JP2003049658A - Manufacturing method for preform of variable vane in vgs(variable geometry system) type turbocharger - Google Patents

Manufacturing method for preform of variable vane in vgs(variable geometry system) type turbocharger

Info

Publication number
JP2003049658A
JP2003049658A JP2001235676A JP2001235676A JP2003049658A JP 2003049658 A JP2003049658 A JP 2003049658A JP 2001235676 A JP2001235676 A JP 2001235676A JP 2001235676 A JP2001235676 A JP 2001235676A JP 2003049658 A JP2003049658 A JP 2003049658A
Authority
JP
Japan
Prior art keywords
variable
metal
manufacturing
raw material
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001235676A
Other languages
Japanese (ja)
Other versions
JP4638090B2 (en
Inventor
Shinjiro Oishi
新二朗 大石
Yukio Takahashi
幸雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Sogi Kogyo KK
Original Assignee
IHI Corp
Sogi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001235676A priority Critical patent/JP4638090B2/en
Application filed by IHI Corp, Sogi Kogyo KK filed Critical IHI Corp
Priority to EP02769562A priority patent/EP1396620A4/en
Priority to KR10-2003-7014587A priority patent/KR20040028753A/en
Priority to CN2007101407176A priority patent/CN101187316B/en
Priority to KR1020107027054A priority patent/KR20110003393A/en
Priority to CNB028139240A priority patent/CN100340749C/en
Priority to PCT/JP2002/004552 priority patent/WO2002092979A1/en
Priority to US10/476,789 priority patent/US20040213665A1/en
Publication of JP2003049658A publication Critical patent/JP2003049658A/en
Priority to HK05101579A priority patent/HK1069196A1/en
Priority to US12/213,985 priority patent/US20090145523A1/en
Priority to US12/980,924 priority patent/US20110308084A1/en
Application granted granted Critical
Publication of JP4638090B2 publication Critical patent/JP4638090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new manufacturing method actually providing a preform of a variable vane into a near net shape by a precise casting and a metal injection molding method. SOLUTION: When the preform of the variable vane 1 is formed by the precise casting, it is characterized in that a blank material using a heat-resistant metal as a primary base metal is applied thereto and various contents of C, Si, and O contained in the blank material are optimized so as to improve fluidity of molten metal. When the preform of the variable vane 1 is formed by the a metal injection molding method, it is characterized in that burning is performed so as to finely and uniformly product independent bubbles and the injection molded preform is treated by hot hydrostatic pressure pressing so as to heighten the density of the preform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は自動車用エンジン等
に用いられるターボチャージャに関するものであって、
特にこのものに組み込まれる可変翼の原形(素形材)を
製造するにあたり、形状、寸法ともに、より実製品に近
い、いわゆるニヤネットシェイプに仕上げ得る新規な製
造方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbocharger used in an automobile engine or the like,
In particular, when manufacturing a prototype (form material) of a variable blade to be incorporated in this product, the present invention relates to a novel manufacturing method capable of finishing a so-called near net shape, which is closer to the actual product in shape and size.

【0002】[0002]

【発明の背景】自動車用エンジンの高出力化、高性能化
の一手段として用いられる過給機としてターボチャージ
ャが知られており、このものはエンジンの排気エネルギ
によってタービンを駆動し、このタービンの出力によっ
てコンプレッサを回転させ、エンジンに自然吸気以上の
過給状態をもたらす装置である。ところでこのターボチ
ャージャは、エンジンが低速回転しているときには、排
気流量の低下により排気タービンがほとんど働かず、従
って高回転域まで回るエンジンにあってはタービンが効
率的に回るまでのもたつき感と、その後の一挙に吹き上
がるまでの所要時間いわゆるターボラグ等が生ずること
を免れないものであった。またもともとエンジン回転が
低いディーゼルエンジンでは、ターボ効果を得にくいと
いう欠点があった。
BACKGROUND OF THE INVENTION A turbocharger is known as a supercharger used as a means for increasing the output and improving the performance of an automobile engine. This turbocharger drives a turbine by the exhaust energy of the engine, It is a device that rotates the compressor by the output and brings the engine into a supercharged state that is higher than natural intake. By the way, in this turbocharger, when the engine is rotating at a low speed, the exhaust turbine hardly works due to a decrease in the exhaust flow rate, and therefore, in the case of an engine that can rotate up to a high rotation range, the turbine has a feeling of rattling until it rotates efficiently, It was inevitable that the so-called turbo lag, etc., required for the subsequent blowing up of the air all at once. Also, the diesel engine, which has a low engine speed, has a drawback that it is difficult to obtain a turbo effect.

【0003】このため低回転域からでも効率的に作動す
るVGSタイプのターボチャージャが開発されてきてい
る。このものは、少ない排気流量を可変翼(羽)で絞り
込み、排気の速度を増し、排気タービンの仕事量を大き
くすることで、低速回転時でも高出力を発揮できるよう
にしたものである。このためVGSタイプのターボチャ
ージャにあっては、別途可変翼の可変機構等を必要と
し、周辺の構成部品も従来のものに比べて形状等をより
複雑化させなければならなかった。 そしてVGSタイ
プのターボチャージャにおける可変翼を製造するにあた
っては、翼部と軸部とを一体に形成した金属素材(可変
翼の原形となる素形材)をまず形成し、このような素形
材を適宜切削加工等して行き、所望の形状や寸法に仕上
げるものである。
For this reason, a VGS type turbocharger has been developed which operates efficiently even in a low rotation range. This is a device in which a small exhaust flow rate is narrowed down by variable blades (blades), the speed of exhaust is increased, and the work of the exhaust turbine is increased, so that high output can be exhibited even at low speed rotation. Therefore, the VGS type turbocharger requires a variable blade variable mechanism and the like, and the peripheral components also have to be more complicated in shape and the like than the conventional ones. When manufacturing a variable blade for a VGS type turbocharger, first, a metal material (a raw material that is a prototype of the variable blade) in which a blade portion and a shaft portion are integrally formed is formed. Is appropriately cut to finish it into a desired shape and size.

【0004】ところで上述した可変翼の素形材を形成す
るにあたっては、例えばロストワックス鋳造に代表され
る精密鋳造法や、金属射出成形法等の手法がある。そし
てこのような手法によって素形材を、形状、寸法とも
に、より完成品に近づけた、いわゆるニヤネットシェイ
プに仕上げれば、後加工が極めて楽になり、加工の効率
化や工程数の削減化が図れるものである。すなわち素形
材を極力ニヤネットシェイプに仕上げることによって、
例えばその後、素形材の軸部を転造して所望の径太さに
仕上げる場合には、転造代が少なくて済み、ひいては転
造に伴う軸伸びが極力抑えられ、軸伸びを修正するため
の切削加工も排除できるものである。また更には、現実
に可変翼を高い品質レベル、寸法精度レベルを維持しな
がら、大量に生産できるようにもなる。
Incidentally, in forming the above-mentioned variable blade material, there are methods such as a precision casting method typified by lost wax casting and a metal injection molding method. And by using such a method, if the raw material is finished in a so-called near net shape that is closer to the finished product in both shape and size, post-processing becomes extremely easy, and the efficiency of processing and the reduction of the number of steps are reduced. It can be achieved. In other words, by finishing the material to the net shape as much as possible,
For example, if the shaft portion of the blank is then rolled to a desired diameter, the rolling allowance is small, and the axial elongation associated with the rolling is suppressed as much as possible to correct the axial elongation. It is also possible to eliminate the cutting process. Furthermore, it becomes possible to mass-produce variable blades while maintaining a high quality level and dimensional accuracy level.

【0005】しかしながら、精密鋳造法や金属射出成形
法等によって、可変翼の素形材を形成するには、以下の
ような問題点があった。まず精密鋳造法によって素形材
を得るにあたっては、例えば鋳込む溶融金属の湯流れ性
を良好に維持するのが難しいために、素形材の寸法精度
が良くなく、且つばらつくという問題があった。また鋳
込んだ溶融金属が凝固する際、その結晶粒が伸長ないし
は大きくなり、転造等の後加工に際して、シャープエッ
ジ(軸部の転造によって、軸部表面の金属素材が塑性流
動を起こし、軸部の先端部から突出状態に形成される鋭
角部位)を作り易いという問題があった。一方、金属射
出成形法によって素形材を得るにあたっては、ソリド材
に比べて微細ボイドが比較的多く存在し、空孔率の高い
状態となるという問題があった。特に耐熱高合金では嵩
密度が不充分であり、これに起因して高温回転曲げ疲労
性が低いことが問題であった。
However, the following problems have been encountered in forming the variable blade material by the precision casting method or the metal injection molding method. First, when obtaining a base material by the precision casting method, there is a problem that the dimensional accuracy of the base material is not good and varies because, for example, it is difficult to maintain good molten metal flowability of the molten metal to be cast. . Also, when the cast molten metal solidifies, its crystal grains grow or expand, and during post-processing such as rolling, sharp edges (the rolling of the shaft causes plastic flow of the metal material on the surface of the shaft, There is a problem that it is easy to form an acute angle portion formed in a protruding state from the tip of the shaft. On the other hand, in obtaining the base material by the metal injection molding method, there is a problem that a relatively large number of fine voids are present as compared with the solid material and the porosity is high. In particular, heat-resistant high alloys have an insufficient bulk density, which causes a problem of low high-temperature rotary bending fatigue resistance.

【0006】このようなことから精密鋳造法や金属射出
成形法等によって、可変翼の素形材をニヤネットシェイ
プに仕上げることは極めて難しく、可変翼を現実に常に
安定した高いレベルで量産するまでの段階には到ってい
ないのが現状であり、量産化実現のためにも、上記問題
点の克服が求められていた。また近年、特にディーゼル
車においては、環境保護等の観点から大気中に放出され
る排気ガスが強く規制される現状にあり、元来エンジン
回転が低いディーゼルエンジンにおいては、NOX や粒
子状物質(PM)等を低減するためにも低回転域からエ
ンジンの効率化が図れるVGSタイプのターボチャージ
ャの量産化が、切望されるものであった。
From the above, it is extremely difficult to finish the material of the variable blade into a near net shape by the precision casting method, the metal injection molding method, etc. until the variable blade is actually mass-produced at a stable and high level. At present, the stage has not been reached, and there has been a demand for overcoming the above problems in order to realize mass production. In recent years, particularly in diesel vehicles, the exhaust gas discharged into the atmosphere is strongly regulated from the viewpoint of environmental protection and the like, and NO x and particulate matter ( It has been earnestly desired to mass-produce a VGS type turbocharger that can improve the efficiency of the engine even in a low rotation range in order to reduce PM).

【0007】[0007]

【開発を試みた技術的課題】本発明はこのような背景を
認識してなされたものであって、上述した精密鋳造法や
金属射出成形法等の問題点を解決し、これらの手法によ
って、現実に可変翼の素形材をニヤネットシェイプに得
られるようにした新規な製造手法の開発を試みたもので
ある。
The present invention has been made in view of such a background, and it solves the problems of the precision casting method and the metal injection molding method described above. This is an attempt to develop a new manufacturing method that can actually obtain a variable wing element in a near net shape.

【0008】[0008]

【課題を解決するための手段】すなわち請求項1記載の
VGSタイプターボチャージャにおける可変翼の素形材
の製造方法は、回動中心となる軸部と、実質的に排気ガ
スの流量を調節する翼部とを具え、エンジンから排出さ
れた比較的少ない排気ガスを適宜絞り込み、排気ガスの
速度を増幅させ、排気ガスのエネルギで排気タービンを
回し、この排気タービンに直結されたコンプレッサで自
然吸気以上の空気をエンジンに送り込み、低速回転時で
あってもエンジンが高出力を発揮できるようにしたVG
Sタイプのターボチャージャに組み込まれる可変翼を製
造するにあたり、翼部と軸部とを一体に有し、可変翼の
原形となる素形材を得る工程は、素形材を高い精度で実
現し得る精密鋳造法によって行うものであり、鋳造にあ
たっては、耐熱鋼(合金)を主要母材とした処女材を適
用するとともに、この処女材に含有されるC、Si、O
の各々の重量%を0.05〜0.5%、0.5〜1.5
%、0.01〜0.1%とし、鋳型に鋳込む溶融金属の
湯流れ性を向上させるようにしたことを特徴として成る
ものである。この発明によれば、可変翼の素形材を精密
鋳造法によって得る際、処女材に含有されるC(炭
素)、Si(ケイ素)、O(酸素)量を調整して、型に
鋳込む素材の湯流れ性を向上させているため、形状、寸
法ともにより精度の高い素形材が得られ、また個々の素
形材のばらつきもより小さな範囲に抑え得る。
That is, in the method for manufacturing the variable blade material in the VGS type turbocharger according to the first aspect of the present invention, the shaft portion serving as the center of rotation and the flow rate of the exhaust gas are substantially adjusted. With a wing part, the relatively small amount of exhaust gas exhausted from the engine is appropriately narrowed down, the speed of the exhaust gas is amplified, the exhaust turbine is rotated by the energy of the exhaust gas, and the compressor directly connected to this exhaust turbine is used for more than natural intake. VG that sends the air of the engine to the engine so that the engine can show high output even at low speed rotation.
When manufacturing variable blades to be incorporated in an S type turbocharger, the process of obtaining the raw material that is the prototype of the variable blade by integrally having the blade and the shaft portion realizes the raw material with high accuracy. It is performed by the precision casting method to be obtained. In casting, a virgin material containing heat-resistant steel (alloy) as a main base material is applied, and C, Si, and O contained in this virgin material are applied.
% By weight of 0.05-0.5%, 0.5-1.5
%, 0.01 to 0.1% to improve the molten metal flowability of the molten metal cast into the mold. According to the present invention, when a variable blade material is obtained by precision casting, the amount of C (carbon), Si (silicon) and O (oxygen) contained in the virgin material is adjusted and cast into a mold. Since the molten metal flowability of the raw material is improved, it is possible to obtain a precise shaped material due to its shape and size, and it is possible to suppress the variation of individual shaped materials within a smaller range.

【0009】また請求項2記載のVGSタイプターボチ
ャージャにおける可変翼の素形材の製造方法は、前記請
求項1記載の要件に加え、前記鋳造においては、鋳型ま
たは素形材のうち、どちらか一方または双方を冷却し
て、溶融金属を鋳込んでから型破砕までの時間を短縮
し、素形材の凝固組織を微細化するようにしたことを特
徴として成るものである。この発明によれば、結晶粒子
の細かい素形材が得られるため、例えばその後、素形材
の軸部を転造加工する場合、シャープエッジを生じ難く
し、形状、寸法ともに、より一層精度の高い素形材や完
成品としての可変翼を実現し得る。
According to a second aspect of the present invention, in addition to the requirements of the first aspect, in the method for producing a variable blade element for a VGS type turbocharger, in the casting, either a mold or an element is used. One or both of them is cooled to shorten the time from casting the molten metal to crushing the mold, and refining the solidified structure of the raw material. According to the present invention, since a shaped material having fine crystal grains can be obtained, for example, when the shaft portion of the shaped material is subsequently subjected to rolling processing, a sharp edge is less likely to occur, and the shape and size are more accurate. Highly shaped materials and variable blades as a finished product can be realized.

【0010】更にまた請求項3記載のVGSタイプター
ボチャージャにおける可変翼の素形材の製造方法は、前
記請求項1または2記載の要件に加え、前記鋳造におい
ては、型に鋳込む溶融金属にPb、Se、Teのうち1
種もしくは複数種を添加するとともに非金属介在物の存
在が差し支えない範囲で、O、Sを多めに含有させるよ
うにしたことを特徴として成るものである。この発明に
よれば、Pb(鉛)、Se(セレン)、Te(テルル)
等を適宜添加することによって、素形材の転造性や切削
性(ここでの切削とは主に後加工において施される研磨
を意味する)等を向上させ得る。また一般に鋼材には少
ない方が好ましいとされるO(酸素)、S(硫黄)等の
非金属介在物をあえて含有させることで鋳造における溶
融金属の湯流れ性を向上させ得るものである。
According to the third aspect of the present invention, in addition to the requirements of the first or second aspect of the present invention, in the method for producing a variable blade element material for a VGS type turbocharger, in the casting, the molten metal cast into the die is used. 1 out of Pb, Se, Te
One or more species are added, and a large amount of O and S is contained within the range in which the presence of non-metallic inclusions is not a problem. According to this invention, Pb (lead), Se (selenium), Te (tellurium)
It is possible to improve the rolling property and the machinability of the material (the cutting here means polishing mainly performed in the post-processing) and the like by appropriately adding the above. Further, it is possible to improve the flowability of molten metal in casting by intentionally adding non-metallic inclusions such as O (oxygen) and S (sulfur), which are generally preferred to be less in steel materials.

【0011】また請求項4記載のVGSタイプターボチ
ャージャにおける可変翼の素形材の製造方法は、前記請
求項1、2または3記載の要件に加え、前記鋳造におい
ては、型に鋳込む溶融金属を融点以上に高め、融点温度
よりも粘性を低下させた状態で鋳込むようにしたことを
特徴として成るものである。この発明によれば、型に鋳
込む溶融金属を融点以上に加熱し、粘性を低下させた状
態で鋳込むため、素材の湯流れ性を、より一層向上させ
ることができる。なお溶融金属の粘性は、融点付近では
温度依存性が高く、高温にする程、粘性が低くなるが、
例えば融点から約30℃以上の高温域では、温度依存性
が低くなり、加熱してもそれ程、粘性の低下が見られな
いため、本実施の形態では粘性低下の効果と、加温のコ
ストとを考慮して、一例として融点から約30℃程度、
高温にした状態で鋳込むようにしている。
According to a fourth aspect of the present invention, in addition to the requirements of the first, second or third aspect of the present invention, the method for producing a variable blade component in a VGS type turbocharger is characterized in that, in the casting, a molten metal cast into a die. Is higher than the melting point, and is cast in a state where the viscosity is lower than the melting point temperature. According to the present invention, the molten metal to be cast into the mold is heated to a temperature equal to or higher than the melting point and is cast in a state where the viscosity is lowered, so that the flowability of the raw material can be further improved. The viscosity of the molten metal has a high temperature dependency near the melting point, and the higher the temperature, the lower the viscosity.
For example, in a high temperature range of about 30 ° C. or higher from the melting point, the temperature dependence is low, and even if heated, the viscosity does not decrease so much. Therefore, in the present embodiment, the effect of decreasing the viscosity and the heating cost are increased. In consideration of the above, as an example, from the melting point to about 30 ° C.,
It is cast at a high temperature.

【0012】また請求項5記載のVGSタイプターボチ
ャージャにおける可変翼の素形材の製造方法は、回動中
心となる軸部と、実質的に排気ガスの流量を調節する翼
部とを具え、エンジンから排出された比較的少ない排気
ガスを適宜絞り込み、排気ガスの速度を増幅させ、排気
ガスのエネルギで排気タービンを回し、この排気タービ
ンに直結されたコンプレッサで自然吸気以上の空気をエ
ンジンに送り込み、低速回転時であってもエンジンが高
出力を発揮できるようにしたVGSタイプのターボチャ
ージャに組み込まれる可変翼を製造するにあたり、翼部
と軸部とを一体に有し、可変翼の原形となる素形材を得
る工程は、可塑性を賦与した金属粉を金型内に射出して
固形化させる金属射出成形法によって行うものであり、
また射出成形にあたっては、金属粒子間の球状間隙であ
る独立泡を細かく且つ均一に生成させるように、焼結を
行うものであり、その後、射出成形された素形材に熱間
静水圧プレス処理(HIP処理)を施し、素形材の高密
度化を図るようにしたことを特徴として成るものであ
る。この発明によれば、金属射出成形によって得られる
金属素材の空孔率が低減され、素形材の強度を増加させ
得る。すなわち金属射出成形の欠点の一つとされてい
た、高い空孔率を改善でき、射出成形によって形成され
た素形材を現実に適用可能なものとする。また空孔率が
低減されることに起因して、寸法精度が向上し、成形さ
れる素形材は、目的の可変翼により近い、ニヤネットシ
ェイプのものが得られる。従って後加工における転造代
等も、より抑えられることになり、転造工程等の簡略化
も達成され得る。
A method of manufacturing a variable blade material for a VGS type turbocharger according to a fifth aspect of the present invention includes a shaft portion that serves as a center of rotation and a blade portion that substantially adjusts the flow rate of exhaust gas. The relatively small amount of exhaust gas discharged from the engine is appropriately narrowed down, the speed of the exhaust gas is amplified, the exhaust turbine is rotated by the energy of the exhaust gas, and air that is more than naturally aspirated is sent to the engine by the compressor directly connected to this exhaust turbine. When manufacturing a variable blade that is incorporated in a VGS type turbocharger that enables the engine to exhibit high output even at low speed rotation, it has a blade portion and a shaft portion integrally, and has the original shape of the variable blade. The step of obtaining the shaped material is performed by a metal injection molding method in which metal powder having plasticity is injected into a mold to be solidified,
In injection molding, sintering is carried out so that closed bubbles, which are spherical gaps between metal particles, are finely and uniformly generated, and then hot isostatic pressing is performed on the injection-molded material. (HIP treatment) is performed to increase the density of the base material. According to this invention, the porosity of the metal material obtained by metal injection molding is reduced, and the strength of the raw material can be increased. That is, the high porosity, which is one of the drawbacks of metal injection molding, can be improved, and the material formed by injection molding can be actually applied. Further, due to the reduced porosity, the dimensional accuracy is improved, and the shaped material to be molded can have a near net shape closer to the target variable blade. Therefore, the rolling allowance in the post-processing can be further suppressed, and simplification of the rolling process can be achieved.

【0013】また請求項6記載のVGSタイプターボチ
ャージャにおける可変翼の素形材の製造方法は、前記請
求項5記載の要件に加え、前記金属射出成形にあたって
は、原料となる金属粉の形状を球状且つ微細化し、素形
材の高温回転曲げ疲労性を向上させるようにしたことを
特徴として成るものである。この発明によれば、射出成
形によって得られる金属素材の高温回転曲げ疲労性が向
上する。すなわち金属射出成形の欠点の一つとされてい
た、高温回転曲げ疲労を克服でき、射出成形による素形
材の形成手法を現実なものとする。
Further, in the method for manufacturing a variable blade material for a VGS type turbocharger according to a sixth aspect, in addition to the requirements according to the fifth aspect, in the metal injection molding, the shape of a metal powder as a raw material is changed. It is characterized in that it is made spherical and fine, and the high temperature rotary bending fatigue property of the base material is improved. According to this invention, the high temperature rotary bending fatigue of the metal material obtained by injection molding is improved. That is, it is possible to overcome high-temperature rotary bending fatigue, which is one of the drawbacks of metal injection molding, and to make a method for forming a blank by injection molding a reality.

【0014】また請求項7記載のVGSタイプターボチ
ャージャにおける可変翼の素形材の製造方法は、前記請
求項5または6記載の要件に加え、前記金属射出成形に
あたっては、焼結前に原料となる金属粉の粒子表面を還
元することを特徴として成るものである。この発明によ
れば、焼結前に金属粒子の表面を還元し、粒子表面の酸
化物を除去するため、焼結性が向上する。また熱間静水
圧プレス処理の効果が増大し、素形材における気孔率低
減に大きく寄与する。
According to a seventh aspect of the present invention, in addition to the requirements of the fifth or sixth aspect of the present invention, the method for producing a variable blade component in a VGS type turbocharger is characterized in that, in the metal injection molding, a raw material is used before sintering. It is characterized by reducing the particle surface of the metal powder. According to this invention, the surface of the metal particles is reduced and the oxide on the surface of the particles is removed before sintering, so that the sinterability is improved. Further, the effect of the hot isostatic pressing treatment is increased, which greatly contributes to the reduction of the porosity of the raw material.

【0015】[0015]

【発明の実施の形態】以下本発明を図示の実施の形態に
基づいて説明する。説明にあたっては本発明の目的対象
物である可変翼1を適用したVGSタイプのターボチャ
ージャにおける排気ガイドアッセンブリAについて説明
しながら、併せて可変翼1について説明し、その後、本
発明である、可変翼1の素形材の製造方法について説明
する。排気ガイドアッセンブリAは、特にエンジンの低
速回転時において排気ガスGを適宜絞り込んで排気流量
を調節するものであり、一例として図1に示すように、
排気タービンTの外周に設けられ実質的に排気流量を設
定する複数の可変翼1と、可変翼1を回動自在に保持す
るタービンフレーム2と、排気ガスGの流量を適宜設定
すべく可変翼1を一定角度回動させる可変機構3とを具
えて成るものである。以下各構成部について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on the illustrated embodiments. In the description, while explaining the exhaust guide assembly A in the VGS type turbocharger to which the variable vane 1 which is the object of the present invention is applied, the variable vane 1 will also be described, and then the variable vane of the present invention will be described. The manufacturing method of the blank 1 will be described. The exhaust guide assembly A adjusts the exhaust gas flow rate by appropriately narrowing the exhaust gas G when the engine is rotating at a low speed. As an example, as shown in FIG.
A plurality of variable blades 1 provided on the outer periphery of the exhaust turbine T for substantially setting the exhaust flow rate, a turbine frame 2 for rotatably holding the variable blade 1, and a variable blade for appropriately setting the flow rate of the exhaust gas G. It comprises a variable mechanism 3 for rotating 1 at a constant angle. Each component will be described below.

【0016】まず可変翼1について説明する。このもの
は一例として図1に示すように排気タービンTの外周に
沿って円弧状に複数(一基の排気ガイドアッセンブリA
に対して概ね10個から15個程度)配設され、そのそ
れぞれが、ほぼ同程度づつ回動して排気流量を適宜調節
するものである。そして各可変翼1は、翼部11と、軸
部12とを具えて成る。翼部11は、主に排気タービン
Tの幅寸法に応じて一定幅を有するように形成されるも
のであり、その幅方向における断面が概ね翼状に形成さ
れ、排気ガスGが効果的に排気タービンTに向かうよう
に構成されている。なおここで翼部11の幅寸法を便宜
上、羽根高さhとする。また軸部12は、翼部11と一
体で連続するように形成されるものであり、翼部11を
動かす際の回動軸に相当する部位となる。
First, the variable blade 1 will be described. As an example, as shown in FIG. 1, a plurality of these are arranged in an arc shape along the outer periphery of the exhaust turbine T (one exhaust guide assembly A
Approximately ten to fifteen of them are disposed, and each of them is rotated by approximately the same degree to appropriately adjust the exhaust gas flow rate. Each variable blade 1 comprises a blade portion 11 and a shaft portion 12. The blade portion 11 is formed so as to have a constant width mainly according to the width dimension of the exhaust turbine T, the cross-section in the width direction thereof is formed into a substantially blade shape, and the exhaust gas G is effectively exhaust turbine. It is configured to go to T. Here, the width dimension of the blade portion 11 is referred to as a blade height h for convenience. In addition, the shaft portion 12 is formed so as to be continuous with the wing portion 11 integrally, and is a portion corresponding to a rotating shaft when the wing portion 11 is moved.

【0017】そして翼部11と軸部12との接続部位に
は、軸部12から翼部11に向かって窄まるようなテー
パ部13と、軸部12より幾分大径の鍔部14とが連な
るように形成されている。なお鍔部14の底面は、翼部
11における軸部12側の端面と、ほぼ同一平面上に形
成され、この平面が、可変翼1をタービンフレーム2に
取り付けた状態における摺動面となり、可変翼1の円滑
な回動状態が確保される。更に軸部12の先端部には、
可変翼1の取付状態の基準となる基準面15が形成され
る。この基準面15は、後述する可変機構3に対しカシ
メ等によって固定される部位であり、一例として図1、
2に示すように、軸部12を対向的に切り欠いた平面
が、翼部11に対してほぼ一定の傾斜状態に形成されて
成るものである。
At the connecting portion between the blade portion 11 and the shaft portion 12, there is provided a taper portion 13 that narrows from the shaft portion 12 toward the blade portion 11, and a flange portion 14 having a diameter slightly larger than that of the shaft portion 12. Are formed to be continuous. The bottom surface of the collar portion 14 is formed substantially on the same plane as the end surface of the blade portion 11 on the shaft portion 12 side, and this plane serves as a sliding surface when the variable blade 1 is attached to the turbine frame 2, The smooth rotating state of the blade 1 is ensured. Furthermore, at the tip of the shaft 12,
A reference surface 15 is formed which serves as a reference for the mounting state of the variable blade 1. The reference surface 15 is a portion fixed to the variable mechanism 3 described later by crimping or the like, and as an example, FIG.
As shown in FIG. 2, the plane in which the shaft portion 12 is cut out in a facing manner is formed with a substantially constant inclination with respect to the blade portion 11.

【0018】次にタービンフレーム2について説明す
る。このものは、複数の可変翼1を回動自在に保持する
フレーム部材として構成されるものであって、一例とし
て図1に示すように、フレームセグメント21と保持部
材22とによって可変翼1を挟み込むように構成され
る。そしてフレームセグメント21は、可変翼1の軸部
12を受け入れるフランジ部23と、後述する可変機構
3を外周に嵌めるボス部24とを具えて成る。なおこの
ような構造からフランジ部23には、周縁部分に可変翼
1と同数の受入孔25が等間隔で形成されるものであ
る。また保持部材22は、図1に示すように中央部分が
開口された円板状に形成されている。そしてこれらフレ
ームセグメント21と保持部材22とによって挟み込ま
れた可変翼1の翼部11を、常に円滑に回動させ得るよ
うに、両部材間の寸法は、ほぼ一定(概ね可変翼1の翼
幅寸法程度)に維持されるものであり、一例として受入
孔25の外周部分に、四カ所設けられたカシメピン26
によって両部材間の寸法が維持されている。ここでこの
カシメピン26を受け入れるためにフレームセグメント
21及び保持部材22に開口される孔をピン孔27とす
る。
Next, the turbine frame 2 will be described. This is configured as a frame member that rotatably holds a plurality of variable blades 1. As an example, as shown in FIG. 1, the variable blade 1 is sandwiched by a frame segment 21 and a holding member 22. Is configured as follows. The frame segment 21 is provided with a flange portion 23 that receives the shaft portion 12 of the variable blade 1 and a boss portion 24 that fits the variable mechanism 3 described later on the outer circumference. Due to such a structure, the flange portion 23 is formed with the same number of receiving holes 25 as the variable blades 1 at the peripheral portion at equal intervals. Further, the holding member 22 is formed in a disk shape having an opening in the central portion as shown in FIG. The dimension of the variable blade 1 sandwiched between the frame segment 21 and the holding member 22 is substantially constant (generally, the blade width of the variable blade 1 is approximately constant so that the blade portion 11 of the variable blade 1 can always be smoothly rotated. The caulking pins 26 are provided at four places on the outer peripheral portion of the receiving hole 25 as an example.
The dimension between both members is maintained by. Here, the holes formed in the frame segment 21 and the holding member 22 to receive the crimping pins 26 are referred to as pin holes 27.

【0019】なおこの実施の形態では、フレームセグメ
ント21のフランジ部23は、保持部材22とほぼ同径
のフランジ部23Aと、保持部材22より幾分大きい径
のフランジ部23Bとの二つのフランジ部分から成るも
のであり、これらを同一部材で形成するものであるが、
同一部材での加工が複雑になる場合等にあっては、径の
異なる二つのフランジ部を分割して形成し、後にカシメ
加工やブレージング加工等によって接合することも可能
である。
In this embodiment, the flange portion 23 of the frame segment 21 has two flange portions, that is, a flange portion 23A having substantially the same diameter as the holding member 22 and a flange portion 23B having a diameter slightly larger than the holding member 22. , Which are made of the same material,
In the case where processing with the same member becomes complicated, it is also possible to form two flange portions having different diameters by dividing them and then to join them by caulking or brazing.

【0020】次に可変機構3について説明する。このも
のはタービンフレーム2のボス部24の外周側に設けら
れ、排気流量を調節するために可変翼1を回動させるも
のであり、一例として図1に示すように、アッセンブリ
内において実質的に可変翼1の回動を生起する回動部材
31と、この回動を可変翼1に伝える伝達部材32とを
具えて成るものである。回動部材31は、図示するよう
に中央部分が開口された略円板状に形成され、その周縁
部分に可変翼1と同数の伝達部材32を等間隔で設ける
ものである。なおこの伝達部材32は、回動部材31に
回転自在に取り付けられる駆動要素32Aと、可変翼1
の基準面15に固定状態に取り付けられる受動要素32
Bとを具えて成るものであり、これら駆動要素32Aと
受動要素32Bとが接続された状態で、回動が伝達され
る。具体的には四角片状の駆動要素32Aを、回動部材
31に対して回転自在にピン止めするとともに、この駆
動要素32Aを受け入れ得るように略U字状に形成した
受動要素32Bを、可変翼1の先端の基準面15に固定
し、四角片状の駆動要素32AをU字状の受動要素32
Bに嵌め込み、双方を係合させるように、回動部材31
をボス部24に取り付けるものである。
Next, the variable mechanism 3 will be described. This is provided on the outer peripheral side of the boss portion 24 of the turbine frame 2 and rotates the variable blade 1 in order to adjust the exhaust flow rate. As an example, as shown in FIG. The variable blade 1 includes a rotating member 31 that causes the variable blade 1 to rotate, and a transmission member 32 that transmits the rotation to the variable blade 1. The rotating member 31 is formed in a substantially disc shape with an opening in the central portion as shown in the figure, and the same number of transmitting members 32 as the variable blades 1 are provided at equal intervals on the peripheral portion thereof. The transmission member 32 includes a drive element 32A rotatably attached to the rotating member 31 and the variable blade 1.
Element 32 fixedly mounted on the reference plane 15 of the
B is included, and the rotation is transmitted in a state where the drive element 32A and the passive element 32B are connected. Specifically, a rectangular piece-shaped drive element 32A is rotatably pinned to the rotating member 31, and a passive element 32B formed in a substantially U shape so as to receive the drive element 32A is variable. Fixed to the reference surface 15 at the tip of the wing 1, and the square-piece-shaped drive element 32A is replaced by the U-shaped passive element 32.
The rotation member 31 is fitted in the B and is engaged with both.
Is attached to the boss portion 24.

【0021】なお複数の可変翼1を取り付けた初期状態
において、これらを周状に整列させるにあたっては、各
可変翼1と受動要素32Bとが、ほぼ一定の角度で取り
付けられる必要があり、本実施の形態においては、主に
可変翼1の基準面15がこの作用を担っている。また回
動部材31を単にボス部24に嵌め込んだままでは、回
動部材31がタービンフレーム2と僅かに離反した際、
伝達部材32の係合が解除されてしまうことが懸念され
るため、これを防止すべく、タービンフレーム2の対向
側から回動部材31を挟むようにリング33等を設け、
回動部材31に対してタービンフレーム2側への押圧傾
向を賦与するものである。このような構成によって、エ
ンジンが低速回転を行った際には、可変機構3の回動部
材31を適宜回動させ、伝達部材32を介して軸部12
に伝達し、図1に示すように可変翼1を回動させ、排気
ガスGを適宜絞り込んで、排気流量を調節するものであ
る。
In the initial state in which a plurality of variable vanes 1 are attached, in order to align them in a circumferential shape, each variable vane 1 and the passive element 32B need to be attached at a substantially constant angle. In the above embodiment, the reference surface 15 of the variable vane 1 mainly plays this role. Further, when the rotating member 31 is simply fitted in the boss portion 24, when the rotating member 31 is slightly separated from the turbine frame 2,
Since there is concern that the engagement of the transmission member 32 may be released, in order to prevent this, a ring 33 or the like is provided so as to sandwich the rotating member 31 from the opposite side of the turbine frame 2,
The rotation member 31 is given a tendency to be pressed toward the turbine frame 2 side. With such a configuration, when the engine rotates at a low speed, the rotating member 31 of the variable mechanism 3 is appropriately rotated, and the shaft portion 12 is moved through the transmission member 32.
And the variable blade 1 is rotated as shown in FIG. 1, the exhaust gas G is appropriately narrowed, and the exhaust flow rate is adjusted.

【0022】本発明の目的対象物である可変翼1を適用
した排気ガイドアッセンブリAの一例は、以上のように
構成されて成り、以下、この可変翼1の原形となる素形
材の製造方法について説明する。なおこの素形材は、完
成以前の状態における翼部11と軸部12とを一体に有
した金属素材であり、このものに適宜、転造加工や研磨
加工等を施して、目的の可変翼1を形成するものであ
る。また素形材の素材としては例えばSUS310S等
の耐熱性を有した金属素材が適用される。ここで本発明
においては精密鋳造法または金属射出成形法によって素
形材を得るものであり、以下、その製造方法について精
密鋳造法を〔実施の形態1〕、金属射出成形法を〔実施
の形態2〕として説明する。
An example of the exhaust guide assembly A to which the variable vane 1 which is the object of the present invention is applied is constituted as described above, and hereinafter, a method for manufacturing a raw material which is a prototype of the variable vane 1 will be described. Will be described. It should be noted that this raw material is a metal material that integrally has the blade portion 11 and the shaft portion 12 in a state before completion, and is appropriately subjected to rolling processing, polishing processing, and the like to obtain the target variable blade. 1 to form 1. Further, as the material of the base material, a metal material having heat resistance such as SUS310S is applied. Here, in the present invention, a raw material is obtained by a precision casting method or a metal injection molding method. Hereinafter, regarding the manufacturing method, the precision casting method will be described in [Embodiment 1] and the metal injection molding method will be described in [Embodiment 1]. 2].

【0023】〔実施の形態1〕精密鋳造法 精密鋳造法は、一般に鋳造品(素形材)を高精度に実現
できる手法であり、ここでは一例としてロストワックス
手法が適用される。ロストワックス手法は、一般に鋳造
しようとする製品と同じ形状のろう模型原形をまず形成
し、このろう模型原形のまわりに耐火物の被覆層を形成
した後、全体を加熱して、ろう模型のみを溶かし出し、
鋳型(被覆層)を造るものであり、このような手法によ
って目的の製品に忠実な鋳型を得、高精度に鋳造品を再
現するものである。
[First Embodiment] Precision Casting Method The precision casting method is generally a method capable of realizing a cast product (form material) with high accuracy, and the lost wax method is applied here as an example. In the lost wax method, a wax model prototype having the same shape as that of the product to be cast is generally formed first, a refractory coating layer is formed around this wax model prototype, and then the whole is heated to leave only the wax model. Start melting
A mold (coating layer) is produced, and a mold faithful to the intended product is obtained by such a method, and the cast product is reproduced with high accuracy.

【0024】なお精密鋳造法には、上述したロストワッ
クス手法以外にも、ショープロセス手法やCADIC法
などがあり、これらの手法も適用可能である。因みにシ
ョープロセス手法は、液体状のアルキルシリケート粘結
剤と粉粒状耐火物とを混練して生鋳型を成形するもので
あり、この生鋳型を急激に乾燥させて、乾燥に伴って生
じる割れを目に見えない微細なヘアークラックとして発
生させ、鋳型の全体的な収縮変形を防止するようにした
手法である。
In addition to the lost wax method described above, the precision casting method includes the show process method and the CADIC method, and these methods are also applicable. By the way, the show process method is to knead a liquid alkyl silicate binder and a powdery refractory material to form a raw mold, and rapidly dry the raw mold to prevent cracks caused by the drying. It is a method that is generated as invisible fine hair cracks to prevent overall shrinkage and deformation of the mold.

【0025】このように精密鋳造法は、目的の製品(こ
こでは可変翼1)とほぼ同じ形状及び大きさを有するよ
うに鋳型を形成し、目的の製品に対して極めて忠実な鋳
造品(素形材)を高精度に再現し得るものである。しか
しながらこのような精密鋳造法であっても、そのままで
は素形材をニヤネットシェイプに仕上げるのは難しく、
目的の形状や精度を有する可変翼1を得るには、鋳造し
た素形材の寸法精度がまだ不充分であり、且つばらつく
という欠点があった。また素形材に、その後、転造等の
後加工を施すような場合、シャープエッジを形成し易い
という欠点もあった。このため本発明においては、鋳造
に際し、以下のような技術的工夫を適宜施すものであ
る。
As described above, in the precision casting method, a mold is formed so as to have a shape and a size that are substantially the same as a target product (here, the variable blade 1), and a cast product (material that is extremely faithful to the target product). Shaped material) can be reproduced with high accuracy. However, even with such a precision casting method, it is difficult to finish the raw material into a near net shape as it is,
In order to obtain the variable blade 1 having the desired shape and accuracy, there is a defect that the dimensional accuracy of the cast blank is still insufficient and varies. In addition, there is also a drawback that sharp edges are easily formed when post-processing such as rolling is performed on the material. Therefore, in the present invention, the following technical innovations are appropriately applied during casting.

【0026】まず鋳型に鋳混む溶融金属の湯流れ性を向
上させるべく、耐熱金属を主要母材とした処女材を適用
するとともに、この処女材に含有されるC(炭素)、S
i(ケイ素)、O(酸素)量を適正化する。具体的に
は、スクラップの過程を経ず、砂鉄や鉄鉱石等から直接
還元してつくられた素材(処女材)を適用するものであ
り、且つC、Si、Oの成分量を各々0.05〜0.5
%、0.5〜1.5%、0.01〜0.1%(それぞれ
重量%)に調整し、溶融金属の湯流れ性や素形材の形状
および寸法精度を向上させ、且つ転造性の向上をも図る
ものである。因みに上記各元素の成分量を調整するにあ
たっては、電気炉において分析変動量を監視しながら行
うものである。
First, in order to improve the molten metal flowability of the molten metal cast into the mold, a virgin material containing a heat-resistant metal as a main base material is applied, and C (carbon) and S contained in this virgin material are applied.
Optimize i (silicon) and O (oxygen) amounts. Specifically, a material (virgin material) made by direct reduction from iron sand or iron ore is applied without passing through a scraping process, and the amount of each of C, Si, and O is 0. 05-0.5
%, 0.5-1.5%, 0.01-0.1% (respectively by weight) to improve the flowability of molten metal and the shape and dimensional accuracy of the base material, and roll it. It also aims to improve the sex. Incidentally, the amount of each element is adjusted while monitoring the amount of analytical variation in the electric furnace.

【0027】また鋳造においては、鋳型または素形材の
うち、どちらか一方または双方を急冷することによって
型破砕までの時間を短縮し、素形材の凝固組織を細かく
するものである。具体的には例えば鋳造の前後において
鋳型に水を噴霧して冷却し、型破砕までに要する時間
を、一例として1時間以下に短縮するものである(通常
の空冷では1〜4時間かかる)。この際、鋳込み前の事
前冷却では、鋳型のみを冷却することになり、鋳込み後
の冷却では、鋳型と素形材との双方を冷却することにな
る。もちろん急冷にあたっては、鋳型が熱応力割れを起
こさない範囲で行うものである。なお鋳造の前後両時期
において冷却する必要がなければ、どちらか一方でも良
いし、より一層、冷却効果を高めたい場合には、鋳造前
後の両時期の冷却に加え、鋳型から取り出した素形材に
冷却水を噴霧することも可能である。
In the casting, either one or both of the mold and the base material is rapidly cooled to shorten the time until the crushing of the mold and to make the solidified structure of the base material fine. Specifically, for example, before and after casting, water is sprayed on the mold to cool it, and the time required for crushing the mold is shortened to, for example, 1 hour or less (normal air cooling takes 1 to 4 hours). At this time, only the mold is cooled in the pre-cooling before the casting, and both the mold and the base material are cooled in the cooling after the casting. Needless to say, the quenching is performed within a range in which the mold does not cause thermal stress cracking. If it is not necessary to cool before and after casting, either one may be used, or if it is desired to further enhance the cooling effect, in addition to cooling both before and after casting, the material removed from the mold It is also possible to spray cooling water on.

【0028】なおこのような技術的な工夫(急冷)によ
って、素形材の凝固組織は、一例として、50〜200
μmに微細化でき(通常の空冷では約100〜500μ
mの凝固粒)、その後の転造等の加工の際に、変形歪均
一化効果によってシャープエッジを発生させ難くし、転
造加工等をより行い易くするものである。
By the technical device (rapid cooling) as described above, the solidification structure of the base material is, for example, 50 to 200.
Can be miniaturized to μm (approx. 100-500μ with normal air cooling)
(m solidified particles of m) and subsequent processing such as rolling, it is difficult to generate a sharp edge due to the effect of uniform deformation strain, and rolling processing is facilitated.

【0029】更にまた、型に鋳込む溶融金属には、Pb
(鉛)、Se(セレン)、Te(テルル)のうち、1種
もしくは複数種を添加するとともに非金属介在物の存在
が差し支えない範囲で、O(酸素)、S(硫黄)を多め
に含有させるものである。具体的にはPbは0.01〜
0.1%、Seは0.01〜0.1%、Teは0.01
〜0.1%(それぞれ重量%)含有させ得るものであ
り、またOは0.02〜0.1%、Sは0.005〜
0.5%(それぞれ重量%)の成分量とするものであ
る。ここでPb、Se、Te等を添加させるのは、素形
材の転造性や切削性(主に研磨を示す)を向上させるた
めであり、またO、S等を添加させるのは、湯流れ性の
向上を図るためである。因みに湯流れ性については、ス
トークス流の粘性流動性が少なくとも20〜40%向上
することが、本出願人によって確認されている。
Furthermore, the molten metal cast in the mold contains Pb.
One or more of (lead), Se (selenium), and Te (tellurium) are added, and a large amount of O (oxygen) and S (sulfur) is contained as long as the presence of nonmetallic inclusions does not interfere. It is what makes me. Specifically, Pb is 0.01 to
0.1%, Se 0.01-0.1%, Te 0.01
.About.0.1% (each by weight), O is 0.02 to 0.1%, and S is 0.005 to
The amount of the components is 0.5% (each weight%). The addition of Pb, Se, Te, etc. is to improve the rolling property and machinability (mainly showing polishing) of the base material, and the addition of O, S, etc. is for hot water. This is to improve the flowability. By the way, regarding the melt flowability, it has been confirmed by the present applicant that the viscous flowability of the Stokes flow is improved by at least 20 to 40%.

【0030】また鋳造にあたり溶融金属は、融点以上に
加温し、粘性を融点温度よりも低くした状態で型に鋳込
むものであり、Ni(ニッケル)系耐熱材及びFe
(鉄)系耐熱材を例にとり、温度(融点に対する加温状
況で表示)と粘性との関係を図3に示す。なお本図中に
記載する湯流れ性(規格値)とは、注湯溶融体の流動性
を示すものであり、粘性に相当するものである。この図
から溶融金属の粘性は、融点付近では温度依存性が高
く、素材の温度が高い程、粘性が低下することが分かる
が、融点に対して約30℃程度加温した付近にあって
は、粘性の温度依存性が弱まり、加温してもそれほど程
粘性が低下しないことが分かる。このため本実施の形態
では、粘性低下の効果と、加温のコストとを考慮して、
一例として素材を融点から約30℃程度、高温にした状
態で鋳込むものである。
Further, in casting, the molten metal is to be cast into a mold while being heated to a temperature higher than the melting point and having a viscosity lower than the melting point temperature.
Taking a (iron) -based heat-resistant material as an example, FIG. 3 shows the relationship between temperature (displayed by the heating condition relative to the melting point) and viscosity. The molten metal flowability (standard value) described in this figure indicates the fluidity of the molten metal, and corresponds to the viscosity. From this figure, it can be seen that the viscosity of the molten metal has a high temperature dependence near the melting point, and the higher the temperature of the material, the lower the viscosity. It can be seen that the temperature dependence of the viscosity is weakened and the viscosity does not decrease so much even when heated. Therefore, in the present embodiment, considering the effect of decreasing the viscosity and the cost of heating,
As an example, the material is cast at a high temperature of about 30 ° C. from the melting point.

【0031】〔実施の形態2〕金属射出成形法 金属射出成形は、実質的には、従来公知の一般的な合成
樹脂(プラスチック)の射出成形と同様であり、例えば
鉄、チタン等の金属粉(材料)にバインダ(主に金属粉
どうしを結合させる添加剤であり、一例としてポリエチ
レン樹脂、ワックス、フタル酸エステルの混合物)を混
練し、可塑性を賦与する。そしてこの可塑性を賦与した
ものを、金型内に射出し、適宜の形状に固め、バインダ
を除去した後、焼結して所望形状の素形材を得るもので
ある。
[Embodiment 2] Metal Injection Molding Method Metal injection molding is substantially the same as the conventionally known general synthetic resin (plastic) injection molding. For example, metal powder such as iron or titanium. A binder (mainly an additive for binding metal powders together, which is a mixture of polyethylene resin, wax, and phthalate ester as an example) is kneaded with (material) to impart plasticity. Then, the material to which the plasticity is imparted is injected into a mold, hardened into an appropriate shape, the binder is removed, and then sintered to obtain a raw material having a desired shape.

【0032】このように金属射出成形も、精密鋳造法と
同様に目的の製品(ここでは可変翼1)に対してほぼ忠
実な成形品(素形材)が得られるものであるが、一方で
は、成形された素形材の空孔率がソリド材に比べて高く
なり、特に耐熱高合金材にあっては、嵩密度が不充分で
あることや、高温曲げ疲労性に劣るという欠点があっ
た。ここで空孔とは、金属素材等における結晶中のキャ
ビティ(点欠陥の多数の集合体であり、更にこれが合体
して微細クラックの形成に至る)の一種であり、この割
合が高過ぎると金属素材にとっては、悪影響を来すもの
である。このようなことから、本発明においては、金属
射出成形に際し、以下のような技術的工夫を適宜施すも
のである。
As described above, the metal injection molding can obtain a molded product (form material) that is almost faithful to the target product (the variable blade 1 here) as in the precision casting method. However, the porosity of the formed raw material is higher than that of the solid material, and particularly in the case of heat-resistant and high-alloy materials, there are drawbacks such as insufficient bulk density and poor high-temperature bending fatigue resistance. It was Here, the vacancy is a kind of cavity (a large number of aggregates of point defects, which are integrated to form fine cracks) in a crystal of a metal material, etc. If this ratio is too high, the metal It has a negative effect on the material. For this reason, in the present invention, the following technical ideas are appropriately applied in metal injection molding.

【0033】まず独立泡(金属粒子間の球状間隙)を小
さく且つ均一に生じさせるべく、時間をかけた焼結を行
うものであって、具体的には、例えば融点が1500℃
であるSUS310Sを適用した場合には、1300℃
で約2時間程度の比較的長時間の焼結を行う。このよう
な焼結を行うことにより、素形材の空孔率が低減され、
嵩密度の向上が図れるものであるが、射出成形された素
形材には、更にHIP処理(HotIsostatic
Pressingの略;熱間静水圧プレス処理)が施
され、より一層の嵩密度向上を図るものである。具体的
には素形材を例えば約1300℃に加熱しながら、素形
材に等方的に約100MPa(1000気圧)程度の圧
力をかけるものである。
First, in order to make the closed cells (spherical gaps between metal particles) small and uniform, sintering is performed for a long time. Specifically, for example, the melting point is 1500 ° C.
When SUS310S is applied, it is 1300 ℃
The sintering is performed for a relatively long time of about 2 hours. By performing such sintering, the porosity of the raw material is reduced,
Although the bulk density can be improved, HIP treatment (Hot Isostatic) is applied to the injection-molded material.
Abbreviation of Pressing; hot isostatic pressing treatment) is performed to further improve the bulk density. Specifically, while heating the molding material to, for example, about 1300 ° C., a pressure of about 100 MPa (1000 atmospheric pressure) is isotropically applied to the molding material.

【0034】なお上記焼結やHIP処理等によって、焼
結前、約100μm程度であった独立泡が、焼結後、約
10μm程度になり、嵩密度が約5%向上することが、
本出願人によって確認されている。そしてこの嵩密度の
向上によって、素形材の強度アップが図れるとともに、
寸法精度が向上し、よりニヤネットシェイプの素形材が
得られるものである。また金属粉を焼結する際、例えば
SUH660等の析出硬化型耐熱材にあっては、γ′
(ガンマプライムと称され、Ni3 (Al、Ti)の金
属間化合物を示す)生成を急熱によって、成長を抑制
し、微細化するものである。なおこれは高温環境下での
過時効現象を抑制するためであり、この際の急熱手法
は、電磁誘導によって加熱電流を発生させる誘導加熱が
望ましい。
By the above-mentioned sintering or HIP treatment, the closed cells, which were about 100 μm before sintering, become about 10 μm after sintering, and the bulk density is improved by about 5%.
Confirmed by the applicant. And by improving this bulk density, it is possible to increase the strength of the raw material,
The dimensional accuracy is improved, and a near net shape material can be obtained. In addition, when sintering the metal powder, for precipitation-hardening heat-resistant materials such as SUH660, γ '
(It is called gamma prime and represents an intermetallic compound of Ni 3 (Al, Ti)) By rapid heating, it suppresses the growth and miniaturizes it. This is to suppress the overaging phenomenon in a high temperature environment, and the rapid heating method at this time is preferably induction heating in which a heating current is generated by electromagnetic induction.

【0035】また本実施の形態では、射出成形用の金属
粉を球状且つ微細化し、成形される素形材の高温回転曲
げ疲労性を向上させる技術的な工夫が併せて施される。
ここで金属粉を球状且つ微細化するにあたっては、例え
ば溶融金属をノズルから噴出させ、これに空気や水など
の高速流体を作用させ、高速流体の衝撃力によって金属
を多数の液滴に分割した後、冷却、凝固させて金属粉末
を得る、いわゆる空気アトマイズ法や水アトマイズ法が
適用されるものである。そしてこのようなアトマイズ法
においては、溶融金属を噴出させるノズルの形状や径寸
法、溶融金属に作用させる空気や水などの放出速度、冷
却速度などを適宜変更することによって、所望の大きさ
の金属粉末が得られるものである。因みにSUS310
Sの金属粉を約200μm程度に細かくして焼結を行っ
た場合、高温回転曲げ疲労性が約20%向上したこと
が、本出願人によって確認されている。
Further, in the present embodiment, a technical device for making the metal powder for injection molding spherical and fine and improving the high temperature rotary bending fatigue resistance of the molded blank is also taken.
Here, in making the metal powder spherical and fine, for example, molten metal is ejected from a nozzle, and a high-speed fluid such as air or water is made to act on this, and the metal is divided into a large number of droplets by the impact force of the high-speed fluid. Then, a so-called air atomizing method or water atomizing method, in which the metal powder is obtained by cooling and solidifying, is applied. And in such an atomizing method, by appropriately changing the shape and diameter of the nozzle for ejecting the molten metal, the discharge rate of air or water acting on the molten metal, the cooling rate, etc., the metal of the desired size can be obtained. A powder is obtained. By the way, SUS310
It has been confirmed by the applicant of the present invention that when the metal powder of S is pulverized to about 200 μm and sintered, the high temperature rotary bending fatigue property is improved by about 20%.

【0036】更にまた金属射出成形を行うにあたって
は、焼結前の金属素材の表面を還元するものであり、具
体的には還元雰囲気をもたらす水素、アンモニア、一酸
化炭素等のガスを、金属粒子の表面に流動させ、接触さ
せることによって還元を行うものである。これによって
金属粒子の表面の酸化物が除去され、焼結性が向上する
とともに、熱間静水圧プレス処理の効果を増大せしめ、
気孔率低減に大きく寄与するものである。
Furthermore, in performing metal injection molding, the surface of the metal material before sintering is reduced, and specifically, a gas such as hydrogen, ammonia, carbon monoxide, etc., which brings about a reducing atmosphere, is added to the metal particles. It is reduced by flowing it on the surface of and contacting it. This removes oxides on the surface of the metal particles, improves the sinterability, and increases the effect of hot isostatic pressing,
It greatly contributes to the reduction of porosity.

【0037】[0037]

【発明の効果】まず請求項1記載の発明によれば、精密
鋳造を行うにあたり、C、Si、Oの含有成分量を適正
化した処女材を適用するため、湯流れ性が向上し、ニヤ
ネットシェイプの素形材が形成できる。
According to the first aspect of the present invention, when precision casting is performed, a virgin material having an appropriate content of C, Si and O is applied, so that the flowability of molten metal is improved and A net shape element can be formed.

【0038】また請求項2記載の発明によれば、素形材
の凝固粒を極めて微細なものとし、後に素形材の軸部1
2を転造加工する場合、シャープエッジを生じ難くし、
転造加工を行い易くするものである。
According to the second aspect of the present invention, the solidified particles of the base material are made extremely fine, and the shaft portion 1 of the base material is later formed.
When 2 is rolled, sharp edges are less likely to occur,
It facilitates the rolling process.

【0039】更にまた請求項3記載の発明によれば、鋳
込む原料素材にPb、Se、Te、O、Sを適宜、添加
するため、溶融金属の湯流れ性を高めながら、素形材の
転造性や切削性(研磨性)を高めることができる。
Further, according to the invention of claim 3, since Pb, Se, Te, O, and S are appropriately added to the raw material to be cast, the flowability of the molten metal is improved and the raw material Rollability and machinability (polishing) can be improved.

【0040】また請求項4記載の発明によれば、原料素
材を融点以上に加熱し、粘性を融点温度よりも低下させ
た状態で鋳込むため、湯流れ性を、より一層向上させ得
る。
Further, according to the invention of claim 4, the raw material is heated to a temperature equal to or higher than the melting point and cast in a state where the viscosity is lower than the melting point temperature, so that the flowability of the molten metal can be further improved.

【0041】また請求項5記載の発明によれば、金属射
出成形後、焼結された素形材は、金属粒子間の気孔が効
果的に縮小されるとともに球形の独立泡化し、更にHI
P処理によって、このような気孔がより縮小され、素形
材の更なる高密度化が達成できる。
Further, according to the invention of claim 5, in the shaped material sintered after metal injection molding, the pores between the metal particles are effectively reduced and spherical independent bubbles are formed.
By the P treatment, such pores can be further reduced, and a higher density of the raw material can be achieved.

【0042】また請求項6記載の発明によれば、射出成
形される金属粉の粒子は、球状且つ微細であるため、成
形品となる素形材の高温回転曲げ疲労性が格段に向上さ
れる。
According to the sixth aspect of the invention, since the particles of the metal powder to be injection-molded are spherical and fine, the high-temperature rotary bending fatigue property of the raw material to be a molded product is remarkably improved. .

【0043】また請求項7記載の発明によれば、成形以
前の段階で原料となる金属粒子の表面を還元し、粒子表
面の酸化物を除去するため、焼結性が向上するととも
に、HIP処理の効果を増大せしめ、素形材の気孔率低
減に大きく寄与するものである。
Further, according to the invention of claim 7, the surface of the metal particles as a raw material is reduced in the stage before the molding to remove the oxide on the surface of the particles, so that the sinterability is improved and the HIP treatment is carried out. The effect of is increased and contributes greatly to the reduction of the porosity of the raw material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る可変翼を組み込んだVGSタイプ
のターボチャージャを示す斜視図(a)、並びに排気ガ
イドアッセンブリを示す分解斜視図(b)である。
FIG. 1 is a perspective view (a) showing a VGS type turbocharger incorporating a variable vane according to the present invention, and an exploded perspective view (b) showing an exhaust guide assembly.

【図2】本発明に係る可変翼を示す正面図並びに左側面
図である。
FIG. 2 is a front view and a left side view showing a variable vane according to the present invention.

【図3】Ni系耐熱材及びFe系耐熱材における、温度
と粘性との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between temperature and viscosity in Ni-based heat-resistant materials and Fe-based heat-resistant materials.

【符号の説明】[Explanation of symbols]

1 可変翼 2 タービンフレーム 3 可変機構 11 翼部 12 軸部 13 テーパ部 14 鍔部 15 基準面 21 フレームセグメント 22 保持部材 23 フランジ部 23A フランジ部(小) 23B フランジ部(大) 24 ボス部 25 受入孔 26 カシメピン 27 ピン孔 31 回動部材 32 伝達部材 32A 駆動要素 32B 受動要素 33 リング A 排気ガイドアッセンブリ G 排気ガス h 羽根高さ T 排気タービン 1 variable wings 2 turbine frame 3 variable mechanism 11 wings 12 Shaft 13 Tapered part 14 Tsubabe 15 Reference plane 21 frame segments 22 Holding member 23 Flange 23A Flange (small) 23B Flange (large) 24 Boss 25 receiving hole 26 Caulking pins 27 pin hole 31 Rotating member 32 transmission member 32A drive element 32B passive element 33 ring A Exhaust guide assembly G exhaust gas h blade height T exhaust turbine

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 幸雄 千葉県袖ヶ浦市福王台4−38−2 コスモ 袖ヶ浦106号 Fターム(参考) 3G005 EA15 FA43 GB25 KA03 KA07 KA09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yukio Takahashi             4-38-2 Fukuodai, Sodegaura-shi, Chiba Cosmo             Sodegaura No. 106 F-term (reference) 3G005 EA15 FA43 GB25 KA03 KA07                       KA09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 回動中心となる軸部と、実質的に排気ガ
スの流量を調節する翼部とを具え、 エンジンから排出された比較的少ない排気ガスを適宜絞
り込み、排気ガスの速度を増幅させ、排気ガスのエネル
ギで排気タービンを回し、この排気タービンに直結され
たコンプレッサで自然吸気以上の空気をエンジンに送り
込み、低速回転時であってもエンジンが高出力を発揮で
きるようにしたVGSタイプのターボチャージャに組み
込まれる可変翼を製造するにあたり、 翼部と軸部とを一体に有し、可変翼の原形となる素形材
を得る工程は、素形材を高い精度で実現し得る精密鋳造
法によって行うものであり、 鋳造にあたっては、耐熱鋼(合金)を主要母材とした処
女材を適用するとともに、この処女材に含有されるC、
Si、Oの各々の重量%を0.05〜0.5%、0.5
〜1.5%、0.01〜0.1%とし、鋳型に鋳込む溶
融金属の湯流れ性を向上させるようにしたことを特徴と
するVGSタイプターボチャージャにおける可変翼の素
形材の製造方法。
1. A shaft having a center of rotation and a wing that substantially adjusts a flow rate of exhaust gas, and appropriately narrows a relatively small amount of exhaust gas discharged from an engine to amplify the speed of the exhaust gas. VGS type that rotates the exhaust turbine with the energy of the exhaust gas, and sends the air more than naturally aspirated to the engine by the compressor directly connected to this exhaust turbine, so that the engine can exhibit high output even at low speed rotation. In manufacturing variable blades to be incorporated into the turbocharger, the process of obtaining the raw material that is the prototype of the variable blade by integrating the blade and the shaft is a precision process that can realize the raw material with high accuracy. It is performed by the casting method. When casting, a virgin material containing heat-resistant steel (alloy) as a main base material is applied, and C contained in this virgin material is
The weight% of each of Si and O is 0.05 to 0.5%, 0.5
To 1.5% and 0.01 to 0.1% so as to improve the flowability of the molten metal cast into the mold, and to manufacture the variable blade component in the VGS type turbocharger. Method.
【請求項2】 前記鋳造においては、鋳型または素形材
のうち、どちらか一方または双方を冷却して、溶融金属
を鋳込んでから型破砕までの時間を短縮し、素形材の凝
固組織を微細化するようにしたことを特徴とする請求項
1記載のVGSタイプターボチャージャにおける可変翼
の素形材の製造方法。
2. In the casting, either one or both of the mold and the raw material is cooled to shorten the time from the casting of the molten metal to the crushing of the die, and the solidification structure of the raw material. The method for manufacturing a variable blade element material in a VGS type turbocharger according to claim 1, characterized in that:
【請求項3】 前記鋳造においては、型に鋳込む溶融金
属にPb、Se、Teのうち1種もしくは複数種を添加
するとともに非金属介在物の存在が差し支えない範囲
で、O、Sを多めに含有させるようにしたことを特徴と
する請求項1または2記載のVGSタイプターボチャー
ジャにおける可変翼の素形材の製造方法。
3. In the casting, one or more kinds of Pb, Se, and Te are added to the molten metal to be cast in the mold, and O and S are increased to the extent that non-metallic inclusions may exist. 3. The method for manufacturing a profile material of a variable blade in a VGS type turbocharger according to claim 1 or 2, characterized in that
【請求項4】 前記鋳造においては、型に鋳込む溶融金
属を融点以上に高め、融点温度よりも粘性を低下させた
状態で鋳込むようにしたことを特徴とする請求項1、2
または3記載のVGSタイプターボチャージャにおける
可変翼の素形材の製造方法。
4. The casting according to claim 1, wherein the molten metal to be cast into the mold is raised to a temperature equal to or higher than the melting point and the viscosity is lowered below the melting point temperature.
Alternatively, the method of manufacturing a variable blade element material in the VGS type turbocharger according to the item 3.
【請求項5】 回動中心となる軸部と、実質的に排気ガ
スの流量を調節する翼部とを具え、 エンジンから排出された比較的少ない排気ガスを適宜絞
り込み、排気ガスの速度を増幅させ、排気ガスのエネル
ギで排気タービンを回し、この排気タービンに直結され
たコンプレッサで自然吸気以上の空気をエンジンに送り
込み、低速回転時であってもエンジンが高出力を発揮で
きるようにしたVGSタイプのターボチャージャに組み
込まれる可変翼を製造するにあたり、 翼部と軸部とを一体に有し、可変翼の原形となる素形材
を得る工程は、可塑性を賦与した金属粉を金型内に射出
して固形化させる金属射出成形法によって行うものであ
り、また射出成形にあたっては、金属粒子間の球状間隙
である独立泡を細かく且つ均一に生成させるように、焼
結を行うものであり、 その後、射出成形された素形材に熱間静水圧プレス処理
(HIP処理)を施し、素形材の高密度化を図るように
したことを特徴とするVGSタイプターボチャージャに
おける可変翼の製造方法。
5. An exhaust gas velocity is amplified by appropriately squeezing a relatively small amount of exhaust gas emitted from an engine, comprising a shaft portion that is a center of rotation and a blade portion that substantially adjusts the flow rate of exhaust gas. VGS type that rotates the exhaust turbine with the energy of the exhaust gas, and sends the air more than naturally aspirated to the engine by the compressor directly connected to this exhaust turbine, so that the engine can exhibit high output even at low speed rotation. In manufacturing variable blades to be incorporated into the turbocharger of, the process of obtaining the raw material that is the prototype of the variable blades by integrally forming the variable blades in the mold has metal blades with plasticity added in the mold. It is carried out by a metal injection molding method of injecting and solidifying, and in the injection molding, baking is performed so that independent bubbles that are spherical gaps between metal particles are finely and uniformly generated. VGS type turbocharger characterized by subjecting the injection-molded material to hot isostatic pressing (HIP processing) to increase the density of the material. Method for manufacturing variable blade in.
【請求項6】 前記金属射出成形にあたっては、原料と
なる金属粉の形状を球状且つ微細化し、素形材の高温回
転曲げ疲労性を向上させるようにしたことを特徴とする
請求項5記載のVGSタイプターボチャージャにおける
可変翼の素形材の製造方法。
6. The metal injection molding according to claim 5, wherein the shape of the metal powder as a raw material is made spherical and fine so as to improve the high temperature rotary bending fatigue property of the raw material. A method of manufacturing a variable blade material in a VGS type turbocharger.
【請求項7】 前記金属射出成形にあたっては、焼結前
に原料となる金属粉の粒子表面を還元することを特徴と
する請求項5または6記載のVGSタイプターボチャー
ジャにおける可変翼の素形材の製造方法。
7. The material for forming a variable blade in a VGS type turbocharger according to claim 5, wherein in the metal injection molding, the particle surface of the metal powder as a raw material is reduced before sintering. Manufacturing method.
JP2001235676A 2001-05-10 2001-08-03 Method for manufacturing variable blade profile in VGS type turbocharger Expired - Fee Related JP4638090B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2001235676A JP4638090B2 (en) 2001-08-03 2001-08-03 Method for manufacturing variable blade profile in VGS type turbocharger
US10/476,789 US20040213665A1 (en) 2001-05-10 2002-05-10 Exhaust gas assembly with improved heat resistance for vgs turbocharger, method for manufacturing heat resisting member applicable thereto, and method for manufacturing shaped material for adjustable blade applicable thereto
CN2007101407176A CN101187316B (en) 2001-05-10 2002-05-10 Exhaust guide assembly for variable giometry shape turbocharger with improved high-temperature endurance
KR1020107027054A KR20110003393A (en) 2001-05-10 2002-05-10 Method of producing raw material for variable vanes applicable for exhaust guide assembly for vgs type turbo charger improved in heat resistance
CNB028139240A CN100340749C (en) 2001-05-10 2002-05-10 Exhaust guide assembly for VGS type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes
PCT/JP2002/004552 WO2002092979A1 (en) 2001-05-10 2002-05-10 Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto
EP02769562A EP1396620A4 (en) 2001-05-10 2002-05-10 Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto
KR10-2003-7014587A KR20040028753A (en) 2001-05-10 2002-05-10 Exhaust guide assembly for vgs type turbo charger improved in heat resistance and method of producing heat-resisting members applicable thereto, and method of producing raw material for variable vanes applicable thereto
HK05101579A HK1069196A1 (en) 2001-05-10 2005-02-24 A method for manufacturing a heat resisting memberapplicable to an exhaust gas guide assembly of a gas turbocharger
US12/213,985 US20090145523A1 (en) 2001-05-10 2008-06-26 Method for manufacturing heat resisting member applicable to an exhaust gas guide assembly with improved heat resistance for VGS turbocharger
US12/980,924 US20110308084A1 (en) 2001-05-10 2010-12-29 Method for manufacturing heat resisting member applicable to an exhaust gas guide assembly with improved heat resistance for vgs turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235676A JP4638090B2 (en) 2001-08-03 2001-08-03 Method for manufacturing variable blade profile in VGS type turbocharger

Publications (2)

Publication Number Publication Date
JP2003049658A true JP2003049658A (en) 2003-02-21
JP4638090B2 JP4638090B2 (en) 2011-02-23

Family

ID=19067082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235676A Expired - Fee Related JP4638090B2 (en) 2001-05-10 2001-08-03 Method for manufacturing variable blade profile in VGS type turbocharger

Country Status (1)

Country Link
JP (1) JP4638090B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149938A1 (en) 2007-06-07 2008-12-11 Akita Fine Blanking Co., Ltd. Variable mechanism for turbo charger of vgs type and exhaust guide assembly having the same therein
WO2010103867A1 (en) 2009-03-13 2010-09-16 株式会社アキタファインブランキング Lever plate in vgs-type turbo charger and method for producing the same
US8241558B2 (en) 2004-04-19 2012-08-14 Hitachi Metals, Ltd. High-Cr, high-Ni, heat-resistant, austenitic cast steel and exhaust equipment members formed thereby
US10702923B2 (en) 2014-07-23 2020-07-07 Ihi Corporation Method of manufacturing ni alloy part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174842A (en) * 1984-02-20 1985-09-09 Toyota Motor Corp Bearing material for turbo charger
JPH01142215A (en) * 1987-11-28 1989-06-05 Toyota Motor Corp Supercharger for internal combustion engine
JPH08177509A (en) * 1994-12-22 1996-07-09 Mitsubishi Heavy Ind Ltd Variable displacement turbine of exhaust turbocharger
JP2001164345A (en) * 1999-12-03 2001-06-19 Nippon Funmatsu Gokin Kk Sintered stainless steel material for supercharger, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174842A (en) * 1984-02-20 1985-09-09 Toyota Motor Corp Bearing material for turbo charger
JPH01142215A (en) * 1987-11-28 1989-06-05 Toyota Motor Corp Supercharger for internal combustion engine
JPH08177509A (en) * 1994-12-22 1996-07-09 Mitsubishi Heavy Ind Ltd Variable displacement turbine of exhaust turbocharger
JP2001164345A (en) * 1999-12-03 2001-06-19 Nippon Funmatsu Gokin Kk Sintered stainless steel material for supercharger, and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241558B2 (en) 2004-04-19 2012-08-14 Hitachi Metals, Ltd. High-Cr, high-Ni, heat-resistant, austenitic cast steel and exhaust equipment members formed thereby
WO2008149938A1 (en) 2007-06-07 2008-12-11 Akita Fine Blanking Co., Ltd. Variable mechanism for turbo charger of vgs type and exhaust guide assembly having the same therein
WO2010103867A1 (en) 2009-03-13 2010-09-16 株式会社アキタファインブランキング Lever plate in vgs-type turbo charger and method for producing the same
US8104280B2 (en) 2009-03-13 2012-01-31 Akita Fine Blanking Co., Ltd. Lever plate in VGS type turbocharger and method of manufacturing the same
US8286458B2 (en) 2009-03-13 2012-10-16 Akita Fine Blanking Co., Ltd. Lever plate in VGS type turbocharger and method of manufacturing the same
US10702923B2 (en) 2014-07-23 2020-07-07 Ihi Corporation Method of manufacturing ni alloy part
US11273493B2 (en) 2014-07-23 2022-03-15 Ihi Corporation Method of manufacturing Ni alloy part

Also Published As

Publication number Publication date
JP4638090B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4523032B2 (en) Compressor impeller manufacturing method
CN105149603B (en) High sphericity Inconel625 alloy powders and preparation method and application
US20090145523A1 (en) Method for manufacturing heat resisting member applicable to an exhaust gas guide assembly with improved heat resistance for VGS turbocharger
US20040062645A1 (en) Turbocharger including cast titanium compressor wheel
EP1422400B1 (en) Variable blade manufacturing method for a vgs type turbo charger
KR100946972B1 (en) Variable blade manufacturing method and variable blade in vgs type turbo charger
CN105803255B (en) High-niobium titanium aluminum-base supercharger turbine and manufacturing method thereof
JP3944819B2 (en) Method of manufacturing variable wing blade portion applied to exhaust guide assembly in VGS type turbocharger
US7191519B2 (en) Method for the manufacture of a vaned diffuser
JP2003049658A (en) Manufacturing method for preform of variable vane in vgs(variable geometry system) type turbocharger
JP2003049663A (en) Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method
US9631635B2 (en) Blades for axial flow compressor and method for manufacturing same
JP4779159B2 (en) Method for manufacturing variable blade in VGS type turbocharger and variable blade manufactured by this method
JP2003049655A (en) Manufacturing method for variable vane in vgs(variable geometry system) type turbocharger and variable vane manufactured by same method
JP4065114B2 (en) Rolling method of shaft part of variable blade applied to exhaust guide assembly in VGS type turbocharger
JP6985118B2 (en) Manufacturing method of metal parts
JP3126582U (en) Die-cast compressor impeller
JP2003049603A (en) Method of forming receiving hole for rotatably holding variable blade in exhaust guide assembly of vgs type turbo charger
KR100976744B1 (en) Variable blade manufacturing method and variable blade in vgs type turbo charger
JP2003049661A (en) Formation method for receiver hole rotatably retaining variable vane in exhaust guide assembly of vgs type turbocharger
JPH01215751A (en) Production of composite material consisting of ceramic and metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees