermediate layer on a back metal by sintering, casting, pressure welding, etc.;
On top of that, an overlay layer with a thickness of 10 to 30 μm was applied.
Layer bearings are used. This overlay layer has the effect of improving the bearing's wear resistance, conformability, and foreign matter embedding ability. Conventionally, the composition of the overlay layer is Pb-Sn, Pb-Sn-Sb, Pb-Sn-Cu.
system, Pb-Sn-In system, etc. are known, and in particular, the US patent
85-95% lead, 8% tin as disclosed by No. 2605149
Pb-Sn-Cu based overlays with ~12% copper and 2-3% copper are most commonly used. The lead in this overlay improves the compatibility between the bearing and the journal and the embedding of foreign matter in the lubricating oil, the tin improves corrosion resistance, and the copper plays a role in improving fatigue resistance.

しかし、近年、内燃機関の出力が大きくなり、
潤滑油の温度が上昇するにつれ、オーバレイが軟
化し、耐摩耗性が悪くなる傾向にあり、更に、高
温によつて潤滑油の酸化が促進されて有機酸等の
耐食性生成物が生成し、オーバレイを腐食する問
題があるため、これらの改善されたオーバレイの
開発が求められている。
However, in recent years, the output of internal combustion engines has increased,
As the temperature of the lubricating oil increases, the overlay tends to soften and its wear resistance deteriorates.Furthermore, high temperatures accelerate the oxidation of the lubricating oil, producing corrosion-resistant products such as organic acids, which weaken the overlay. There is a need for the development of these improved overlays due to corrosion problems.

発明が解決しようとする課題 本発明はこれらの問題点を解決することを目的
とし、具体的には、Pb−Sn−Cu系オーバレイに
おいてその錫含有量を大巾に増加するとともに銅
含有量を比較的低くおさえて耐食性および耐摩耗
性、なかでも、潤滑油の酸化生成物たる有機酸に
対する耐食性を向上させて成るオーバレイを具え
る内燃機関用軸受を提案する。
Problems to be Solved by the Invention The present invention aims to solve these problems, and specifically, it significantly increases the tin content and the copper content in the Pb-Sn-Cu overlay. A bearing for an internal combustion engine is proposed which includes an overlay having relatively low corrosion resistance and wear resistance, particularly corrosion resistance against organic acids, which are oxidation products of lubricating oil.

課題を解決するための手段ならびにその作用 すなわち、本発明に係る平軸は、軸受層の表面
に、錫21〜30%および銅1.0〜5.0%を含有し、残
余が実質的に鉛よりなるオーバレイ層を形成して
なることを特徴とする。
Means for Solving the Problems and Their Effects That is, the flat shaft according to the present invention has an overlay on the surface of the bearing layer containing 21 to 30% tin and 1.0 to 5.0% copper, with the remainder consisting essentially of lead. It is characterized by forming layers.

以下、図面により本発明を詳しく説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

なお、第1図aおよびbは本発明の平軸受の一
例を示す斜視図と矢視A−A方向からの断面図で
ある。
Note that FIGS. 1a and 1b are a perspective view and a cross-sectional view taken along arrow A-A, showing an example of the plain bearing of the present invention.

まず、第1図aならびにbにおいて符号1は裏
金、2は銅またはアルミニウム合金の軸受層、3
はニツケルメツキ層などの中間層、4はオーバレ
イ層を示し、このオーバレイ層がPb−Sn−Cu系
合金から成つて、とくに、Snを過剰に高めて有
機酸に対する耐食性を向上させ、Cuは小量しか
添加しないのにも拘らず、耐疲労性も十分に保持
できる。
First, in FIGS. 1a and 1b, reference numeral 1 indicates a back metal, 2 indicates a bearing layer made of copper or aluminum alloy, and 3 indicates a bearing layer made of copper or aluminum alloy.
4 indicates an intermediate layer such as a nickel plated layer, and 4 indicates an overlay layer. This overlay layer is made of a Pb-Sn-Cu alloy, in particular, with an excessively high content of Sn to improve corrosion resistance against organic acids, and a small amount of Cu. Although only a small amount is added, fatigue resistance can be sufficiently maintained.

すなわち、オーバレイ層中に例えば30%までの
如く多量のSnを添加すると、SnがPbマトリツク
ス中に固溶してマトリツクスの耐食性を向上させ
る。また、Cuとの間でSn−Cuの金属間化合物を
形成し、これがマトリツクス中に分散して存在す
る。しかし、Snを多量、むしろ過剰に配合する
と、残りのSnは微細なSnの結晶粒子になつてマ
トリツクス中に均一に分散して析出する。そのた
め、固溶したSnによつて一般的に耐食性が向上
するほか、この分散するSn結晶粒子によつて有
機酸などに対する耐食性を付与し、これら耐食性
は機関運転中でも保持される。更に詳しく説明す
ると、Cu−Snの金属間化合物は内燃機関の運転
中に微細なSn結晶粒子やマトリツクス中に固溶
しているSnと徐々に結合し、Sn含有量の多いCu
−Sn系金属間化合物に次第に移行する。この結
果、マトリツクス中に固溶しているSnおよびマ
トリツクス中に点在しているSn弐量が減少し、
オーバレイ層の耐食性および耐摩耗性は運転開始
時に較べると、大巾に低下する。
That is, when a large amount of Sn, for example up to 30%, is added to the overlay layer, Sn is dissolved in the Pb matrix and improves the corrosion resistance of the matrix. In addition, an intermetallic compound of Sn-Cu is formed with Cu, and this is dispersed in the matrix. However, if a large amount, or even an excessive amount of Sn is added, the remaining Sn becomes fine crystal grains of Sn and is uniformly dispersed and precipitated in the matrix. Therefore, not only the solid-dissolved Sn improves corrosion resistance in general, but also the dispersed Sn crystal particles provide corrosion resistance against organic acids and the like, and this corrosion resistance is maintained even during engine operation. To explain in more detail, the Cu-Sn intermetallic compound gradually combines with fine Sn crystal particles and Sn dissolved in the matrix during operation of an internal combustion engine, and Cu with a high Sn content
- Gradually transitions to Sn-based intermetallic compounds. As a result, the amount of Sn dissolved in the matrix and the amount of Sn scattered in the matrix decreases,
The corrosion and abrasion resistance of the overlay layer is significantly reduced compared to the start of operation.

また、ニツケルメツキなどの中間層の近くに存
在するオーバレイ層中のSnはこのNiと金属間化
合物を形成し、これらのSnも次第にニツケルメ
ツキの中間層に移行し、前述のCu−Sn金属間化
合物と同様に内燃機関運転中に次第にSn含有量
の多いSn−Ni金属間化綾物に変化する。このた
め、ニツケルメツキの中間層付近のオーバレイ層
ではその中に含まれるSnが著しく減少しこの部
分で耐摩耗性および耐食性は非常に低下し、この
部分が潤滑油の酸化により生成する有機酸によつ
て侵食され易い。
In addition, Sn in the overlay layer, which exists near the intermediate layer such as nickel metal, forms an intermetallic compound with this Ni, and these Sn gradually migrate to the intermediate layer of nickel metal, forming the aforementioned Cu-Sn intermetallic compound. Similarly, during the operation of an internal combustion engine, it gradually changes to Sn-Ni intermetallic compound with a high Sn content. For this reason, the Sn contained in the overlay layer near the intermediate layer of nickel metal is significantly reduced, and the wear resistance and corrosion resistance of this area are greatly reduced. It is easily eroded.

そこで、本発明では上記のように内燃機関運転
中のSn挙動を観察し、これにもとずいて、オー
バレイ層中のSn含有量を30%まで増加させる一
方、小量のCuを添加して耐摩耗性および耐食性
のほか、耐疲労性を向上させたものである。
Therefore, in the present invention, we observed Sn behavior during internal combustion engine operation as described above, and based on this, we increased the Sn content in the overlay layer to 30% while adding a small amount of Cu. It has improved fatigue resistance as well as wear resistance and corrosion resistance.

次に、オーバレイ層の各成分の役割および添加
範囲について説明すると、次の通りである。
Next, the role and addition range of each component of the overlay layer will be explained as follows.

Snは耐食性および耐摩耗性を向上するが、現
在の如く、内燃機関の出力が増加する折では、き
わめて苛酷な腐蝕環境が形成されるため、Sn含
有量が少なくとも15%以上、とくに、20%こえ
て、つまり20%以上必要である。すなわち、
Sn15%をこえると、マトリツクス中にSnの結晶
粒子が析出し、これによつて、とくに、潤滑油酸
化の生成物たる有機酸に対する耐食性が保持され
る。しかしながら、15%程度ではSnの結晶粒子
量が少なく、運転中に減少するため、オーバレイ
の耐食性および耐摩耗性が非常に減少する。この
ため、最近の高負荷運転の如く苛酷な条件ではな
るべくSnの結晶粒子が多いのが望ましく、20%
をこえて21%以上必要である。Snの含有量が30
%以上になると耐疲労性およびなじみ性が悪くな
る。
Sn improves corrosion resistance and wear resistance, but as the output of internal combustion engines increases as it does today, an extremely harsh corrosive environment is created, so the Sn content must be at least 15%, especially 20%. More than 20% is necessary. That is,
When Sn exceeds 15%, Sn crystal particles precipitate in the matrix, which maintains corrosion resistance, especially against organic acids that are products of lubricating oil oxidation. However, at about 15%, the amount of Sn crystal particles is small and decreases during operation, resulting in a significant decrease in the corrosion resistance and wear resistance of the overlay. For this reason, under severe conditions such as recent high-load operation, it is desirable to have as many Sn crystal particles as possible, and 20%
21% or more is required. Sn content is 30
% or more, fatigue resistance and conformability deteriorate.

また、Cuはオーバレイ層の耐疲労性向上のた
めに添加される。しかし、Cu量はできるだけ低
くおさえるべきで、1.0〜5.0%程度が最も良い性
能を発揮する。すなわち、5%をこえると、Sn
との間で金属間化合物を生成して硬くなるほか、
この化合物の生成によりSn結晶粒子の量が減少
し、耐食性が損なわれる。これに対し、1.0%以
下ではその添加効果が失なわれる。
Further, Cu is added to improve the fatigue resistance of the overlay layer. However, the amount of Cu should be kept as low as possible, and a value of about 1.0 to 5.0% provides the best performance. In other words, if it exceeds 5%, Sn
In addition to forming intermetallic compounds and becoming hard,
The formation of this compound reduces the amount of Sn crystal particles and impairs corrosion resistance. On the other hand, if it is less than 1.0%, the effect of its addition is lost.

実施例 以下、実施例により更に説明する。Example This will be further explained below using examples.

まず、軸受合金を一般の電気メツキの場合と同
様に脱脂および酸洗を行なつた後、1.0〜2.0μ厚
のニツケルメツキを行なう。このニツケルメツキ
の中間層の役割はCu系軸受合金の場合、内燃機
関の運転時にオーバレイ層中のSnが中間層のCu
合金中に拡散し、オーバレイ層の耐食性が低下す
るのを防止するためである。このニツケルメツキ
の中間層上に下記浴組成のメツキ浴および電流密
度で電気メツキしてオーバレイ層を形成した。
First, the bearing alloy is degreased and pickled in the same manner as in general electroplating, and then nickel plated to a thickness of 1.0 to 2.0 μm. The role of this intermediate layer of nickel metal is that in the case of Cu-based bearing alloys, the Sn in the overlay layer changes to the Cu in the intermediate layer during operation of an internal combustion engine.
This is to prevent the corrosion resistance of the overlay layer from decreasing due to diffusion into the alloy. An overlay layer was formed on this nickel plating intermediate layer by electroplating using a plating bath having the following bath composition and current density.

硼弗化鉛(金属鉛として)
60〜1200g/ 浴組成 〃 錫(金属錫として)15〜30 〃 〃 銅(金属銅として)
1〜4 〃 硼弗化物水素酸 40〜50 〃 レゾルシン 1.0〜5.0 〃 ゼラチン 0.1〜0.5 〃 電流密度 1.0〜3.0 A/dm2 このように得られた平軸受は裏金−軸受合金層
−ニツケル中間層−オーバレイ層の4層で、次の
通りの組成範囲のオーバレイ層が得られた。
Lead borofluoride (as lead metal)
60-1200g/ Bath composition 〃 Tin (as metallic tin) 15-30 〃 〃 Copper (as metallic copper)
1 to 4 〃 Borofluoride hydrogen acid 40 to 50 〃 Resorcinol 1.0 to 5.0 〃 Gelatin 0.1 to 0.5 〃 Current density 1.0 to 3.0 A/dm 2 The plain bearing obtained in this way has a backing metal layer, a bearing alloy layer, and a nickel intermediate layer. - Four overlay layers resulted in overlay layers with the following composition ranges:

Pb 66〜84% Sn 15〜30〃 Cu 1〜4 〃 次に、上記組成範囲の各オーバレイ層について
耐食性を測定するため、抑制剤を含まない
SAE10エンジン油に腐食剤としてオレイン酸を
1%添加し、その液中に121℃で50時間浸漬し、
その際の腐食減量を測定した。その結果、全ての
オーバレイ層の耐食性は従来のものに較べて約5
倍程度に向上した。更に、温度を135℃に高めて
50時間浸漬したところ、Snが20%をこえて21%
以上のものは15%のものに較べて2倍以上高めら
れ、相当の高負荷運転にも十分に耐えられること
がわかつた。
Pb 66-84% Sn 15-30〃 Cu 1-4〃 Next, in order to measure the corrosion resistance of each overlay layer in the above composition range, the overlay layer without inhibitor was
1% oleic acid was added as a corrosive to SAE10 engine oil and immersed in the solution at 121℃ for 50 hours.
The corrosion loss at that time was measured. As a result, the corrosion resistance of all overlay layers is approximately 5% higher than that of the conventional one.
It has improved by about twice as much. Furthermore, increase the temperature to 135℃
When immersed for 50 hours, Sn exceeded 20% and became 21%.
It was found that the above ratio was more than twice as high as that of 15%, and it was found to be able to withstand considerably high-load operation.

また、オーバレイ層の耐摩耗性を測定するた
め、アンダーウツド試験機で荷重560Kg/cm2、回
転数3500rpm、オーバレイ層0.020mm、軸受背面
温度175℃、潤滑油SAE20W−40、試験時間100
時間で試験し、その試験前後の軸受の重量減を測
定した。その結果、オーバレイの重量減は従来の
オーバレイ層の約5分の1、とくに、Sn量20%
をこえたものは6分の1程度であつた。
In addition, in order to measure the wear resistance of the overlay layer, an underwood tester was used with a load of 560 kg/cm 2 , a rotation speed of 3500 rpm, an overlay layer of 0.020 mm, a bearing back temperature of 175°C, a lubricating oil of SAE20W-40, and a test time of 100.
The weight loss of the bearing before and after the test was measured. As a result, the weight reduction of the overlay is about one-fifth of that of conventional overlay layers, especially with a Sn content of 20%.
About one-sixth of the cases exceeded this.

<発明の効果> 以上詳しく説明したように、本発明において
は、Sn含有量を増加するとともに、Cu含有量を
低くおさえ、耐食性、耐摩耗性および疲労強度を
大巾に改良し、近年の内燃機関の出力増大、潤滑
油の温度上昇、ならびに高温における潤滑油の酸
化により生成する有機酸等の増大等に十分に対応
できるオーバレイ層が得られる。
<Effects of the Invention> As explained in detail above, in the present invention, the Sn content is increased, the Cu content is kept low, corrosion resistance, wear resistance, and fatigue strength are greatly improved, and the internal combustion An overlay layer can be obtained that can sufficiently cope with an increase in engine output, an increase in the temperature of lubricating oil, and an increase in organic acids generated by oxidation of lubricating oil at high temperatures.

なお、一般に耐疲労性が大きいと云われている
Pb−Sn−10%In成分のオーバレイ層と上記のオ
ーバレイ層とを比較して、耐疲労性につき、上記
と同様の条件でアンダーウツド試験機でオーバレ
イ層に疲労破壊が生ずるまで比較試験を行なつ
た。本発明のものがCu量が少ないのにもかかわ
らず、両者はともに140〜160時間の耐久時間内で
あり、本発明のものが十分に耐疲労性のある事が
確認できた。このオーバレイ層であると、同一の
メツキが可能であり、インジウムを含有するオー
バレイ層の様に複数のメツキ浴を必要とすること
も無く、メツキ工程での工程の省力化も計れ、更
に、インジウムを拡散させるためのメツキ後の熱
処理も不要である。
Additionally, it is generally said to have high fatigue resistance.
Comparing the overlay layer with the Pb-Sn-10%In component and the above overlay layer, a comparative test was conducted on fatigue resistance using an underwood tester under the same conditions as above until fatigue failure occurred in the overlay layer. Ta. Although the present invention had a small amount of Cu, both of them had a durability time of 140 to 160 hours, confirming that the present invention had sufficient fatigue resistance. This overlay layer can be plated in the same way, does not require multiple plating baths like overlay layers containing indium, and saves labor in the plating process. There is no need for post-plating heat treatment to diffuse the particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbは本発明平軸受の一例を示す
斜視図およびその矢視A−A方向からの断面図で
ある。 符号1……裏金、2……銅またはアルミニウム
合金層、3……ニツケルメツキ層、4……オーバ
レイ層。
FIGS. 1a and 1b are a perspective view and a cross-sectional view taken along arrow A-A of the plain bearing of the present invention. Reference numeral 1: backing metal, 2: copper or aluminum alloy layer, 3: nickel plating layer, 4: overlay layer.

Claims (1)

【特許請求の範囲】[Claims] 1 軸受層の表面に、錫21〜30%および銅1.0〜
5.0%を含有し、残余が実質的に鉛よりなるオー
バレイ層を形成してなることを特徴とする内燃機
関に用いられる平軸受。
1 21~30% tin and 1.0~1.0% copper on the surface of the bearing layer.
A flat bearing for use in an internal combustion engine, characterized by forming an overlay layer containing 5.0% lead and the remainder being substantially lead.
JP31084090A 1990-11-16 1990-11-16 Plain bearing used for internal combustion engine Granted JPH03170631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31084090A JPH03170631A (en) 1990-11-16 1990-11-16 Plain bearing used for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31084090A JPH03170631A (en) 1990-11-16 1990-11-16 Plain bearing used for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6490685A Division JPS61221399A (en) 1985-03-27 1985-03-27 Plate bearing

Publications (2)

Publication Number Publication Date
JPH03170631A JPH03170631A (en) 1991-07-24
JPH0587578B2 true JPH0587578B2 (en) 1993-12-17

Family

ID=18010023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31084090A Granted JPH03170631A (en) 1990-11-16 1990-11-16 Plain bearing used for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03170631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104889690A (en) * 2015-06-01 2015-09-09 陈鹏 Bearing bush of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104889690A (en) * 2015-06-01 2015-09-09 陈鹏 Bearing bush of internal combustion engine
CN107020485A (en) * 2015-06-01 2017-08-08 陈鹏 A kind of manufacture method of internal combustion engine bearing

Also Published As

Publication number Publication date
JPH03170631A (en) 1991-07-24

Similar Documents

Publication Publication Date Title
US5185216A (en) Composite plating film for sliding member
JP5292279B2 (en) Plain bearing
US4937149A (en) Overlay alloy used for a surface layer of sliding material, sliding material having a surface layer comprising said alloy and the manufacturing method of the sliding material
JP2595386B2 (en) Multi-layer sliding material for high speed and manufacturing method thereof
US4978587A (en) Multilayer sliding material
JP3570607B2 (en) Sliding member
JPH1150296A (en) Sliding member
US5334460A (en) CU-PB system alloy composite bearing having overlay
US5413875A (en) Copper alloy sliding bearing with high-strength back metal
JPH01307512A (en) Multilayer aluminum alloy plain bearing and its manufacture
JP3472198B2 (en) Plain bearing
US4591536A (en) Plain bearing and method of manufacture
JPH06322462A (en) Copper-lead bearing alloy material excellent in corrosion resistance and its production
JPS604918B2 (en) Bearings for internal combustion engines and their manufacturing method
JP2535105B2 (en) Sliding bearing with composite plating film
JPH0159360B2 (en)
JPS6220915A (en) Plain bearing
US6740426B2 (en) Sliding member with composite plating film
JPH0587578B2 (en)
JPH07151148A (en) Overlay alloy for slide bearing
Eastham et al. Plating for bearing applications
JPH0220718B2 (en)
JPH0413565B2 (en)
JPH06105091B2 (en) Plain bearing
Totten Friction and Wear of Sliding Bearing Materials