JPH0536486B2 - - Google Patents

Info

Publication number
JPH0536486B2
JPH0536486B2 JP2010556A JP1055690A JPH0536486B2 JP H0536486 B2 JPH0536486 B2 JP H0536486B2 JP 2010556 A JP2010556 A JP 2010556A JP 1055690 A JP1055690 A JP 1055690A JP H0536486 B2 JPH0536486 B2 JP H0536486B2
Authority
JP
Japan
Prior art keywords
weight
copper
seizure
wear
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010556A
Other languages
Japanese (ja)
Other versions
JPH03215642A (en
Inventor
Tadashi Tanaka
Masaaki Sakamoto
Koichi Yamamoto
Tooru Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2010556A priority Critical patent/JPH03215642A/en
Priority to KR1019910000791A priority patent/KR930006211B1/en
Priority to DE4101620A priority patent/DE4101620C2/en
Priority to GB9101342A priority patent/GB2240785B/en
Publication of JPH03215642A publication Critical patent/JPH03215642A/en
Priority to US07/917,668 priority patent/US5246509A/en
Publication of JPH0536486B2 publication Critical patent/JPH0536486B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、非焼付性、耐摩耗性および耐蝕性に
優れた摺動用銅基合金に係わり、さらに詳しく言
えば、苛酷な摺動条件下で使用される機器材料、
例えばターボチヤージヤーのフローテイングベア
リング(浮動ブシユ軸受)用材料として適する摺
動性銅基合金に関するものである。 従来技術および発明が解決しようとする課題 一般に、ターボチヤージヤーの浮動ブシユ軸受
の材料として、例えば快削黄銅系合金
(JISH3250)、鉛青銅系合金(JISH5115)、
本出願人による先願特許発明としての低摩擦高力
黄銅合金としての特公昭53−44135号公報および
特公昭56−11735号公報が存在する。 合金、については、劣化オイルに対する耐
蝕性高温および境界潤滑条件下での非焼付性、耐
摩耗性について十分満足できるものではなかつ
た。 また、合金については、そのマトリツクスが
α+β相の混合組織あるいはβ相の単独組織であ
るため、冶金学上多くのPbを含有させることが
できず、耐焼付特性に劣つていた。 近年、エンジンの過給機化は急速に進み、内燃
機関(エンジン)に装着されるターボチヤージヤ
ーの軸受部等に使用される浮動ブシユ軸受は、周
囲温度、給油量、オイル劣化度等の作動条件がま
すます厳しくなつてきている。 そのうち、特にタービンからの熱伝導によつて
軸受温度が400℃前後の高温になるため、オイル
の性状および温度の影響によつて潤滑油中の硫黄
が軸受メタルの銅と化合して硫化銅(CuS)なる
化合物を作り、軸受メタル表面にこの硫化銅を主
成分とする黒化物層が軸受メタル表面に形成され
る(黒化腐食現象と称される)。これが稼動時間
の経過とともに成長して使用中に摩耗剥離をおこ
し、ついには浮動ブシユ軸受としての機能を維持
し得なくなることが大きな問題となつている。 また、300℃を越えるドライアツプ時における
潤滑停止後の非焼付性においても充分満足できる
ものではなく、大きな問題となつている。 なお、ドライアツプとは、高温での潤滑油によ
る潤滑作用が停止した状態を言う。より詳しく言
えば、ターボチヤージヤーは排気ガスのもつてい
る高温高圧のガスエネルギーを使つてタービン翼
を回転させ、それと同軸のコンプレツサーを回転
させる構造になつており、エンジン稼働状態で作
動する、そのため、例えば高速運転直後のエンジ
ン停止時には、潤滑油圧力がなくなつて油冷を期
待できず。高温のタービンハウジングに蓄えられ
ていた熱エネルギーが熱伝導により低温側に流入
してベアリング部の温度を上昇させる。前述の問
題は、この現象に付随する問題である。 一般に、ターボチヤージヤーの浮動ブシユ軸受
用の材料として、銅、鉛、錫を主成分とする鉛青
銅系合金および銅、亜鉛、鉛を主成分とする快削
黄銅系合金が主として使用されている。しかる
に、鉛青銅系軸受では、温度300℃に達するドラ
イアツプ時に潤滑油中の硫黄分と銅とが反応して
黒化物層の生成が保進され、さらに表面の摩耗が
急激に進行する。また一方、快削黄銅系合金は耐
食性に優れるものの、潤滑停止後の潤滑油との親
和力に劣るため、比較的早期に焼付きまたはかじ
りを生じることがあつた。 本発明は、斯かる技術的背景の下に創案された
ものであり、過給機に代表される高速、高温なら
びに高腐食環境なる厳しい使用条件下において
も、摩耗に十分耐え、優れた非焼付性を有し、か
つ優れた耐食性を有する高性能耐摩耗材料として
の新規な摺動用銅基合金を提供することをその目
的とする。 課題を解決するための手段 この目的は、非焼付性、耐摩耗性および耐蝕性
に優れた次の摺動用銅基合金〜を提供するこ
とによつて達成される。 その化学組成が、Mn:1.0〜3.0%、Si:0.3
〜1.5%、Zn:10〜23%、Pb:5〜18%、残
部:Cuおよび不可避不純物であり(以上、数
字はいずれも重量%)、前記Pbが全組織中に均
一に分散し、マトリツクスがα相の単一組織か
ら成つている銅基合金。 その化学組成が、Mn:1.0〜3.0%、Si:0.3
〜1.5%、Zn:10〜23%、Pb:5〜18%、0.02
〜1.5%のMgと0.1〜1.5%のTeの2成分のうち
の少なくとも一種、残部:Cuおよび不可避不
純物であり(以上、数字はいずれも重量%)、
前記Pbが全組織中に均一に分散し、マトリツ
クスがα相の単一組織から成つている銅基合
金。 その化学組成が、Mn:1.0〜3.0%、Si:0.3
〜1.5%、Zn:10〜23%、Pb:5〜18%、0.5〜
3.0%のNiと0.3〜3.0%のAlの2成分のうちの
少なくとも一種、残部:Cuおよび不可避不純
物であり(以上、数字はいずれも重量%)、前
記Pbが全組織中に均一に分散し、マトリツク
スがα相の単一組織から成つている銅基合金。 その化学組成が、Mn:1.0〜3.0%、Si:0.3
〜1.5%、Zn:10〜23%、Pb:5〜18%、0.02
〜1.5%のMgと0.1〜1.5%のTeの2成分のうち
の少なくとも一種、0.5〜3.0%のNiと0.3〜3.0
%のAlの2成分のうちの少なくとも一種、残
部:Cuおよび不可避不純物であり(以上、数
字はいずれも重量%)、前記Pbが全組織中に均
一に分散し、マトリツクスがα相の単一組織か
ら成つている銅基合金。 該銅基合金における各合金成分の添加理由およ
び含有量限定理由は以下のとおりである。 (1) Zn:10〜23重量% Znは、強度、耐摩耗性および潤滑油に対す
る耐腐食性を付与する効果を有する。その添加
量は、他の添加成分の亜鉛当量および添加量に
よつて違つてくるが、10%未満では上記の効果
が少なく、とりわけ前述した高温時の潤滑油に
よる黒化腐食現象を防ぐためにZn量10%以上
が必要である。さらに、α+β相を生じると、
合金に非焼付性を付与するための鉛の添加量が
抑制されるため、α相単一組織を確実にし、ま
た最小添加量5%の鉛をα相内に均一分散させ
るためにも、Znの最大添加量は23%とするこ
とが望まれる。 (2) Mn:1.0〜3.0重量% Mnは、Siとの間ですべり特性に優れた金属
間化合物Mn5Si3を作り、耐摩耗性および耐焼
付性の向上に寄与するとともに、金属間接触の
発生時に素地の流動を阻止する。Mnの含有量
が1.0%未満では、その効果が少なく、また3.0
%を超える含有量ではその効果が概ね飽和す
る。さらに、Mn含有量が3.5%を超えると、合
金の脆化が生じるため、この脆化現象を確実に
防ぐためにも、Mn量の上限値を3.0%にするこ
とが望ましい。 (3) Si:0.3〜1.5重量% Siは、前述のようにMnとの間でMn5Si3なる
化合物を形成し、耐摩耗性及び耐焼付性の向上
に寄与する。その含有量は、Mn5Si3化合物の
構成割合により決定され、Mn対Siの重量比で
1:0.3の割合のとき全Siが化合物となる。ゆ
えに、Siは最低0.3重量%が必要であり、また
上限の1.5%を越えると、遊離Siの晶出が多く
なりすぎて合金の脆化を招く。 (4) Pb:5〜18重量% Pbは自己潤滑性を有し、摩擦熱によつて溶
融し、摺動面に流動して数ミクロンの薄膜を形
成するため、非焼付性に優れた結果をもたらす
とともに切削性をも改善する。 このような数ミクロンの膜を形成するために
は、合金中におけるPbの組成が少なくとも5
%以上必要である。しかし、Pbの増加に伴い
合金の強度が低下するため、18%をその上限と
する。以上の理由により、Pbの添加量は5〜
18重量%とする。 (5) Mg:0.02〜1.5重量% Mgは、Pbを均一分散させるのに有効である
とともに、マトリツクスの強化改善にも効果が
ある。その添加量が0.02%以下では前記効果は
少なく、多過ぎるとMgとPbの金属間化合物が
晶出しすぎてPbの自己潤滑作用が損われる。
以上の理由により、Mgの添加量は0.02〜1.5重
量%とする。 (6) Te:0.1〜1.5重量% Teは、少量の添加でPbの均一分散性、非焼
付性および靭性を向上させるとともに、耐腐食
性の改善にも効果がある。但し、0.1重量%よ
り少では、その効果を期待できず、1.5重量%
より多く添加すると、コスト高になる上、効果
が格別向上するわけでもなく、利点が少ない。
ゆえに、Teの添加量は0.1〜1.5重量%とする。 (7) Ni:0.5〜3.0重量% Niはマトリツクスを強化し、強度を向上さ
せ耐摩耗性を高める。さらに、Niは、再結晶
温度を上昇させ、熱間塑性加工時の結晶粒粗大
化防止効果がある。但し、0.5重量%未満にお
いては上記の効果は認められず、また3%を越
えると疲労強度、耐衝撃性を著しく低下させ
る。それゆえに、該添加量を0.5〜3.0重量%と
する。 (8) Al:0.3〜3.0重量% Alはマトリツクスの強化に有効である。そ
の添加量が0.3重量%より少ないと、強度に及
ぼす効果は期待できず、3.0重量%より多いと、
脆化及び結晶粒が粗大化する弊害を生じる。し
たがつて、該添加量を0.3〜3.0重量%とする。 試験例 1 (本発明合金) 第1表に示すNo.1〜No.9の組成の合金を連続鋳
造法により鋳造後、押出し加工、引抜き加工を行
なつて直径35mmの棒状体を作成し、次いで該棒状
体を加工して焼付試験、摩耗試験、腐食試験用の
試料を得た。 該試料の、各種試験条件を第2表ないし第4表
に示し、また焼付試験結果を第5表に、摩耗試験
結果を第6表に、代表的な腐食試験結果を第8表
にそれぞれ示す。 試験例 2 (従来合金) 第1表に示すNo.10〜No.13組成の合金を連続鋳造
法により鋳造後、押出し加工、引抜き加工を行な
つて直径35mmの棒状体を作成し、次いで該棒状体
を加工して試験例1と同じ様な試験用の試料を得
た。 該試料の、各種試験条件を第2表ないし第4表
に示し、試験結果を第5表ないし第8表にそれぞ
れ示す。 なお、各試験例は連続鋳造法で作成した試料に
ついてこれを行つたが、さらに置注鋳造法等の方
法によつても同じ様な効果が得られ、鋳造方法に
ついて、特に限定がなされるものではない。
INDUSTRIAL APPLICATION FIELD The present invention relates to a copper-based sliding alloy that has excellent non-seizure properties, wear resistance, and corrosion resistance, and more specifically, equipment materials used under severe sliding conditions.
For example, the present invention relates to a sliding copper-based alloy suitable as a material for a floating bearing (floating bush bearing) of a turbocharger. Problems to be Solved by the Prior Art and the Invention In general, materials for floating bush bearings for turbochargers include free-cutting brass alloys (JISH3250), lead bronze alloys (JISH5115),
There are Japanese Patent Publications No. 44135/1983 and Japanese Patent Publication No. 11735/1987 regarding low friction, high strength brass alloys as earlier patented inventions by the present applicant. Regarding the alloy, the corrosion resistance against deteriorated oil, anti-seizure property under high temperature and boundary lubrication conditions, and wear resistance were not fully satisfactory. Furthermore, since the matrix of the alloy is a mixed structure of α+β phase or a single structure of β phase, it is not possible to contain a large amount of Pb due to metallurgy, and the anti-seizure properties are poor. In recent years, the use of turbochargers in engines has progressed rapidly, and the floating bush bearings used in the bearings of turbochargers installed in internal combustion engines (engines) are subject to various factors such as ambient temperature, oil supply amount, and degree of oil deterioration. Operating conditions are becoming increasingly severe. As the bearing temperature rises to around 400℃ due to heat conduction from the turbine, the sulfur in the lubricating oil combines with the copper in the bearing metal due to the properties of the oil and the temperature, resulting in copper sulfide (copper sulfide). CuS) is produced on the surface of the bearing metal, and a blackide layer containing copper sulfide as the main component is formed on the surface of the bearing metal (referred to as blackening corrosion phenomenon). This has become a major problem as it grows over time and causes wear and tear during use, eventually making it impossible to maintain its function as a floating bush bearing. Furthermore, the anti-seizure properties after stopping lubrication during dry-up at temperatures exceeding 300°C are not fully satisfactory, which has become a major problem. Note that dry-up refers to a state in which the lubricating action of lubricating oil at high temperatures has stopped. More specifically, a turbocharger uses the high-temperature, high-pressure gas energy contained in the exhaust gas to rotate a turbine blade, which in turn rotates a compressor coaxial with the turbine blade.It operates while the engine is running. Therefore, for example, when the engine stops immediately after high-speed operation, the lubricating oil pressure disappears and oil cooling cannot be expected. Thermal energy stored in the high-temperature turbine housing flows into the low-temperature side by thermal conduction, raising the temperature of the bearing section. The aforementioned problems are problems associated with this phenomenon. In general, lead-bronze alloys containing copper, lead, and tin as the main components and free-cutting brass alloys containing copper, zinc, and lead as the main components are generally used as materials for floating bush bearings in turbochargers. There is. However, in lead bronze bearings, during dry-up when the temperature reaches 300°C, the sulfur content in the lubricating oil reacts with the copper, accelerating the formation of a blackide layer, and further causing rapid surface wear. On the other hand, although free-cutting brass alloys have excellent corrosion resistance, they have poor affinity with lubricating oil after lubrication has stopped, and therefore seizure or galling may occur relatively early. The present invention was devised against this technical background, and has sufficient wear resistance and excellent non-seizure properties even under severe usage conditions such as high speed, high temperature, and highly corrosive environments, as typified by turbochargers. The object of the present invention is to provide a new copper-based sliding alloy as a high-performance wear-resistant material that has high corrosion resistance and excellent corrosion resistance. Means for Solving the Problems This object is achieved by providing the following copper-based sliding alloys having excellent non-seizure properties, wear resistance and corrosion resistance. Its chemical composition is Mn: 1.0-3.0%, Si: 0.3
~1.5%, Zn: 10~23%, Pb: 5~18%, the remainder: Cu and unavoidable impurities (all figures are weight%), and the Pb is uniformly dispersed throughout the entire structure, and the matrix A copper-based alloy consisting of a single α-phase structure. Its chemical composition is Mn: 1.0-3.0%, Si: 0.3
~1.5%, Zn: 10~23%, Pb: 5~18%, 0.02
At least one of the two components of ~1.5% Mg and 0.1 to 1.5% Te, the remainder: Cu and unavoidable impurities (all numbers are weight %),
A copper-based alloy in which the above-mentioned Pb is uniformly dispersed throughout the structure and the matrix consists of a single α-phase structure. Its chemical composition is Mn: 1.0-3.0%, Si: 0.3
~1.5%, Zn: 10~23%, Pb: 5~18%, 0.5~
At least one of two components: 3.0% Ni and 0.3 to 3.0% Al, the remainder: Cu and unavoidable impurities (all numbers are weight %), and the Pb is uniformly dispersed throughout the entire structure. , a copper-based alloy whose matrix consists of a single α-phase structure. Its chemical composition is Mn: 1.0-3.0%, Si: 0.3
~1.5%, Zn: 10~23%, Pb: 5~18%, 0.02
At least one of the two components ~1.5% Mg and 0.1~1.5% Te, 0.5~3.0% Ni and 0.3~3.0%
% of Al, the remainder: Cu and unavoidable impurities (all numbers are weight %), the Pb is uniformly dispersed throughout the entire structure, and the matrix is a single α phase. A copper-based alloy consisting of a structure. The reasons for adding and limiting the content of each alloy component in the copper-based alloy are as follows. (1) Zn: 10 to 23% by weight Zn has the effect of imparting strength, wear resistance, and corrosion resistance to lubricating oil. The amount added varies depending on the zinc equivalent and amount added of other additive components, but if it is less than 10%, the above effect will be small, and in particular, Zn Amount of 10% or more is required. Furthermore, when α+β phase is generated,
Since the amount of lead added to impart anti-seizure properties to the alloy is suppressed, Zn It is desirable that the maximum amount of addition is 23%. (2) Mn: 1.0 to 3.0% by weight Mn forms an intermetallic compound Mn 5 Si 3 with excellent sliding properties with Si, contributing to improved wear resistance and seizure resistance, and also improves intermetallic contact. Prevents the flow of the substrate when it occurs. If the Mn content is less than 1.0%, the effect will be small;
%, the effect is almost saturated. Furthermore, if the Mn content exceeds 3.5%, the alloy will become embrittled, so in order to reliably prevent this embrittlement phenomenon, it is desirable to set the upper limit of the Mn content to 3.0%. (3) Si: 0.3 to 1.5% by weight As mentioned above, Si forms a compound called Mn 5 Si 3 with Mn, and contributes to improving wear resistance and seizure resistance. Its content is determined by the composition ratio of the Mn 5 Si 3 compound, and when the weight ratio of Mn to Si is 1:0.3, all Si becomes a compound. Therefore, Si needs to be at least 0.3% by weight, and if it exceeds the upper limit of 1.5%, too much free Si will crystallize, leading to embrittlement of the alloy. (4) Pb: 5-18% by weight Pb has self-lubricating properties and melts due to frictional heat, flows onto the sliding surface and forms a thin film of several microns, resulting in excellent anti-seizure properties. It also improves machinability. In order to form such a film of several microns, the composition of Pb in the alloy must be at least 5
% or more is required. However, as the strength of the alloy decreases as Pb increases, the upper limit is set at 18%. For the above reasons, the amount of Pb added is 5~
18% by weight. (5) Mg: 0.02 to 1.5% by weight Mg is effective in uniformly dispersing Pb and is also effective in improving the strength of the matrix. If the amount added is less than 0.02%, the above effect will be small, and if it is too much, the intermetallic compound of Mg and Pb will crystallize too much, and the self-lubricating effect of Pb will be impaired.
For the above reasons, the amount of Mg added is 0.02 to 1.5% by weight. (6) Te: 0.1 to 1.5% by weight Te is effective in improving the uniform dispersion of Pb, non-seizure properties, and toughness when added in small amounts, as well as improving corrosion resistance. However, if it is less than 0.1% by weight, the effect cannot be expected;
Adding a larger amount increases the cost and does not particularly improve the effect, resulting in fewer benefits.
Therefore, the amount of Te added is 0.1 to 1.5% by weight. (7) Ni: 0.5-3.0% by weight Ni strengthens the matrix, improves strength and wear resistance. Furthermore, Ni increases the recrystallization temperature and has the effect of preventing crystal grain coarsening during hot plastic working. However, if it is less than 0.5% by weight, the above effect will not be observed, and if it exceeds 3%, fatigue strength and impact resistance will be significantly reduced. Therefore, the amount added is 0.5 to 3.0% by weight. (8) Al: 0.3 to 3.0% by weight Al is effective in strengthening the matrix. If the amount added is less than 0.3% by weight, no effect on strength can be expected, and if it is more than 3.0% by weight,
This causes problems such as embrittlement and coarsening of crystal grains. Therefore, the amount added is 0.3 to 3.0% by weight. Test Example 1 (Alloy of the present invention) After casting alloys having the compositions No. 1 to No. 9 shown in Table 1 by a continuous casting method, extrusion processing and drawing processing were performed to create a rod-shaped body with a diameter of 35 mm. Next, the rod-shaped body was processed to obtain samples for seizure tests, wear tests, and corrosion tests. Various test conditions for the sample are shown in Tables 2 to 4, seizure test results are shown in Table 5, wear test results are shown in Table 6, and typical corrosion test results are shown in Table 8. . Test Example 2 (Conventional Alloy) After casting alloys with compositions No. 10 to No. 13 shown in Table 1 by continuous casting, extrusion processing and drawing processing were performed to create a rod-shaped body with a diameter of 35 mm. A test sample similar to Test Example 1 was obtained by processing a rod-shaped body. Various test conditions for the samples are shown in Tables 2 to 4, and test results are shown in Tables 5 to 8, respectively. Although each test example was conducted on samples made by continuous casting, similar effects can also be obtained by methods such as pour-in-place casting, and there are no particular limitations on the casting method. isn't it.

【表】【table】

【表】【table】

【表】【table】

【表】 【table】

【表】【table】

【表】 [試験結果の評価] 第5表の焼付試験結果を比較すると、従来合
金の快削黄銅系(No.10)、高力黄銅系(No.12、
13)に比して、本発明品はいずれも最高荷重
500Kgf/cm2でも焼付が発生しないことが判る。 第7表に示すように試料を実機に組み込み、
一定回転数にて、油をON・OFFさせて行なつ
た焼付試験テストにおいても、本発明品では焼
付が認められない。本発明品は、摺動材料とし
て極めて優れた性能を示し、浮動ブシユ軸受用
金属として十分満足すべき成果を収め得ること
が明らかである。 第6表の摩耗試験結果について比較してみる
と、本発明品は、いずれも従来品に比し摩耗量
が小さいことが判り、優れた耐摩耗性を有して
いることが明らかである。 なお、ブシユ摩耗試験は、潤滑油使用による
湿式法でこれを行い、摩擦の相手部材としては
一般軸材用S55Cの焼入れ品を用いた。 本発明品と従来品の代表的な腐食テストにつ
いても、第8表に示すように、本発明品の方が
良い結果を示している。 発明の効果 本発明の銅基合金は、従来合金に比べ、耐焼付
性に優れ、しかも耐摩耗性、耐腐食性やなじみ性
にも優れた合金である。特に、高性能、長寿命の
要求されるターボチヤージヤー等の摺動材として
卓越した性能を有している。
[Table] [Evaluation of test results] Comparing the seizure test results in Table 5, we can see that the conventional alloy free-cutting brass type (No. 10), high-strength brass type (No. 12,
13), all of the products of the present invention have a maximum load of
It can be seen that seizure does not occur even at 500Kgf/cm 2 . Incorporate the sample into the actual machine as shown in Table 7,
Even in a seizure test conducted at a constant rotation speed with oil turned on and off, no seizure was observed with the product of the present invention. It is clear that the product of the present invention exhibits extremely excellent performance as a sliding material and can achieve sufficiently satisfactory results as a metal for floating bush bearings. A comparison of the wear test results shown in Table 6 shows that the products of the present invention all have a smaller amount of wear than the conventional products, and it is clear that they have excellent wear resistance. The bushing wear test was conducted using a wet method using lubricating oil, and a hardened S55C for general shaft material was used as the friction partner member. Regarding typical corrosion tests of the products of the present invention and conventional products, as shown in Table 8, the products of the present invention showed better results. Effects of the Invention The copper-based alloy of the present invention has superior seizure resistance, as well as excellent wear resistance, corrosion resistance, and conformability, compared to conventional alloys. In particular, it has excellent performance as a sliding material for turbochargers, etc., which require high performance and long life.

Claims (1)

【特許請求の範囲】 1 その化学組成が、Mn:1.0〜3.0%、Si:0.3
〜1.5%、Zn:10〜23%、Pb:5〜18%、残部:
Cuおよび不可避不純物であり(以上、数字はい
ずれも重量%)、前記Pbが全組織中に均一に分散
し、マトリツクスがα相の単一組織から成つてい
ることを特徴とする非焼付性、耐摩耗性および耐
蝕性に優れた摺動用銅基合金。 2 その化学組成が、Mn:1.0〜3.0%、Si:0.3
〜1.5%、Zn:10〜23%、Pb:5〜18%、0.02〜
1.5%のMgと0.1〜1.5%のTeの2成分のうちの少
なくとも一種、残部:Cuおよび不可避不純物で
あり(以上、数字はいずれも重量%)、前記Pbが
全組織中に均一に分散し、マトリツクスがα相の
単一組織から成つていることを特徴とする非焼付
性、耐摩耗性および耐蝕性に優れた摺動用銅基合
金。 3 その化学組成が、Mn:1.0〜3.0%、Si:0.3
〜1.5%、Zn:10〜23%、Pb:5〜18%、0.5〜
3.0%のNiと0.3〜3.0%のAlの2成分のうちの少
なくとも一種、残部:Cuおよび不可避不純物で
あり(以上、数字はいずれも重量%)、前記Pbが
全組織中に均一に分散し、マトリツクスがα相の
単一組織から成つていることを特徴とする非焼付
性、耐摩耗性および耐蝕性に優れた摺動用銅基合
金。 4 その化学組成が、Mn:1.0〜3.0%、Si:0.3
〜1.5%、Zn:10〜23%、Pb:5〜18%、0.02〜
1.5%のMgと0.1〜1.5%のTeの2成分のうちの少
なくとも一種、0.5〜3.0%のNiと0.3〜3.0%のAl
の2成分のうちの少なくとも一種、残部:Cuお
よび不可避不純物であり(以上、数字はいずれも
重量%)、前記Pbが全組織中に均一に分散し、マ
トリツクスがα相の単一組織から成つていること
を特徴とする非焼付性、耐摩耗性および耐蝕性に
優れた摺動用銅基合金。
[Claims] 1. The chemical composition is Mn: 1.0 to 3.0%, Si: 0.3
~1.5%, Zn: 10~23%, Pb: 5~18%, balance:
Non-seizure properties, characterized in that the Pb is Cu and unavoidable impurities (all numbers are weight %), the Pb is uniformly dispersed throughout the structure, and the matrix is composed of a single α-phase structure; Copper-based alloy for sliding parts with excellent wear and corrosion resistance. 2 Its chemical composition is Mn: 1.0-3.0%, Si: 0.3
~1.5%, Zn: 10~23%, Pb: 5~18%, 0.02~
At least one of two components: 1.5% Mg and 0.1 to 1.5% Te, the remainder: Cu and unavoidable impurities (all numbers are weight %), and the Pb is uniformly dispersed throughout the entire structure. A copper-based alloy for sliding parts, which has excellent anti-seizure properties, wear resistance, and corrosion resistance, and is characterized by a matrix consisting of a single α-phase structure. 3 Its chemical composition is Mn: 1.0-3.0%, Si: 0.3
~1.5%, Zn: 10~23%, Pb: 5~18%, 0.5~
At least one of the two components of 3.0% Ni and 0.3 to 3.0% Al, the remainder: Cu and unavoidable impurities (all numbers are weight %), and the Pb is uniformly dispersed throughout the entire structure. A copper-based alloy for sliding parts, which has excellent anti-seizure properties, wear resistance, and corrosion resistance, and is characterized by a matrix consisting of a single α-phase structure. 4 Its chemical composition is Mn: 1.0-3.0%, Si: 0.3
~1.5%, Zn: 10~23%, Pb: 5~18%, 0.02~
At least one of two components: 1.5% Mg and 0.1-1.5% Te, 0.5-3.0% Ni and 0.3-3.0% Al
At least one of the two components, the remainder: Cu and unavoidable impurities (all numbers are weight %), the Pb is uniformly dispersed throughout the structure, and the matrix is composed of a single structure of α phase. Copper-based alloy for sliding parts with excellent non-seizure properties, wear resistance and corrosion resistance.
JP2010556A 1990-01-22 1990-01-22 Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance Granted JPH03215642A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010556A JPH03215642A (en) 1990-01-22 1990-01-22 Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance
KR1019910000791A KR930006211B1 (en) 1990-01-22 1991-01-18 Copper base alloy superior in resistances to seizure, wear and corrosion suitable for use as material of sliding member
DE4101620A DE4101620C2 (en) 1990-01-22 1991-01-21 Copper alloy with better wear and corrosion resistance for use as a material for sliding and sliding elements
GB9101342A GB2240785B (en) 1990-01-22 1991-01-22 Bearings
US07/917,668 US5246509A (en) 1990-01-22 1992-07-21 Copper base alloy superior in resistances to seizure, wear and corrosion suitable for use as material of sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010556A JPH03215642A (en) 1990-01-22 1990-01-22 Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance

Publications (2)

Publication Number Publication Date
JPH03215642A JPH03215642A (en) 1991-09-20
JPH0536486B2 true JPH0536486B2 (en) 1993-05-31

Family

ID=11753529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010556A Granted JPH03215642A (en) 1990-01-22 1990-01-22 Copper base alloy for sliding excellent in seizing resistance, wear resistance and corrosion resistance

Country Status (4)

Country Link
JP (1) JPH03215642A (en)
KR (1) KR930006211B1 (en)
DE (1) DE4101620C2 (en)
GB (1) GB2240785B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
WO2019097782A1 (en) * 2017-11-20 2019-05-23 株式会社 中村製作所 Aluminum alloy floating metal bearing
WO2019097781A1 (en) * 2017-11-20 2019-05-23 株式会社 中村製作所 Aluminum alloy floating metal bearing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083135B2 (en) * 1991-02-07 1996-01-17 大同メタル工業株式会社 Wear resistant copper alloy
JP3718147B2 (en) * 2001-07-31 2005-11-16 株式会社日立製作所 Turbocharger for internal combustion engines
JP5111253B2 (en) 2008-06-20 2013-01-09 大同メタル工業株式会社 Copper-based sliding material
US20160348215A1 (en) 2014-02-04 2016-12-01 Otto Fuchs Kommanditgesellschaft Lubricant-Compatible Copper Alloy
AT518177B1 (en) * 2016-01-13 2017-08-15 Miba Gleitlager Austria Gmbh Multilayer plain bearings
DE202016102696U1 (en) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Special brass alloy as well as special brass alloy product
CN110564904A (en) * 2019-09-20 2019-12-13 本钢板材股份有限公司 Automatic compensation formula piston structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135618A (en) * 1974-09-20 1976-03-26 Daido Metal Co TEIMASATSUKORYOKUODOGOKIN
JPS5247404A (en) * 1975-10-09 1977-04-15 Kubota Ltd Rear wheel saporting device in tiller
JPS5344135A (en) * 1976-09-14 1978-04-20 Fujitsu Ltd Function test equipment for logical operation circuit
JPS60174842A (en) * 1984-02-20 1985-09-09 Toyota Motor Corp Bearing material for turbo charger
JPS6213549A (en) * 1985-07-10 1987-01-22 Hitachi Ltd Wear-resisting copper alloy
JPS6313078A (en) * 1986-07-03 1988-01-20 Canon Inc Electric curtain type developing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE764372C (en) * 1940-04-07 1952-09-29 Eugen Dr Vaders Copper-zinc alloy
AT198959B (en) * 1954-08-17 1958-08-11 Ver Wiener Metallwerke Ag Copper alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135618A (en) * 1974-09-20 1976-03-26 Daido Metal Co TEIMASATSUKORYOKUODOGOKIN
JPS5247404A (en) * 1975-10-09 1977-04-15 Kubota Ltd Rear wheel saporting device in tiller
JPS5344135A (en) * 1976-09-14 1978-04-20 Fujitsu Ltd Function test equipment for logical operation circuit
JPS60174842A (en) * 1984-02-20 1985-09-09 Toyota Motor Corp Bearing material for turbo charger
JPS6213549A (en) * 1985-07-10 1987-01-22 Hitachi Ltd Wear-resisting copper alloy
JPS6313078A (en) * 1986-07-03 1988-01-20 Canon Inc Electric curtain type developing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
US7648773B2 (en) 2003-05-26 2010-01-19 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
WO2019097782A1 (en) * 2017-11-20 2019-05-23 株式会社 中村製作所 Aluminum alloy floating metal bearing
WO2019097781A1 (en) * 2017-11-20 2019-05-23 株式会社 中村製作所 Aluminum alloy floating metal bearing

Also Published As

Publication number Publication date
GB9101342D0 (en) 1991-03-06
KR930006211B1 (en) 1993-07-09
JPH03215642A (en) 1991-09-20
GB2240785A (en) 1991-08-14
DE4101620A1 (en) 1991-07-25
GB2240785B (en) 1994-02-16
KR910014528A (en) 1991-08-31
DE4101620C2 (en) 1994-09-29

Similar Documents

Publication Publication Date Title
JP3298634B2 (en) Sliding material
US20010019779A1 (en) Copper alloy sliding material
US5183637A (en) Wear resistant copper alloys
US20030173000A1 (en) Sliding material
US5346668A (en) Copper based alloy for wear resistant sliding layer and sliding member
JPH0536486B2 (en)
US5429876A (en) Copper-lead based bearing alloy material excellent in corrosion resistance and a method of producing the same
US5246509A (en) Copper base alloy superior in resistances to seizure, wear and corrosion suitable for use as material of sliding member
JPS6145075B2 (en)
US6964713B2 (en) Copper base alloy suitable for use as material for sliding member
US5665480A (en) Copper-lead alloy bearing
GB2350868A (en) Plain bearing with a lead-free overlay
GB2285059A (en) A tin-base white metal bearing alloy
JPS6160906B2 (en)
JPS582578B2 (en) aluminum bearing alloy
JP4757460B2 (en) Pb-free copper alloy composite sliding material with excellent seizure resistance
JP2001107106A (en) Coppery sintered sliding material
JP3042539B2 (en) Sliding material
JPH0555729B2 (en)
US4471031A (en) Al-Si-Pb Bearing alloy and bearing composite
Fujita et al. Friction and wear property of copper alloys for plain bearing
JP2000240657A (en) Slide bearing
JPS6256938B2 (en)
JPS58113342A (en) Bearing aluminum alloy
JPH05214468A (en) Copper-base alloy for sliding use excellent in seizure resistance, wear resistance, and corrosion resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 17