JPS6212297B2 - - Google Patents
Info
- Publication number
- JPS6212297B2 JPS6212297B2 JP16338581A JP16338581A JPS6212297B2 JP S6212297 B2 JPS6212297 B2 JP S6212297B2 JP 16338581 A JP16338581 A JP 16338581A JP 16338581 A JP16338581 A JP 16338581A JP S6212297 B2 JPS6212297 B2 JP S6212297B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- bearing
- microns
- alloy
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 118
- 229910000838 Al alloy Inorganic materials 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 52
- 229910045601 alloy Inorganic materials 0.000 claims description 28
- 239000000956 alloy Substances 0.000 claims description 28
- 239000011651 chromium Substances 0.000 claims description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 23
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 23
- 229910052804 chromium Inorganic materials 0.000 claims description 22
- 230000013011 mating Effects 0.000 claims description 20
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 229910001141 Ductile iron Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 239000010955 niobium Substances 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 4
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 4
- 229910001018 Cast iron Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 239000011572 manganese Substances 0.000 description 36
- 229910052748 manganese Inorganic materials 0.000 description 32
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 30
- 229910052718 tin Inorganic materials 0.000 description 26
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 25
- 239000001996 bearing alloy Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 19
- 238000005096 rolling process Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 15
- 239000011856 silicon-based particle Substances 0.000 description 14
- 238000000137 annealing Methods 0.000 description 13
- 238000002485 combustion reaction Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 239000010687 lubricating oil Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- 238000003466 welding Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 229910000765 intermetallic Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000003921 oil Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229910052745 lead Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 229910017767 Cu—Al Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- QQHSIRTYSFLSRM-UHFFFAOYSA-N alumanylidynechromium Chemical compound [Al].[Cr] QQHSIRTYSFLSRM-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910016583 MnAl Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910017115 AlSb Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910015372 FeAl Inorganic materials 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910002796 Si–Al Inorganic materials 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 229910007880 ZrAl Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
Description
本発明はアルミニウム系合金軸受に関するもの
であり、さらに詳しく述べるならば内燃機関の軸
受として用いられる鉛含有アルミニウム系合金軸
受の改良に関するものである。
上記アルミニウム系合金はスズを含有するもの
が一般に裏金鋼板に圧接されて軸受として供用さ
れている。鉛はスズと同様に軟質の元素であり、
スズと同様にアルミニウム合金に軸受性能を付与
するが、合金中に均一に分散させることが困難で
あるので、スズほど合金元素として多用されてい
ない。しかしながらスズ及び鉛は物性的には共通
の性質を有しており、軸受性能の一つとしてのな
じみ性を付与する点で共通である。なお、ここで
なじみ性とは、軸受の相手材である軸の加工精度
に対して軸受と軸との間に常に潤滑油の油膜が介
在した状態で両者が接触しうるように、軸受の表
面が軸受使用の初期に軸によつて部分的に削りと
られ又は摩耗する軸受の性質を、指すものであ
る。
従来の慣用的方法はスズ又は鉛をアルミニウム
中に含有させ、これによつてなじみ性を発現しよ
うとするものであつた。ここで軸受の製法につい
て若干述べると、鋳造・圧延によつて成形された
軸受合金と裏金鋼板の接着強度を高くするために
圧接後にこれを焼鈍する工程が不可欠であり、一
般的にはこの焼鈍はAl―Feの金属間化合物が生
成する温度未満で時間を長くして行なわれる。と
ころがスズ及び/又は鉛含有アルミニウム系合金
では上記焼鈍によつて高温下に置かれると、合金
組織中でアルミニウム結晶粒及びスズ又は鉛の晶
出物が粗大化し、スズ及び/又は鉛含有アルミニ
ウム合金の高温硬さ及び耐疲労強度が低下すると
いう欠点があつた。
よつて、最近の技術によるとスズ又は鉛よりは
硬質の金属をアルミニウム合金に添加することに
より、アルミニウム地を強化させ軸受性能を高め
る提案がされるに至つた。スズ及び/又は鉛アル
ミニウム合金の例について述べると、例えば、
3.5〜4.5%Sn―3.5〜4.5%Si―0.7〜1.3%Cu―残
Al、4〜8%Sn―1〜2%Si―0.1〜2%Cu―
0.1〜1%Ni―残Al、3〜40%Sn―0.1〜5%Pb
―0.2〜2%Cu―0.1〜3%Sb―0.2〜3%Si―
0.01〜1%Ti―残Al、15〜30%Sn―0.5〜2%Cu
―残Al、及び1〜23%Sn―1.5〜9%Pb―0.3〜
3%Cu―1〜8%Si―残Alなどのスズ含有アル
ミニウム系軸受合金(以下多元系軸受合金と称す
る)が使用されていた。
しかし、近年の自動車用内燃機関は小型化及び
高出力化が要求され、しかも排ガスの浄化対策の
ためのブローバイガス還元装置の取付が要求され
るようになると、内燃機関の軸受の使用条件は従
来より悪化するに至つた。すなわち近年の軸受は
小型にて従来より高荷重及び高温下で使用される
ようになつたため、従来の多元系軸受合金は疲労
破壊や異常摩耗を起こして、自動車の内燃機関の
トラブルの一つの要因になつていた。なお、金属
材料の疲労現象は一般的には長期に亘つて該材料
が使用されたときに発現するが、近年の内燃機関
では高負荷運転が比較的短時間継続したときでも
疲労による軸受の破壊が起こることがあつた。こ
れは内燃機関内の潤滑油が高負荷運転時に高温に
なり、例えばオイルパン内の潤滑油の温度で測定
した温度が130ないし150℃にも達するため、軸受
は相手材であるクランクシヤフト等とかなりの高
温で摺動していると予測され、この結果従来の多
元系軸受合金の高温硬さが急激に低下し、又スズ
の溶融又は移動が起こり、このことが耐疲労強度
を低下させる原因になつていると本願発明者は考
える。
本願出願人は特願昭55―851号にて重量百分率
で、2.5ないし25%のスズ、0.5ないし8%の亜鉛
及び0.1ないし1.0%未満のクロムを含有するアル
ミニウム系合金を提案した。又本願出願人は特願
昭55―852号にて、重量百分率で、2.5ないし25%
のスズ、0.5ないし8%の亜鉛及び1ないし7%
のケイ素、クロム、マンガン、ニツケル、鉄、ジ
ルコニウム、モリブデン、コバルト、タングステ
ン、チタン、アンチモン、ニオブ、バナジウム、
セリウム、バリウム及びカルシウムからなる群か
ら選択された少なくとも1種の元素を含有し、残
部が実質的にアルミニウムからなるアルミニウム
系合金も提案した。これらのアルミニウム系合金
ではケイ素、クロム等は極めて微細な硬質のAl
―Cr金属間化合物としてマトリツクス中に分散
し、主としてスズ粒子の粗大化防止の効果を奏
し、又亜鉛は殆んどがマトリツクス中に固溶して
マトリツクスを強化し、この結果該合金の耐疲労
強度及び高温硬さが向上する。これらのアルミニ
ウム系合金の軸受性能はマトリツクスの強化と微
細分散物による強化の両作用の相乗効果によつて
単一作用の場合よりも向上される。
上記特願昭55―851号及び特願昭55―852号で
は、軟質なスズ粒子が優れたなじみ性を実現する
ものと把握されている。上述のようななじみ性の
とらえ方は当業界において確立された考え方であ
り、軟質なスズ及び/又は鉛粒子により軸受にな
じみ性を付与しようとする思想自体は、従来の当
業界の考え方に沿うものであり、その延長線上に
あるということができる。また、クロム、ケイ素
等の作用については、これらの粒子がスズ及び/
又は鉛粒子の粗大化を妨げるという面からとらえ
られており、いわばクロム、ケイ素等の粒子が直
接的になじみ性を改良するという技術思想はな
く、軟質なスズ及び/又は鉛粒子の形態制御によ
り間接的にスズ及び/又は鉛含有アルミニウム系
合金のなじみ性を改良するという技術思想及び後
述の技術的手段にて上記特許出願の記載は首尾一
貫しているといえる。
本発明者は鉛含有アルミニウム系合金の軸受性
能を詳しく研究したところ、従来の考え方とは全
く異なる技術思想及び技術的手段により軸受性
能、特になじみ性及び耐焼付性、を飛躍的に向上
しうることを見出して、本発明を完成した。この
技術的手段とは詳しくは後述するように、スズ含
有アルミニウム合金中の硬質粒子の寸法制御であ
るが、Si―Al=元素合金において硬質粒子が析出
ないし晶出(以下、便宜上晶出と称する)するこ
と自体は周知の事実であり、また内燃機関用アル
ミニウム系軸受合金においてケイ素粒子の分布に
ついて論じた論文又は特許も公表されている。
特開昭55―82756号によると、軸受用合金の製
造において、5〜15%のケイ素、銅5%以下、ビ
スマス10%以下、及び鉛1%以下からなるアルミ
ニウム系合金を熱間又は冷間圧延するか、あるい
は押出すことによつて、少なくとも90%の断面減
少率を得、それによつて合金中のケイ素粒子が連
続したスケルトン様網目構造とならずに微細に分
かれた粒子の状態で存在するようにした発明が提
案されている。そして、この軸受合金は軟質のメ
ツキ(オーバレイ)を施こした軸受にも施こさな
い軸受にも有用であると述べられている。この発
明の要点は鋳造状態の粗ケイ素粒子を圧延等によ
り微細分散させ、圧延加工後に必要に応じて行な
う焼鈍は加工組織を回復させる程度にとどめ、ケ
イ素粒子の微細形態を維持した点にある。さら
に、この発明では約10%程度の高ケイ素含有量が
好ましいと明記されているから、ケイ素含有量が
高いアルミニウム合金にてかなり大きく発達する
ケイ素粒子を微細分散させることに意義が見出さ
れている。しかしながら、本願発明者の研究によ
ると、オーバレイを施こさずに使用する内燃機関
用軸受合金にあつては、ケイ素等の硬質粒子晶出
元素の含有量が高いと軸受の疲労強度が低下し、
特に軸受が軸から繰返し荷重を受けて摺動する場
合に負荷能力が著しく低下するという欠点がある
ことが分かつた。さらに、軸受性能を高める目的
上はケイ素粒子を微細分散させる圧延等の方法に
よつては満足すべき結果は得られない。すなわち
軸受用アルミニウム合金は通常鋳造材を圧延等の
方法によつて所定寸法を付与することにより製造
され、この圧延等によりケイ素粒子は分断され
る。このようなケイ素等の硬質粒子を分断するだ
けではなく、場合によつてはこれら粒子を粗大化
し、所定寸法の硬質粒子を所定個数に制御した場
合に、軸受性能が顕著に高まることが分かつた。
ちなみに、上記公開公報では、11%ケイ素含有ア
ルミニウム合金について実験がなされ、そしてケ
イ素微細粒子の寸法は0.0001インチ(2.5ミクロ
ン)から0.001インチ(25ミクロン)であると記
載されているが、単位面積当りの個数については
何ら触れられておらない。
SAE Technical Paper SeriesのAluminium
Based Crankshaft Beasings for the High
Speed Diesel Engineと題する論文(1981年2月
23日―27日、デトロイトで発表)は上記公開公報
と同一人が発表した論文であり、その中では11%
Si―1%Cu―Al合金についての焼付荷重が掲載
されている。これによるとケイ素粒子寸法が17ミ
クロンを越えるものが、単位面積(mm2)当り8.7
×106個存在していると焼付荷重のばらつきが多
く、一方17ミクロンを越えるものが0.6×106個存
在していると焼付荷重がより高くしかもばらつき
が少なくなるという説明がなされている。この説
明及びその他の理論的説明はアルミニウムマトリ
ツクス中に、硬度が高いケイ素粒子が微細分散し
ていることが適合性(compatibility)及び焼付
荷重向上に貢献するということである。
さらに、上記論文では「適合性」という概念と
は相反する概念として、クランクシヤフトと軸の
ミスアラインメントを許容する「順応性」
(conformability)がうたわれており、ケイ素含
有アルミニウム合金は順応性が低いから、オーバ
レイを具備する必要があると述べられている。し
たがつて、従来アルミニウム系合金軸受にて、ケ
イ素粒子寸法に着目した考え方はあつても、オー
バレイなしで軸受として使用可能なアルミニウム
系合金の提供に成功した例はなかつた。また、ケ
イ素粒子が硬質であるため直接相手材(鋼製クラ
ンクシヤフト等)を研摩し、なじみ性又は適合性
に直接影響を与えることは知られていたが、その
粒子寸法の制御は軟質マトリツクス中に微細な硬
質粒子を均一に分散させるという理論を応用して
なされていたものであり、この理論自体は、例え
ば出願人の先願特許出願にも内在しており、摺動
材料の分野では良く知られた一つの理論である。
本発明は上述したような従来技術とは全く異な
る理論に基づいており、なじみ性及び焼付荷重が
従来のものより飛躍的に高められており且つオー
バレイなしで軸受として使用可能な鉛含有アルミ
ニウム系合金軸受を提供したものである。
本発明に係るアルミニウム系合金軸受は、重量
百分率で、0.1ないし10%の鉛、カドミウム、イ
ンジウム、タリウム及びビスマスからなる第1群
の少なくとも1種の元素、及び0.5ないし11%の
マンガン、鉄、ジルコニウム、チタン、アンチモ
ン、ニツケル、モリブデン、コバルト、クロム及
びニオブからなる第2群の少なくとも1種の元素
を含有し、残部が実質的にアルミニウムからなる
合金が裏金に接着されており、前記第2群の元素
からなる又はこれを含む粒子の長径で測定した寸
法が5ミクロン以上40ミクロンの該粒子が前記合
金の任意の部分で3.56×10-2mm2当り5個以上存在
しており、且つオーバレイなしで使用可能なアル
ミニウム系合金軸受である。
以下、本発明の構成要件を化学組成、粒子及び
軸受構造の順に説明する。
まず、化学組成について述べると、鉛、カドミ
ウム、インジウム、タリウム、及びビスマス(以
下これらの全元素を指すときは鉛等と称する)は
アルミニウム合金の性質を軟質に変化させ、軸受
として適する潤滑性能及びなじみ性を与える元素
である。ここでなじみ性とは、前述したように当
業界に一般的に受けいられている技術的概念によ
つて定義され、これを以下一般的概念のなじみ性
と称する。鉛等の含有量が10%を越えると、一般
的概念のなじみ性及び潤滑性は向上するが、アル
ミニウム合金の硬さが低下し、鉛等の含有量が
0.1%未満ではアルミニウム合金が軸受合金とし
ては硬質になり過ぎ、よつて一般的概念のなじみ
性が劣化する。鉛等の含有量を0.1ないし10%の
範囲でどのように定めるかは、用途に応じて適宜
決定されるべきものであるが、一般的には軸受に
加わる荷重、すなわち内燃機関のピストンを経由
して加えられる爆発荷重が大きいときは、含有量
を低く、例えば1〜4%、小さいときは鉛等の含
有量を高くするのが良い。一方、高荷重・高速回
転のために軸受の焼付が概念される場合は、鉛等
の含有量を高く、例えば4〜8%にすれば良い。
なお、鉛等含有アルミニウム合金の疲労強度及び
高温硬さを軸受として要求される性能に対して十
分なものとするためには、鉛等の粒子が合金中に
微細に分散していることが望ましい。しかしなが
ら特に鉛は微細分散が困難な元素である。だが、
本発明では後述の特殊なじみ作用が軸受性能を実
質的に担つているから、スズ粒子の微細化はさほ
ど重視しなくても内燃機関用軸受として使用上の
支障がなくなつた。好ましい鉛等の含有量は1〜
6%である。
マンガン、鉄、モリブデン、ニツケル、ジルコ
ニウム、チタン、コバルト、アンチモン、クロム
及びニオブ(以下、総称する場合はマンガン等と
称する)は後述する特殊なじみ作用をもたらす元
素であり、その含有量が0.5%未満では該なじみ
作用が不足し、一方11%を越えると軸受合金の該
なじみ作用が向上されず、また疲労強度、焼付荷
重が低下する傾向がある、好ましいマンガン等の
含有量は1〜9%である。2種以上添加の場合の
各元素の下限は0.1%が好ましい。
続いてマンガン等の添加により生成する粒子に
ついて説明する。マンガン等は、単独の金属形態
で晶出するかあるいはマンガン等とアルミニウム
の金属間化合物の形態で晶出するか、晶出物の成
分を分析することはできない。しかしながら、鉛
等含有アルミニウム合金にマンガン等を加えるこ
とによつて、鉛等の軟質粒子以外の硬質粒子が晶
出する。したがつて、マンガン等からなる又はこ
れを含む粒子が晶出するが、以下これを硬質粒子
と称する。
本発明者の発見によると硬質粒子の長径寸法
(以下単に寸法と称する)が5ミクロン未満では
現れない特殊なじみ作用が5ミクロン以上で現
れ、鉛等含有アルミニウム合金の軸受性能を飛躍
的に向上させる。なお、この作用は該5ミクロン
以上の硬質粒子が3.56×10-2mm2当り5個以上存在
しているときに認められ、多ければ多いほど顕著
になる。一方、硬質粒子の寸法が40ミクロンを越
えると、鉛等含有アルミニウム合金の疲労強度が
低下する。この面から本発明の合金マンガン等の
含有量上限は上述のように11%である。
また、本発明において粗大な硬質粒子、すなわ
ち寸法が5ミクロン以上の硬質粒子、を構成要件
として規定している意義は、消極的にいえば微細
硬質粒子は軸受性能向上に寄与しないということ
であり、この点で従来のアルミニウム系合金軸受
の軸受性能のとらえ方とは異なつている。すなわ
ち、出願人の先願では微細なケイ素粒子が既述の
ようにスズ粒子の形態制御を介して間接的に軸受
性能を向上させ、且つ上記SAE誌の論文では理
論的にも実験データ的にも微細なケイ素粒子の方
が良好な軸受性能が得られている。しかしなが
ら、本発明では粗大な硬質粒子の方が疲労強度以
外の性能は格段に良好である。そこで、粗大な硬
質粒子の意義を積極的に述べるならば、かかる硬
質粒子を含む軸受の相手材である軸の加工精度に
よる微細な凹凸、あるいは軸が球状黒鉛鋳鉄であ
る場合にラツピングにより表面部より黒鉛が脱落
して生じた凹部の周囲を、硬質粒子が平坦化し以
つて、軸受と軸の間で常に油膜が介在した状態で
これらの良好な摺動が起こるものと考えられる。
なお、従来軸受の分野ではスズ等の硬質な成分が
アルミニウム合金のなじみ性に寄与するものとの
考え方が一般的であり、硬質粒子が直接相手材の
凹凸の平坦化に寄与するとの考え方は、発明者が
知る限り、上記SAE誌以外にはないので、硬質
粒子によるなじみ作用を特殊なじみ作用と称す
る。しかしながら、このようなケイ素粒子の作用
はSAE誌では順応性を向上させるものであり、
適合性には逆効果であり、結果として軸受はオー
バレイを備える必要があると強調されている。こ
こで、適合性とは軸と軸受との加工上のミスアラ
イメントに適合しうる軸受の性能であるから、な
じみ性(一般的概念によるなじみ性)と意味上等
価である。したがつて、SAE誌にも、その他発
明者が知る限りの論文発表においても、硬質粒子
が相手軸の表面凹凸を削りとり、平坦化しなじみ
性に寄与するという考え方はなく、まして粗大な
硬質粒子が軸受中に多く存在する方が焼付荷重そ
の他の軸受性能が向上するという実験データも発
表されていない。したがつて、上記特殊なじみ作
用は本発明の特色であり、従来の一般的概念のな
じみ作用のみをもつ材料と比較すると、軸受性
能、例えば焼付荷重、が格段に向上している。尤
も本発明の合金は鉛等を含有しているが一般的概
念のなじみ作用による硬質金属の相手材表面への
埋収は、特殊なじみ作用により相手材の凹凸を平
坦化してから実現されると考えられ、結果として
は両者の総合により自動車内燃機関の軸受として
優れた性能が発揮されると信じられる。
上述のような特殊なじみ作用が特に有効である
のは相手材軸が球状黒鉛鋳鉄又は片状黒鉛鋳鉄の
場合である。球状黒鉛鋳鉄は内燃機関のクランク
シヤフト等の軸の低コスト化を図るために従来の
鍛造軸に代わつて使用される傾向にあるが、軸の
研磨加工時に黒鉛粒子が軸表面から削りとられ、
脱落した球状黒鉛の粒子の跡は多くの凹部又は窩
状部となつており、その周りの鉄基マトリツクス
は加工硬化した鋭いばり又はエツジとなつてい
る。このばり等が軸受表面の異常摩耗を起こすと
いう問題が従来のスズ及び/又は鉛含有アルミニ
ウム系軸受用合金にはあつた。本発明者の研究に
よると、硬質のアルミニウムマトリツクスがばり
により削りとられ凹部中にとりこまれ、またこの
アルミニウムと軸受材料のアルミニウム順応性不
足によりが非常に凝着し易いので、直ぐに焼付が
生じることも判明した。しかしながら、本発明に
よる鉛等含有アルミニウム合金では粗大な硬質粒
子がばりを削りとり、凹部の周りを滑かな状態と
する。この結果、焼付が高荷重まで起こらないこ
ととなり、耐焼付性が格段と向上する。
上述の軸受合金の厚さは0.1〜1mm、特に0.2〜
0.5mmが好ましい。必要に応じ軸受合金上に防錆
油を塗布する。
本発明の軸受は上述のような理由により耐焼付
性に優れているためにオーバレイを施こさない構
造である。軸受合金は例えば圧接などの方法によ
り、下地層を介して又は介さずして接着される。
本発明の鉛等含有アルミニウム合金は、(A)0.1
ないし2%、好ましくは0.2ないし1%の銅及び
マグネシウムの少なくとも1種(以下銅等と称す
る)をさらに含有するものであつてもよい。
銅等はスズ含有アルミニウム合金の高温硬さを
高め、軸受の疲労強度向上に寄与する。銅等の含
有量が0.1%未満では高温硬さ改善効果が少な
く、2.0%を越えると鉛等含有アルミニウム合金
が硬くなり過ぎ圧延性が害されるとともに、耐焼
付性及び潤滑油に対する耐食性も低下する。この
銅等の高温硬さ改善効果はクロムと共存すると一
層顕著になり、200℃強の温度でも硬さはあまり
低下しない。
0.5%未満の含有量のマンガン及び/又はクロ
ムが含有される場合、あるいは粗大硬質粒子とな
らないマンガン及び/又はクロムが一部存在する
場合は、マンガン及び/又はクロムは微細析出物
となる。微細析出物として析出するマンガン及び
クロムは、鉛等含有アルミニウム系合金の硬さを
上昇せしめ、また高温での軟化を防止又は緩和
し、高温での鉛等の粒子の粗大化を招かないとい
う効果を奏する。クロム及びマンガンは一部がア
ルミニウム地に固溶しその固溶強化をもたらし、
また再結晶軟化温度を高温側にずらし、さらに加
工硬化性を増大させる。再結晶軟化温度の上昇
は、内燃機関の軸受がさらされる高温域(オイル
パンの温度で130〜150℃)でも軸受合金の高温強
度が良好に保たれることにつながり、耐疲労強度
及び耐負荷能力上望ましい結果が得られる。クロ
ム及びマンガンのアルミニウムマトリツクスに固
溶しない部分はAl―Cr(Mn)金属間化合物とし
て極めて微細に析出し、鉛等の粒子が軸受合金の
裏金への接着時の焼鈍あるいは内燃機関内の高温
により粗大化するのを防止する。このAl―Cr
(Mn)金属間化合物の硬さはビツカース硬さで約
370であり、硬質粒子の硬さと比較して著しく小
さい。このような硬さの差がある故に、Al―Cr
(Mn)金属間化合物は鉛等の粒子の粗大化を防止
して一般的概念のなじみ作用を向上させ、一方硬
質粒子は相手材軸の凹凸を平坦化して特殊なじみ
作用を実現するものと考えられる。上述のような
クロム及びマンガンの利点がもたらされるために
は0.1%の含有量が必要である。
続いて、硬質粒子の寸法及び個数の制御方法に
ついて説明する。Al―Mn等の二元合金ではその
状態図から判断して硬質粒子は合金元素の種類に
より次の如きものであると思われる。
Mn:MnAl4及びMnAl6
Fe:FeAl3
Mo:MoAl3
Ni:NiAl3
Zr:ZrAl3
Co:Co2Al9
Ti:TiAl3
Sb:AlSb
Nb:NbAl3
上記金属間化合物と考えられる鋳造中の晶出形
態は多様であり、これらの晶出物は鋳造合金を圧
延し軸受としての必要な厚さに圧延される過程で
分断され、寸法が小さくなる。このような鋳造―
圧延法により得られた硬質粒子はほとんどが5ミ
クロン以下であり、10ミクロン以下のものも稀に
はあるがその単位面積当りの個数は少なく、針状
又は扁平形状である。また圧延の後に中間焼鈍が
行なわれるが、その温度は再結晶温度程度に選択
されるので、その中間焼鈍によつては硬質粒子が
ほとんど粗大化しない。上述のような鋳造―圧延
(中間焼鈍)により所定の厚さの軸受合金を得た
後に、これを裏金鋼板に圧接し、この際Al―Fe
の金属間化合物生成温度未満、例えば350℃、に
て圧接後焼鈍するのが従来のスズ及び/又は鉛含
有アルミニウム合金軸受の製造方法であつた。こ
の350℃の温度でも通常の保持時間では硬質粒子
は殆んど粗大化せず、結果としてほとんどが5ミ
クロン未満の微細硬質粒子が最終軸受製品中に存
在していた。これに対して、本発明による相大硬
質粒子を5ミクロン以上40ミクロン以下のものが
3.56×10-2mm2当り5個以上存在させるためには、
上記圧接前に軸受合金を350〜550℃の高温熱処理
を、保持時間を調節して、することが最も有効で
あることが分かつた。すなわち、圧接前の熱処理
工程以外での硬質粒子寸法制御は効果が低く、例
えば圧延工程での加熱温度、圧下率等の制御、又
は鋳造工程での冷却速度制御あるいは中間焼鈍等
によつては硬質粒子の寸法制御が至難であり、そ
うかといつて圧接時又圧接後の熱処理ではAl―
Fe金属間化合物の生成、あるいは完成直前の軸
受のアルミニウム合金内での鉛等の低融点成分の
溶解等が起こり、これらは軸受性能、特に一般的
概念のなじみ性上望ましくない結果をもたらす。
上述の如き圧接前の高温熱処理によるとマンガ
ン等の含有量により硬質粒子の概略晶出個数がど
のように変化するかを第1表に示す。第1表は横
カラムに示された寸法の立方体の硬質粒子とし
て、すべてのマンガン等が晶出したと仮定して計
算したものである。実際には5ミクロン未満の硬
質粒子は圧接前の高温熱処理により5ミクロン以
上の硬質粒子として大半が粗大化される。したが
つて、第1表は本発明アルミニウム合金中の硬質
粒子制御方法資料として有用である。
The present invention relates to an aluminum alloy bearing, and more specifically, to an improvement in a lead-containing aluminum alloy bearing used as a bearing for an internal combustion engine. The above-mentioned aluminum alloys containing tin are generally used as bearings by being pressure-welded to a backing steel plate. Lead, like tin, is a soft element;
Like tin, it imparts bearing performance to aluminum alloys, but it is difficult to disperse uniformly in the alloy, so it is not used as frequently as an alloying element. However, tin and lead have physical properties in common, and are common in that they provide conformability as one of bearing performance. Note that conformability here refers to the surface of the bearing that is designed to ensure that the bearing and shaft always come into contact with each other with a film of lubricating oil interposed between them, relative to the machining accuracy of the shaft, which is the mating material of the bearing. refers to the property of a bearing that is partially scraped or worn away by the shaft during the early years of bearing use. The conventional method has been to incorporate tin or lead into aluminum, thereby creating compatibility. A few words about the manufacturing method of bearings.In order to increase the adhesive strength between the bearing alloy formed by casting and rolling and the backing steel plate, it is essential to annealing the bearing alloy after pressure welding. The process is carried out for a long time at a temperature lower than that at which Al--Fe intermetallic compounds are formed. However, when tin and/or lead-containing aluminum alloys are exposed to high temperatures during the above-mentioned annealing, aluminum crystal grains and tin or lead crystals become coarse in the alloy structure, resulting in tin and/or lead-containing aluminum alloys. The drawback was that the high-temperature hardness and fatigue strength of the steel were reduced. Therefore, according to recent technology, a proposal has been made to add a metal harder than tin or lead to the aluminum alloy to strengthen the aluminum base and improve bearing performance. Referring to examples of tin and/or lead-aluminum alloys, e.g.
3.5-4.5% Sn - 3.5-4.5% Si - 0.7-1.3% Cu - Remaining
Al, 4-8%Sn-1-2%Si-0.1-2%Cu-
0.1~1%Ni-Remaining Al, 3~40%Sn-0.1~5%Pb
-0.2-2%Cu-0.1-3%Sb-0.2-3%Si-
0.01~1%Ti-Remaining Al, 15~30%Sn-0.5~2%Cu
-Remaining Al, and 1~23%Sn-1.5~9%Pb-0.3~
Aluminum-based bearing alloys containing tin (hereinafter referred to as multi-component bearing alloys) such as 3% Cu-1 to 8% Si-remaining Al have been used. However, in recent years, internal combustion engines for automobiles have been required to be smaller and have higher output, and in addition, it has become necessary to install blow-by gas reduction devices to purify exhaust gas. It got even worse. In other words, as bearings in recent years have become smaller and used under higher loads and higher temperatures than before, conventional multi-component bearing alloys are prone to fatigue failure and abnormal wear, which is one of the causes of troubles in automobile internal combustion engines. I was getting used to it. Fatigue phenomena in metal materials generally occur when the material is used for a long period of time, but in modern internal combustion engines, bearings can break due to fatigue even when high-load operation continues for a relatively short period of time. sometimes happened. This is because the lubricating oil in the internal combustion engine becomes hot during high-load operation, and for example, the temperature of the lubricating oil in the oil pan reaches 130 to 150°C. It is predicted that the bearing alloys will be sliding at considerably high temperatures, and as a result, the high-temperature hardness of conventional multi-component bearing alloys will rapidly decrease, and tin will melt or move, which is the cause of the decrease in fatigue strength. The inventor of the present application believes that this has become the case. The applicant of the present application proposed an aluminum alloy containing 2.5 to 25% tin, 0.5 to 8% zinc, and 0.1 to less than 1.0% chromium by weight percentage. In addition, the applicant of the present application has stated in Japanese Patent Application No. 1985-852 that the weight percentage is 2.5 to 25%.
of tin, 0.5 to 8% zinc and 1 to 7%
silicon, chromium, manganese, nickel, iron, zirconium, molybdenum, cobalt, tungsten, titanium, antimony, niobium, vanadium,
An aluminum-based alloy containing at least one element selected from the group consisting of cerium, barium, and calcium, with the balance substantially consisting of aluminum has also been proposed. In these aluminum alloys, silicon, chromium, etc. are extremely fine hard Al.
-Cr is dispersed in the matrix as an intermetallic compound and has the effect of mainly preventing the coarsening of tin particles, and most of the zinc is dissolved in the matrix and strengthens the matrix, thereby improving the fatigue resistance of the alloy. Strength and high temperature hardness are improved. The bearing performance of these aluminum-based alloys is improved by the synergistic effect of both matrix reinforcement and fine dispersion reinforcement compared to the case of either single action. In the above-mentioned Japanese Patent Application Nos. 55-851 and 1985-852, it is understood that soft tin particles achieve excellent conformability. The above-mentioned approach to compatibility is an established way of thinking in the industry, and the idea of imparting compatibility to bearings using soft tin and/or lead particles is in line with the conventional way of thinking in the industry. It can be said that it is an extension of that. Furthermore, regarding the effects of chromium, silicon, etc., these particles
In other words, there is no technical idea that particles such as chromium, silicon, etc. directly improve compatibility, but by controlling the morphology of soft tin and/or lead particles. It can be said that the description of the above patent application is consistent with the technical idea of indirectly improving the conformability of tin and/or lead-containing aluminum alloys and the technical means described below. The present inventor conducted detailed research on the bearing performance of lead-containing aluminum alloys, and found that it is possible to dramatically improve bearing performance, especially conformability and seizure resistance, by using technical ideas and means that are completely different from conventional thinking. They discovered this and completed the present invention. As will be described in detail later, this technical means is to control the size of hard particles in tin-containing aluminum alloys, but in Si-Al = elemental alloys, hard particles precipitate or crystallize (hereinafter referred to as crystallization for convenience). ) is a well-known fact, and papers and patents discussing the distribution of silicon particles in aluminum-based bearing alloys for internal combustion engines have also been published. According to JP-A No. 55-82756, in the production of bearing alloys, an aluminum alloy consisting of 5 to 15% silicon, 5% or less copper, 10% or less bismuth, and 1% or less lead is heated or cold. By rolling or extruding, a cross-section reduction of at least 90% is obtained, so that the silicon particles in the alloy are present in the form of finely divided particles rather than in a continuous skeleton-like network. An invention has been proposed to do so. It is also stated that this bearing alloy is useful for both bearings with and without soft plating (overlay). The key point of this invention is that coarse silicon particles in a cast state are finely dispersed by rolling or the like, and the annealing performed as necessary after rolling is limited to the extent that the processed structure is restored, thereby maintaining the fine morphology of the silicon particles. Furthermore, since this invention specifies that a high silicon content of approximately 10% is preferable, it has been found to be meaningful to finely disperse silicon particles, which grow quite large in aluminum alloys with high silicon content. There is. However, according to the research of the present inventor, in bearing alloys for internal combustion engines used without overlay, if the content of hard particle crystallized elements such as silicon is high, the fatigue strength of the bearings decreases.
It has been found that there is a drawback in that the load capacity is significantly reduced especially when the bearing slides under repeated loads from the shaft. Furthermore, for the purpose of improving bearing performance, methods such as rolling that finely disperse silicon particles do not provide satisfactory results. That is, aluminum alloys for bearings are usually manufactured by giving a cast material a predetermined size by a method such as rolling, and the silicon particles are divided by this rolling or the like. It has been found that bearing performance can be significantly improved by not only dividing these hard particles such as silicon, but also by making these particles coarser in some cases and controlling the number of hard particles with a given size to a given number. .
By the way, in the above publication, an experiment was conducted on an aluminum alloy containing 11% silicon, and it is stated that the size of silicon fine particles is 0.0001 inch (2.5 microns) to 0.001 inch (25 microns), but the size per unit area is There is no mention of the number. Aluminum from SAE Technical Paper Series
Based Crankshaft Beasings for the High
Paper entitled Speed Diesel Engine (February 1981)
23rd-27th, Detroit) is a paper published by the same person as the above publication, and 11% of the papers were published by the same person as the above publication.
The seizure load for Si-1%Cu-Al alloy is listed. According to this, silicon particles with a size exceeding 17 microns have a density of 8.7 microns per unit area (mm 2 ).
It is explained that if there are 6 × 10 6 particles, there will be a lot of variation in the seizure load, while if there are 0.6 × 10 6 particles larger than 17 microns, the seizure load will be higher and less variable. This and other theoretical explanations are that the fine dispersion of hard silicon particles in the aluminum matrix contributes to improved compatibility and seize load. Furthermore, in the above paper, the concept of ``adaptability'' is contradictory to the concept of ``compatibility,'' which refers to the concept of ``adaptability,'' which allows for misalignment between the crankshaft and the shaft.
It is stated that since silicon-containing aluminum alloys have low conformability, it is necessary to provide an overlay. Therefore, although there has been a concept focused on silicon particle size in conventional aluminum alloy bearings, there has been no example of success in providing an aluminum alloy that can be used as a bearing without an overlay. In addition, it was known that silicon particles are hard and therefore directly abrade the mating material (steel crankshaft, etc.), directly affecting conformability or compatibility. This was done by applying the theory that fine hard particles are uniformly dispersed in the material, and this theory itself is inherent in, for example, the applicant's earlier patent application, and is well known in the field of sliding materials. This is one well-known theory. The present invention is based on a theory that is completely different from the prior art as described above, and is a lead-containing aluminum alloy that has significantly higher conformability and seizure load than the prior art and can be used as a bearing without an overlay. The company provided bearings. The aluminum alloy bearing according to the present invention contains at least one element of the first group consisting of 0.1 to 10% lead, cadmium, indium, thallium, and bismuth, and 0.5 to 11% manganese, iron, An alloy containing at least one element of a second group consisting of zirconium, titanium, antimony, nickel, molybdenum, cobalt, chromium, and niobium, the remainder being substantially aluminum, is adhered to the back metal; There are 5 or more particles per 3.56 x 10 -2 mm 2 in any part of the alloy, and the size of the particles is 5 microns or more and 40 microns as measured by the major axis of the particles consisting of or containing elements of the group, and This is an aluminum alloy bearing that can be used without an overlay. Hereinafter, the constituent elements of the present invention will be explained in the order of chemical composition, particles, and bearing structure. First, regarding the chemical composition, lead, cadmium, indium, thallium, and bismuth (hereinafter referred to as lead, etc. when referring to all of these elements) change the properties of the aluminum alloy to soft, and improve the lubricating performance and properties suitable for bearings. It is an element that provides familiarity. Familiarity here is defined by a technical concept that is generally accepted in the industry as described above, and is hereinafter referred to as familiarity of the general concept. When the content of lead, etc. exceeds 10%, the general concept of conformability and lubricity improves, but the hardness of the aluminum alloy decreases, and the content of lead, etc.
If it is less than 0.1%, the aluminum alloy becomes too hard as a bearing alloy, and the general concept's compatibility deteriorates. How to determine the content of lead, etc. in the range of 0.1 to 10% should be determined appropriately depending on the application, but in general, it is determined based on the load applied to the bearing, that is, through the piston of the internal combustion engine. When the explosive load applied is large, the content should be low, for example 1 to 4%, and when it is small, the content of lead etc. should be high. On the other hand, if the bearing is likely to seize due to high load and high speed rotation, the content of lead etc. may be increased, for example 4 to 8%.
In order to ensure that the fatigue strength and high-temperature hardness of aluminum alloys containing lead, etc. are sufficient for the performance required for bearings, it is desirable that particles of lead, etc. be finely dispersed in the alloy. . However, lead in particular is an element that is difficult to finely disperse. However,
In the present invention, since the special running-in effect described later is substantially responsible for the bearing performance, there is no problem in using the bearing as a bearing for an internal combustion engine even if miniaturization of tin particles is not so important. The preferred content of lead etc. is 1~
It is 6%. Manganese, iron, molybdenum, nickel, zirconium, titanium, cobalt, antimony, chromium, and niobium (hereinafter collectively referred to as manganese, etc.) are elements that bring about the special conforming effect described below, and their content is less than 0.5%. If the content exceeds 11%, the breaking-in effect of the bearing alloy will not be improved, and the fatigue strength and seizure load will tend to decrease.The preferred content of manganese, etc. is 1 to 9%. be. When two or more elements are added, the lower limit of each element is preferably 0.1%. Next, particles generated by adding manganese or the like will be explained. Manganese and the like crystallize either in the form of a single metal or in the form of an intermetallic compound of manganese and aluminum, and it is not possible to analyze the components of the crystallized product. However, by adding manganese or the like to an aluminum alloy containing lead or the like, hard particles other than soft particles such as lead crystallize. Therefore, particles consisting of or containing manganese etc. are crystallized, and these are hereinafter referred to as hard particles. According to the findings of the present inventors, a special running-in effect that does not appear when the major axis dimension (hereinafter simply referred to as the dimension) of the hard particles is less than 5 microns appears when it is 5 microns or more, which dramatically improves the bearing performance of aluminum alloys containing lead, etc. . This effect is observed when 5 or more hard particles of 5 microns or more are present per 3.56 x 10 -2 mm 2 , and becomes more pronounced as the number increases. On the other hand, when the size of the hard particles exceeds 40 microns, the fatigue strength of the aluminum alloy containing lead etc. decreases. From this point of view, the upper limit of the content of manganese, etc. in the alloy of the present invention is 11% as described above. In addition, the significance of specifying coarse hard particles, that is, hard particles with a size of 5 microns or more as a component in the present invention, is that, in a negative sense, fine hard particles do not contribute to improving bearing performance. In this respect, it differs from the conventional approach to understanding the bearing performance of aluminum-based alloy bearings. In other words, in the applicant's previous application, fine silicon particles indirectly improve bearing performance through the control of the shape of tin particles, as mentioned above, and in the above-mentioned SAE journal paper, both theoretically and experimental data However, finer silicon particles provide better bearing performance. However, in the present invention, coarse hard particles have much better performance other than fatigue strength. Therefore, if we were to actively discuss the significance of coarse hard particles, we would be concerned with minute irregularities caused by the machining accuracy of the shaft, which is the mating material of the bearing containing such hard particles, or by lapping of the surface when the shaft is made of spheroidal graphite cast iron. It is thought that the hard particles flatten the periphery of the recesses created by more graphite falling off, and that good sliding occurs between the bearing and the shaft with an oil film always present.
In addition, in the field of conventional bearings, it is common to think that hard components such as tin contribute to the conformability of aluminum alloys, and the idea that hard particles directly contribute to flattening the unevenness of the mating material is As far as the inventors know, there is no such thing other than the above-mentioned SAE magazine, so the conforming effect by hard particles is referred to as a special conforming effect. However, this effect of silicon particles is considered by SAE to improve flexibility,
Compatibility is adversely affected, and as a result it is emphasized that the bearing must be provided with an overlay. Here, compatibility is the performance of a bearing that can adapt to machining misalignment between the shaft and the bearing, so it is semantically equivalent to conformability (compatibility based on a general concept). Therefore, neither in the SAE journal nor in any other published papers to the best of the inventor's knowledge, there is no idea that hard particles scrape away the surface irregularities of the mating shaft, flatten it, and contribute to conformability. There has also been no published experimental data showing that bearing performance such as seizure load is improved when a large amount of is present in a bearing. Therefore, the above-mentioned special running-in effect is a feature of the present invention, and bearing performance, such as seizure load, is significantly improved when compared with materials that only have a conventional running-in effect in the general concept. Of course, the alloy of the present invention contains lead, etc., but the embedding of the hard metal into the surface of the mating material due to the general concept of conforming action is achieved after the unevenness of the mating material is flattened by a special conforming action. As a result, it is believed that the combination of both will provide excellent performance as a bearing for an automobile internal combustion engine. The above-mentioned special running-in effect is particularly effective when the mating shaft is made of spheroidal graphite cast iron or flaky graphite cast iron. Spheroidal graphite cast iron tends to be used in place of conventional forged shafts to reduce the cost of shafts for internal combustion engine crankshafts, etc., but graphite particles are scraped off from the shaft surface during shaft polishing.
The traces of the fallen spheroidal graphite particles are many depressions or cavities, and the iron-based matrix around them is work-hardened sharp burrs or edges. Conventional aluminum-based bearing alloys containing tin and/or lead have had the problem that these burrs cause abnormal wear on the bearing surface. According to the inventor's research, the hard aluminum matrix is scraped off by the burr and incorporated into the recess, and this aluminum and the bearing material's lack of conformability make it very easy to stick together, resulting in seizure immediately. It also became clear that However, in the lead-containing aluminum alloy according to the present invention, the coarse hard particles scrape away the burrs and make the area around the recesses smooth. As a result, seizure does not occur even under high loads, and seizure resistance is significantly improved. The thickness of the bearing alloy mentioned above is 0.1~1mm, especially 0.2~
0.5mm is preferred. Apply anti-rust oil to the bearing alloy if necessary. The bearing of the present invention has a structure that does not require an overlay because it has excellent seizure resistance for the reasons described above. The bearing alloy is bonded with or without an underlayer by a method such as pressure welding. The lead-containing aluminum alloy of the present invention has (A) 0.1
It may further contain at least one of copper and magnesium (hereinafter referred to as copper, etc.) in an amount of 2% to 2%, preferably 0.2 to 1%. Copper and the like increase the high-temperature hardness of tin-containing aluminum alloys and contribute to improving the fatigue strength of bearings. If the content of copper, etc. is less than 0.1%, the effect of improving high-temperature hardness will be small, and if it exceeds 2.0%, the aluminum alloy containing lead, etc. will become too hard, impairing rolling properties, and will also reduce seizure resistance and corrosion resistance to lubricating oil. . The high-temperature hardness improvement effect of copper, etc. becomes even more pronounced when it coexists with chromium, and the hardness does not decrease much even at temperatures above 200°C. If less than 0.5% of manganese and/or chromium is contained, or if some manganese and/or chromium does not form coarse hard particles, the manganese and/or chromium will form fine precipitates. Manganese and chromium, which precipitate as fine precipitates, increase the hardness of aluminum-based alloys containing lead, etc., and also prevent or reduce softening at high temperatures, and have the effect of not causing coarsening of lead, etc. particles at high temperatures. play. Some of the chromium and manganese dissolve in solid solution in the aluminum base, resulting in solid solution strengthening.
In addition, the recrystallization softening temperature is shifted to a higher temperature side, and work hardenability is further increased. An increase in the recrystallization softening temperature means that the high-temperature strength of the bearing alloy is maintained well even in the high-temperature range to which internal combustion engine bearings are exposed (oil pan temperature of 130 to 150 degrees Celsius), resulting in improved fatigue resistance and load resistance. Achieves desired results in terms of performance. The portions of chromium and manganese that are not solidly dissolved in the aluminum matrix precipitate extremely finely as Al-Cr (Mn) intermetallic compounds, and particles such as lead are formed during annealing when bonding the bearing alloy to the backing metal or at high temperatures in internal combustion engines. This prevents it from becoming coarser. This Al-Cr
The hardness of (Mn) intermetallic compounds is approximately the Bitkers hardness.
370, which is significantly smaller than the hardness of hard particles. Because of this difference in hardness, Al-Cr
(Mn) intermetallic compounds are thought to prevent coarsening of particles such as lead and improve the general conforming effect, while hard particles flatten the unevenness of the shaft of the mating material and achieve a special conforming effect. It will be done. A content of 0.1% is required to provide the benefits of chromium and manganese as described above. Next, a method for controlling the size and number of hard particles will be explained. Judging from the phase diagram of binary alloys such as Al-Mn, the hard particles are thought to be of the following types depending on the type of alloying element. Mn:MnAl 4 and MnAl 6 Fe:FeAl 3 Mo:MoAl 3 Ni:NiAl 3 Zr:ZrAl 3 Co:Co 2 Al 9 Ti:TiAl 3 Sb:AlSb Nb:NbAl 3The above intermetallic compounds are considered to be present during casting. The forms of crystallization are diverse, and these crystallized substances are broken up and reduced in size during the process of rolling the cast alloy to the required thickness for the bearing. Casting like this
Most of the hard particles obtained by the rolling method are 5 microns or less, and although some are rarely 10 microns or less, their number per unit area is small and they are acicular or flat. Further, intermediate annealing is performed after rolling, and the temperature is selected to be approximately the recrystallization temperature, so that the hard particles hardly become coarse due to the intermediate annealing. After obtaining a bearing alloy of a predetermined thickness by casting and rolling (intermediate annealing) as described above, this is pressure-welded to a backing steel plate.
The conventional method for manufacturing tin- and/or lead-containing aluminum alloy bearings has been to perform annealing after pressure welding at a temperature below the intermetallic compound formation temperature, for example, 350°C. Even at this temperature of 350°C, the hard particles hardly became coarse during the normal holding time, and as a result, fine hard particles, most of which were less than 5 microns, were present in the final bearing product. On the other hand, the phase-large hard particles according to the present invention have a diameter of 5 microns or more and 40 microns or less.
In order to have more than 5 pieces per 3.56×10 -2 mm 2 ,
It has been found that it is most effective to subject the bearing alloy to high-temperature heat treatment at 350 to 550° C. by adjusting the holding time before the above-mentioned pressure welding. In other words, controlling the hard particle size in a process other than the heat treatment process before pressure welding is less effective; for example, controlling the heating temperature, rolling reduction rate, etc. in the rolling process, cooling rate control in the casting process, intermediate annealing, etc. It is extremely difficult to control the size of the particles, and because of this, Al-
The formation of Fe intermetallic compounds or the dissolution of low melting point components such as lead in the aluminum alloy of the bearing immediately before completion occur, and these have undesirable consequences in terms of bearing performance, especially in terms of general concept compatibility. Table 1 shows how the approximate number of crystallized hard particles changes depending on the content of manganese etc. in the high-temperature heat treatment before pressure bonding as described above. Table 1 is calculated assuming that all manganese etc. are crystallized as cubic hard particles having the dimensions shown in the horizontal column. In reality, most of the hard particles smaller than 5 microns are coarsened into hard particles larger than 5 microns by high-temperature heat treatment before pressure bonding. Therefore, Table 1 is useful as a material for controlling hard particles in the aluminum alloy of the present invention.
【表】
マンガン等の含有量が0.5%の場合は第1表よ
り硬質粒子の個数は340である。マンガン等の一
部が5ミクロン未満の硬質粒子として晶出して
も、5個以上の確保は容易である。
5ミクロンの硬質粒子はマンガン等の含有量に
より340ないし3500個の個数となる。実際の軸受
合金中の5ミクロン〜10ミクロンの硬質粒子個数
はこれより少ないが、圧接前の高温熱処理により
5ミクロン以上の粗大粒子の5ミクロン未満の微
細粒子に対する割合が高められる。そして、例え
ば5〜10ミクロン粗粒硬質粒子の割合を高めるた
めに350〜450℃の圧接前高温熱処理を利用するこ
とができる。
マンガン等の含有量が3%の場合の硬質粒子個
数は、第1表によれば、マンガン等が完全に40ミ
クロンの粒子として晶出したとすれば4個であ
る。仮にこれを1個とすれば5〜30ミクロン硬質
粒子と40ミクロンの硬質粒子を共に晶出させるこ
とが可能である。したがつて本発明の鉛等含有ア
ルミニウム合金のマンガン等の含有量の範囲内
で、しかも5ないし40ミクロンの寸法の範囲内で
より粗大硬質粒子を特定個数析出させることがで
きる。この好ましい例は、次のとおりである。
(イ) 10ミクロンを越える硬質粒子5個以上
(ロ) 20ミクロン以上の硬質粒子 2個以上
(ハ) 30ミクロン以上の硬質粒子 1個以上
次に本発明による硬質粒子の形態について説明
する。一般に圧延された鉛等含有アルミニウム合
金中の硬質粒子は針状を呈し、圧延方向に長手方
向が一致する場合が多いが、本発明の高温熱処理
を実施すると硬質粒子は比較的圧延直交方向の巾
が大きくなり扁平又は塊状となる。この硬質粒子
は軸受の水平面、すなわち相手材軸と接する面で
見たときに扁平又は塊状を呈する。好ましい形状
は水平面及びこれに垂直な面で見て塊状である。
そして、5ミクロン以上の硬質粒子は殆んどが塊
状であり、扁平形状が少なく、針状は所定面積で
殆んどない。このような塊状形状が特殊なじみ作
用上極めて有効である。
さらに、鉛等含有アルミニウム系合金の組織観
察法としては機械加工変質最表面を除き上記水平
面で行ない硬質粒子の寸法を測定するものとす
る。
以下、説明される実施例では、オリンパス光学
工業(株)製万能金属顕微鏡 PMG型(乾板撮影
装置付)を使用して、手板型プロセスフイルム
(富士写真フイルム(株)製)に該合金の組織を撮影
した。撮影視野周辺はピント、像の乱れが多いた
めに、周辺部を除いた89×64mm2の部分の面積=
3.56×10-2mmについて粒子の個数を測定した。か
かる個数測定法によれば、測定視野面積をその都
度換算する必要がなくなり、換算ミスはなくな
る。
該合金中には硬質粒子の他にクロムの金属化合
物、鉛等の粒子その他の粒子(相)が存在してい
るが、これらから硬質を識別するためには、金属
顕微鏡で見た時に、エツチング法如何を問わず
鉛、クロム等は白色を呈し、硬質粒子は灰色(濃
灰色)を呈することに依れば良い。
以下、本発明を実施例により説明する。これら
の実施例においては特に断わらない限り、軸受又
は軸受合金の製造方法は次のとうりであつた。
所定組成のアルミニウム合金を連続鋳造により
厚さ15mmの板とし、鋳造板をピーリングした後連
続的に6mmの板厚に冷間圧延した。次に中間焼鈍
(350℃)を行ない、続く冷間圧延によりアルミニ
ウム合金薄板を得た。続いて350〜550℃の範囲で
所望の大きさの硬質粒子を得るように高温熱処理
し、続いてアルミニウム合金薄板を230℃に予熱
し同様に予熱した裏金鉄板に圧接しそして350℃
で圧接のための焼鈍を行ない軸受を完成した。軸
受合金自体の性能を試験する場合には圧接以降の
工程を省略した。
実施例 1
第2表は供試材アルミニウム合金の組成及び硬
質粒子分布を示している。表中及び以下特に断わ
らない限り、硬質粒子の個数は3.56×10-2mm2当り
の個数を指す。[Table] When the content of manganese etc. is 0.5%, the number of hard particles is 340 from Table 1. Even if a part of manganese etc. crystallizes as hard particles of less than 5 microns, it is easy to secure 5 or more particles. The number of 5 micron hard particles is 340 to 3500 depending on the content of manganese etc. Although the number of hard particles of 5 to 10 microns in actual bearing alloys is smaller than this, the ratio of coarse particles of 5 microns or more to fine particles of less than 5 microns is increased by high-temperature heat treatment before pressure welding. For example, in order to increase the proportion of coarse hard particles of 5 to 10 microns, high-temperature heat treatment at 350 to 450° C. can be used before pressure welding. According to Table 1, the number of hard particles when the content of manganese, etc. is 3% is 4, if manganese, etc. is completely crystallized as particles of 40 microns. If this number is one, it is possible to crystallize both 5 to 30 micron hard particles and 40 micron hard particles. Therefore, it is possible to precipitate a specific number of coarser hard particles within the range of the content of manganese, etc. in the lead-containing aluminum alloy of the present invention, and within the size range of 5 to 40 microns. A preferred example of this is as follows. (a) 5 or more hard particles of 10 microns or more (b) 2 or more hard particles of 20 microns or more (c) 1 or more hard particles of 30 microns or more Next, the morphology of the hard particles according to the present invention will be explained. Generally, hard particles in rolled aluminum alloys containing lead, etc. exhibit a needle shape, and the longitudinal direction often coincides with the rolling direction, but when the high temperature heat treatment of the present invention is performed, the hard particles have a relatively narrow width in the direction perpendicular to the rolling direction. becomes large and flat or lumpy. These hard particles have a flat or block shape when viewed from the horizontal surface of the bearing, that is, the surface in contact with the shaft of the mating material. A preferred shape is block-like when viewed in a horizontal plane and in a plane perpendicular thereto.
Most of the hard particles having a diameter of 5 microns or more are in the form of lumps, have few flat shapes, and have almost no needle shapes in a given area. Such a blocky shape is extremely effective in terms of special conforming effect. Furthermore, as a method for observing the structure of an aluminum-based alloy containing lead, etc., the dimensions of the hard particles are measured on the above-mentioned horizontal plane, excluding the mechanically altered outermost surface. In the examples described below, a PMG type universal metallurgical microscope (equipped with a dry plate photographing device) manufactured by Olympus Optical Industries, Ltd. is used to examine the structure of the alloy on a hand plate type process film (manufactured by Fuji Photo Film Co., Ltd.). was photographed. Since there is a lot of disturbance in focus and image around the photographic field of view, the area of 89 x 64 mm 2 excluding the peripheral area =
The number of particles was measured for 3.56×10 −2 mm. According to such a counting method, there is no need to convert the measurement visual field area each time, and conversion errors are eliminated. In addition to hard particles, the alloy contains metal compounds of chromium, particles of lead, and other particles (phases). Regardless of the method, it is sufficient to rely on the fact that lead, chromium, etc. exhibit a white color, and hard particles exhibit a gray (dark gray) color. The present invention will be explained below using examples. In these Examples, unless otherwise specified, the manufacturing method of the bearing or bearing alloy was as follows. An aluminum alloy of a predetermined composition was continuously cast to form a plate with a thickness of 15 mm, and after peeling, the cast plate was continuously cold-rolled to a plate thickness of 6 mm. Next, intermediate annealing (350°C) was performed, followed by cold rolling to obtain an aluminum alloy thin plate. Subsequently, high temperature heat treatment is performed in the range of 350 to 550°C to obtain hard particles of the desired size, and then the aluminum alloy thin plate is preheated to 230°C, pressure welded to a similarly preheated back metal plate, and then heated to 350°C.
The bearing was completed by annealing for pressure welding. When testing the performance of the bearing alloy itself, the steps after pressure welding were omitted. Example 1 Table 2 shows the composition and hard particle distribution of the aluminum alloy test material. Unless otherwise specified in the table and below, the number of hard particles refers to the number per 3.56×10 −2 mm 2 .
【表】
第2表の供試材を以下の条件による焼付荷重測
定に付した。
条件 A
テスター:ジヤーナル型焼付試験機
条 件 :相手材軸―FCD70
潤滑油種―SAE10W―30
軸表面粗さ―0.6〜0.8μm Rz
潤滑油温―160±2.5℃
軸回転数―1000rpm
軸径―52mm
軸硬度―Hv200―300
荷重―50Kg/cm2/30min
間隔で同量増加
軸受粗さ―1〜1.8μm Rz
軸受径―52mm
焼付荷重測定結果を第1図に示す。第1図にお
いて横軸は供試材の最大寸法硬質粒子の個数であ
る。供試材は、第1表の四つの範囲の最大粒子寸
法によりAからDまでの四つの群に分けられて、
第1図に示されている。この図より次の事実が明
らかとなる。
(イ) 焼付荷重は最大寸法マンガン粒子の個数によ
り左右され、より小さい寸法の硬質粒子の個数
には殆んど影響されない。
(ロ) 最大寸法硬質粒子個数とともに焼付荷重は増
大する。但しA群の供試材の焼付荷重増加はほ
とんどなく、より大きな寸法の硬質粒子を含む
その他の群の焼付荷重が著しく増大が顕著であ
る。
以上の事実(イ)及び(ロ)より、本発明では最低5ミ
クロンの硬質粒子が5個以上あることに限定した
ものである。
実施例 2
第3表(1)に示す供試材について焼付荷重及び疲
労強度を測定した。疲労強度の測定条件は次のと
うりであつた。
条件 B
テスター:交番荷重試験機
条 件 :相手材軸―S55C
潤滑油種―SAE10W―30
軸表面粗さ―0.8μm Rz
潤滑油温―140±2.5℃
潤滑油圧―5Kg/cm2
軸回転数―3000rpm
軸径―52φ
軸硬度―Hv500―600
軸回転回数―107回
軸受粗さ―1〜1.8μm Rz
軸受径―52×20mm[Table] The test materials in Table 2 were subjected to seizure load measurements under the following conditions. Conditions A Tester: Journal type seizure tester Conditions: Compatible shaft - FCD70 Lubricating oil type - SAE10W - 30 Shaft surface roughness - 0.6 to 0.8μm Rz Lubricating oil temperature - 160±2.5℃ Shaft rotation speed - 1000rpm Shaft diameter - 52mm Shaft hardness - Hv200 - 300 Load - 50Kg/cm 2 Increased by the same amount at 30min intervals Bearing roughness - 1 to 1.8μm Rz Bearing diameter - 52mm The seizure load measurement results are shown in Figure 1. In FIG. 1, the horizontal axis represents the number of maximum dimension hard particles of the sample material. The test materials were divided into four groups from A to D according to the maximum particle size in the four ranges shown in Table 1.
It is shown in FIG. The following facts become clear from this figure. (a) The seizure load is influenced by the number of manganese particles with the largest size, and is almost unaffected by the number of hard particles with smaller sizes. (b) The seizure load increases with the number of hard particles of maximum size. However, there is almost no increase in the seizure load for the test materials of Group A, and there is a significant increase in the seizure load for the other groups containing hard particles with larger dimensions. Based on the above facts (a) and (b), the present invention is limited to having at least 5 hard particles of at least 5 microns. Example 2 Seizure load and fatigue strength were measured for the test materials shown in Table 3 (1). The conditions for measuring fatigue strength were as follows. Conditions B Tester: Alternating load tester Conditions: Mating material shaft - S55C Lubricating oil type - SAE10W - 30 Shaft surface roughness - 0.8μm Rz Lubricating oil temperature - 140±2.5℃ Lubricating oil pressure - 5Kg/cm 2- axis rotation speed - 3000rpm Shaft diameter - 52φ Shaft hardness - Hv500 - 600 Number of shaft rotations - 10 7 times Bearing roughness - 1 to 1.8μm Rz Bearing diameter - 52 x 20mm
【表】
測定結果を第3表(2)に示す。これより、本発明
によると焼付荷重が向上しまた疲労強度は粗大な
硬質粒子により劣化しないことが分かる。なお、
第3表(1)中で5ミクロン未満の硬質粒子個数は測
定してない。また疲労試験の相手材軸は機械構造
用炭素鋼(S55C)であり、本発明材料は相手材
鉄系材料中の炭素が黒鉛として存在しない場合に
も有効であることが分かる。[Table] The measurement results are shown in Table 3 (2). From this, it can be seen that according to the present invention, the seizure load is improved and the fatigue strength is not deteriorated by coarse hard particles. In addition,
In Table 3 (1), the number of hard particles less than 5 microns was not measured. Furthermore, the material to be used in the fatigue test was carbon steel for machine structures (S55C), and it can be seen that the material of the present invention is effective even when carbon does not exist in the form of graphite in the ferrous material.
【表】【table】
【表】
実施例 3
マンガン含有量が7%の供試材について実施例
2と同様な実験を行なつたところ、第4表(1)及び
(2)に示すように同様な結果が得られた。[Table] Example 3 When the same experiment as in Example 2 was conducted on a sample material with a manganese content of 7%, Table 4 (1) and
Similar results were obtained as shown in (2).
【表】【table】
【表】【table】
【表】
実施例 4
マンガン含有量が11%の供試材につき実施例2
と同様に実験を行なつた結果を第5表(1)及び(2)に
示す。この実験結果は実施例2とほぼ同様であ
る。[Table] Example 4 Example 2 for a test material with a manganese content of 11%
The results of experiments conducted in the same manner as above are shown in Tables 5 (1) and (2). The experimental results are almost the same as in Example 2.
【表】【table】
【表】
実施例 5
第6表に示す供試材の如く硬質粒子分布を一定
にマンガン等のすべての元素についてその含有量
を変化させた場合の焼付荷重を測定した結果(条
件A)を第2図に示した。なお、第2図には、4
%Pb、0.5%Cu、0.4%Cr及びMn等を含有するア
ルミニウム合金を圧接前の焼鈍温度を350℃と
し、硬質粒子の寸法制御を行なわない供試材を比
較例(COMP)として示した。第2図より本発明
の供試材は比較例のものよりも焼付荷重が著しく
高いことが分かる。また本発明の供試材ではマン
ガン等が約4%にて焼付荷重が飽和する。
既述のように焼付荷重は本発明のマンガン等の
含有量範囲では最大硬質粒子の個数及び寸法によ
り支配されるが、この下限5ミクロンの粒子寸法
個数を一定に制御した本実施例ではマンガン等の
含有量による多少の影響がみられる。これは5ミ
クロン未満の微細硬質粒子によるものと考えられ
る。
本発明の供試材の疲労強度を条件Bで測定した
結果を第3図に示す。第3図よりマンガン等の含
有量が5%を越えると疲労強度が低下しているこ
とが分かる。これも上記微細粒子によるものと考
えられる。[Table] Example 5 The results of measuring the seizure load (condition A) when the hard particle distribution was kept constant and the contents of all elements such as manganese were varied as in the test materials shown in Table 6 are shown below. It is shown in Figure 2. In addition, in Figure 2, 4
A comparative example (COMP) of an aluminum alloy containing % Pb, 0.5% Cu, 0.4% Cr, Mn, etc. was annealed at 350°C before pressure welding, and the hard particle size was not controlled. From FIG. 2, it can be seen that the test material of the present invention has a significantly higher seizure load than that of the comparative example. Further, in the sample material of the present invention, the seizure load is saturated at about 4% manganese etc. As mentioned above, the seizure load is controlled by the number and size of the maximum hard particles in the content range of manganese, etc. of the present invention, but in this example, where the number of particles with a lower limit of 5 microns was controlled to be constant, manganese, etc. Some influence can be seen depending on the content of This is thought to be due to fine hard particles of less than 5 microns. The results of measuring the fatigue strength of the test material of the present invention under condition B are shown in FIG. From FIG. 3, it can be seen that when the content of manganese etc. exceeds 5%, the fatigue strength decreases. This is also considered to be due to the fine particles mentioned above.
【表】
実施例 6
鉛等、銅等その他の種類を変化させて、実施例
2、3、4及び5と同様の実験を行なつた。この
結果を第7表(1)及び(2)に示す。これらの表より各
種任意成分について、十分な焼付荷重及び疲労強
度が得られることが分かる。[Table] Example 6 Experiments similar to Examples 2, 3, 4, and 5 were conducted by changing other types of lead, copper, etc. The results are shown in Table 7 (1) and (2). From these tables, it can be seen that sufficient seizure load and fatigue strength can be obtained with various arbitrary components.
【表】【table】
【表】【table】
【表】
第10図に、供試材44の顕微鏡組織写真(倍率
400倍)を示す。Pb等の低融点金属は組織上不定
形であり、圧延方向に多少長くなつている。一方
Crは硬質であり、片状、球状、多角形状の粒子
形状となる。したがつて、Pb等とCrは容易に判
別できる。
実施例 7
第2表の供試材を用いて以下に述べる実験を行
なつた。
(1) 潤滑油油温の影響
C2の供試材につき条件Aにおいて80℃及び
140℃の油温にて焼付荷重を測定した。比較材
(COMP)として4%Pb―1%Cu―Al合金を供
試材として同様の測定を行なつた。この結果を
第4図に示す。比較材と本発明の材料では高温
下の焼付荷重に極端な差があることが分かる。
(2) 油温140℃における相手材(鍛造軸及び球状
黒鉛鋳鉄)の影響
C2の供試材及び20%Sn―1%Cu―Al合金を
比較供試材とし、条件A(但し油温140℃)に
て焼付荷重を測定した結果を第5図に示す。本
発明と比較例の供試材では相手材が鍛造材の場
合には焼付荷重に大きな差はないが、球状黒鉛
鋳鉄(FCD70)ではかなりの差が現われる。
(3) 耐摩耗性
C2の供試材につき以下の条件にて摩耗量を
測定した。
条件 C
テスター:混合潤滑試験機
条 件 :相手材軸―FCD70
軸表面粗さ―0.8〜0.9μm Rz
潤滑油種―流動パラフイン
軸回転数―100rpm
軸径―40φ(mm)
軸硬度―Hv200〜300
荷重―25Kg
比較のためにマンガン等を含有しない6%Pb
―1%Cu―Al合金の摩耗量を条件Cにより測定
した。摩耗量測定結果を第6図に示す。比較材
(COMP)は時間とともに摩耗が進行するが本発
明材料は約1時間後にはほとんど摩耗量が増大し
ていない。このような差異について発明者は次の
ように考える。比較材では主として軟質の鉛相が
相手材軸により削りとられることにより、絶えず
比較材は摩耗している。本発明材料では軸受表面
に存在している粗大硬質粒子が摺動初期の段階
で、相手軸の表面粗さの突出部及び表面に存在す
る球状黒鉛周辺のバリ等のエツジ部を摩耗させ
(削り取り)、軸を軸受にとつてより良い摺動状態
となる軸表面に変化させることにより、流体潤滑
に近い状態とし、軸―軸受の直接接触を妨げてお
り、これが軸受の摩耗進行を停止させているもの
と想定している。
実施例 8
4%Pb、0.5%Cu、0.4%Crを含有し、マンガ
ンの含有量を変化させたアルミニウム合金を冷間
圧延後の冷間圧延板の焼鈍を省略した他は本発明
の供試材と同様の製法により軸受を製造した。こ
の軸受の摩耗量を条件Gで測定した結果を第7図
に(COMP)として示す。また試料番号25―33の
供試材の摩耗量も同図に示す。
条件 G
テスター:混合潤滑試験機
条 件 :相手材軸―FCD70
軸表面粗さ―0.8〜0.9μm Rz
潤滑油種―流動パラフイン
軸回転数―100rpm
軸径―40φ(mm)
軸硬度―Hv200〜300
荷重―25Kg
テスト時間―5Hrs
第7図より、本発明により高温熱処理を行ない
マンガン等粒子寸法の制御を行うと鉛等含有アル
ミニウム合金の耐摩耗性が著しく向上することが
分かる。
実施例 9
5%Mn、4%Pb、0.5%Cu、及び0.4%Crを含
有するアルミニウム合金の圧接前焼鈍温度を以下
のように変化させた場合の水平面顕微鏡組織スケ
ツチ図をそれぞれの図面に示す。
270℃(比較例低温熱処理)第8図
500℃加熱後徐冷 第9図
本発明の高温熱処理により硬質粒子が扁平から
塊状に変化している。[Table] Figure 10 shows a microscopic structure photograph of sample material 44 (magnification
400x). Low melting point metals such as Pb have an amorphous structure and are somewhat elongated in the rolling direction. on the other hand
Cr is hard and has flaky, spherical, and polygonal particle shapes. Therefore, Pb etc. and Cr can be easily distinguished. Example 7 The following experiment was conducted using the test materials shown in Table 2. ( 1 ) Influence of lubricating oil temperature
The seizure load was measured at an oil temperature of 140°C. Similar measurements were conducted using a 4% Pb-1% Cu-Al alloy as a comparative material (COMP). The results are shown in FIG. It can be seen that there is an extreme difference in the seizure load at high temperatures between the comparative material and the material of the present invention. (2) Influence of mating materials (forged shaft and spheroidal graphite cast iron) at oil temperature of 140°C C2 specimen and 20%Sn-1%Cu-Al alloy were used as comparison specimens, and condition A (oil temperature Figure 5 shows the results of measuring the seizure load at 140°C. There is no significant difference in seizure load between the test materials of the present invention and comparative examples when the mating material is a forged material, but a considerable difference appears when using spheroidal graphite cast iron (FCD70). (3) Wear resistance The amount of wear was measured for the C2 test material under the following conditions. Conditions C Tester: Mixed lubrication tester Conditions: Mating material shaft - FCD70 Shaft surface roughness - 0.8 to 0.9μm Rz Lubricating oil type - Liquid paraffin Shaft rotation speed - 100rpm Shaft diameter - 40φ (mm) Shaft hardness - Hv200 to 300 Load: 25Kg For comparison, 6%Pb does not contain manganese etc.
- The amount of wear of the 1% Cu-Al alloy was measured under Condition C. The wear amount measurement results are shown in Figure 6. The comparative material (COMP) wears out progressively over time, but the material of the present invention shows almost no increase in wear amount after about one hour. The inventor thinks about such a difference as follows. In the comparative material, the soft lead phase is mainly scraped off by the shaft of the mating material, and as a result, the comparative material is constantly worn. In the material of the present invention, the coarse hard particles existing on the bearing surface wear out (scrape off) the protruding parts of the surface roughness of the mating shaft and the edges such as burrs around the spherical graphite existing on the surface at the initial stage of sliding. ), by changing the shaft surface to provide better sliding conditions when the shaft is attached to the bearing, it creates a state close to fluid lubrication and prevents direct contact between the shaft and the bearing, which stops the progress of bearing wear. It is assumed that there are. Example 8 A test sample of the present invention, except that annealing of the cold-rolled plate after cold-rolling an aluminum alloy containing 4% Pb, 0.5% Cu, and 0.4% Cr and varying the manganese content was omitted. The bearing was manufactured using the same manufacturing method as the material. The wear amount of this bearing was measured under condition G and the results are shown as (COMP) in FIG. The figure also shows the amount of wear of the specimens with sample numbers 25-33. Conditions G Tester: Mixed lubrication tester Conditions: Mating material shaft - FCD70 Shaft surface roughness - 0.8 to 0.9μm Rz Lubricating oil type - Liquid paraffin Shaft rotation speed - 100rpm Shaft diameter - 40φ (mm) Shaft hardness - Hv200 to 300 Load: 25Kg Test time: 5Hrs From FIG. 7, it can be seen that the wear resistance of aluminum alloys containing lead, etc. is significantly improved by performing high-temperature heat treatment according to the present invention and controlling the particle size of manganese, etc. Example 9 Horizontal plane microscopic structure sketches when the annealing temperature before pressure welding of an aluminum alloy containing 5% Mn, 4% Pb, 0.5% Cu, and 0.4% Cr is changed as follows are shown in each drawing. . 270°C (low-temperature heat treatment in comparative example) Fig. 8 Slow cooling after heating at 500°C Fig. 9 Hard particles change from flat to lumpy due to the high-temperature heat treatment of the present invention.
第1図は焼付荷重と最大寸法マンガン粒子の個
数の関係を示すグラフ、第2図は、焼付荷重とマ
ンガンの含有量の関係を示すグラフ、第3図は疲
労強度とマンガンの含有量の関係を示すグラフ、
第4図は焼付荷重と潤滑油温の関係を示すグラ
フ、第5図は相手材軸の種類による焼付荷重変化
を示す図、第6図は摩耗量の時間変化を示すグラ
フ、第7図は摩耗量とマンガン含有量(比較材)
及びマンガン等含有量(本発明供試材)の関係を
示すグラフ、第8図及び第9図は供試材アルミニ
ウム合金の顕微鏡組織スケツチ図、第10図は供
試材44の金属顕微鏡組織写真である。
図面中COMPは比較材、その他の数字及び符号
は供試材の番号を指する。
Figure 1 is a graph showing the relationship between seizure load and the number of maximum size manganese particles, Figure 2 is a graph showing the relationship between seizure load and manganese content, and Figure 3 is the relationship between fatigue strength and manganese content. A graph showing,
Figure 4 is a graph showing the relationship between seizure load and lubricating oil temperature, Figure 5 is a graph showing changes in seizure load depending on the type of mating shaft, Figure 6 is a graph showing changes in wear amount over time, and Figure 7 is a graph showing the change in wear amount over time. Amount of wear and manganese content (comparison material)
and manganese etc. content (sample material of the present invention), Figures 8 and 9 are sketch diagrams of the microscopic structure of the aluminum alloy specimen, and Figure 10 is a photograph of the metallographic microstructure of specimen material 44. It is. In the drawing, COMP refers to the comparative material, and other numbers and symbols refer to the numbers of the sample materials.
Claims (1)
ウム、インジウム、タリウム及びビスマスからな
る第1群の少なくとも1種の元素、及び0.5ない
し11%のマンガン、鉄、ジルコニウム、チタン、
アンチモン、ニツケル、モリブデン、コバルト、
クロム及びニオブからなる第2群の少なくとも1
種の元素を含有し、残部が実質的にアルミニウム
からなる合金が裏金に接着されており、前記第2
群の元素からなる又はこれを含む粒子の長径で測
定した寸法が5ミクロン以上40ミクロン以下の該
粒子が前記合金の任意の部分で3.56×10-2mm2当り
5個以上存在しており、且つオーバレイなしで使
用可能なアルミニウム系合金軸受。 2 前記第2群の元素からなる又はこれを含む粒
子の寸法が10ミクロン以上且つ40ミクロン以下の
該粒子が該合金の任意の部分で3.56×10-2mm2当り
5個以上存在している特許請求の範囲第1項記載
のアルミニウム系合金軸受。 3 前記第1群の元素の含有量が1〜6%であり
且つ前記第2群の元素の含有量が1〜9%である
特許請求の範囲第1項又は第2項記載のアルミニ
ウム系合金軸受。 4 軸受相手材の軸が球状黒鉛鋳鉄又は片状黒鉛
鋳鉄である特許請求の範囲第1項から第3項まで
の何れか1項に記載のアルミニウム系合金軸受。 5 5ミクロンないし40ミクロンの粒子寸法をも
つ前記粒子が、水平面、すなわち相手材軸と接す
る面と平行な面で見て、塊状である特許請求の範
囲第4項記載のアルミニウム系合金軸受。 6 重量百分率で、0.1ないし10%の鉛、カドミ
ウム、インジウム、タリウム及びビスマスからな
る第1群の少なくとも1種の元素、0.5ないし11
%のマンガン、鉄、ジルコニウム、チタン、アン
チモン、ニツケル、モリブデン、コバルト、クロ
ム及びニオブからなる第2群の少なくとも1種の
元素及び0.1ないし2%の銅及びマグネシウムか
らなる第3群の少なくとも1種の元素を含有し、
残部が実質的にアルミニウムからなる合金が裏金
に接着されており、前記第2群の元素からなる又
はこれを含む粒子の長径で測定した寸法が5ミク
ロン以上40ミクロン以下の該粒子が前記合金の任
意の部分で3.56×10-2mm2当り5個以上存在してお
り、且つオーバレイなしで使用可能なアルミニウ
ム系合金軸受。[Claims] 1. At least one element of the first group consisting of lead, cadmium, indium, thallium and bismuth in a weight percentage of 0.1 to 10%, and 0.5 to 11% of manganese, iron, zirconium, titanium. ,
antimony, nickel, molybdenum, cobalt,
At least one of the second group consisting of chromium and niobium
An alloy containing a seed element and the remainder being substantially aluminum is adhered to the backing metal, and the second
There are 5 or more particles per 3.56 x 10 -2 mm 2 in any part of the alloy, the size of which is 5 microns or more and 40 microns or less as measured by the major axis of particles consisting of or containing elements of the group, An aluminum alloy bearing that can be used without an overlay. 2 Particles consisting of or containing the elements of the second group having a size of 10 microns or more and 40 microns or less are present in any part of the alloy in 5 or more particles per 3.56 × 10 -2 mm 2 An aluminum alloy bearing according to claim 1. 3. The aluminum alloy according to claim 1 or 2, wherein the content of the first group of elements is 1 to 6%, and the content of the second group of elements is 1 to 9%. bearing. 4. The aluminum alloy bearing according to any one of claims 1 to 3, wherein the shaft of the bearing mating material is made of spheroidal graphite cast iron or flake graphite cast iron. 5. The aluminum-based alloy bearing according to claim 4, wherein the particles having a particle size of 55 microns to 40 microns are in the form of a lump when viewed in a horizontal plane, that is, a plane parallel to the plane in contact with the axis of the mating material. 6 At least one element of the first group consisting of lead, cadmium, indium, thallium and bismuth, 0.1 to 10% by weight, 0.5 to 11
% manganese, iron, zirconium, titanium, antimony, nickel, molybdenum, cobalt, chromium and niobium, and at least one element of the third group consisting of 0.1 to 2% copper and magnesium. Contains the elements of
An alloy, the remainder of which consists essentially of aluminum, is adhered to the back metal, and the particles of the alloy are made of or contain an element of the second group and have a dimension measured by the major axis of 5 microns or more and 40 microns or less. Aluminum alloy bearings that have 5 or more bearings per 3.56×10 -2 mm 2 in any part and can be used without an overlay.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16338581A JPS5864334A (en) | 1981-10-15 | 1981-10-15 | Aluminum alloy bearing |
PCT/JP1982/000411 WO1983001463A1 (en) | 1981-10-15 | 1982-10-15 | Aluminum alloy bearing |
DE3249133T DE3249133C2 (en) | 1981-10-15 | 1982-10-15 | Process for producing an aluminium-based alloy for bearings and use of said alloy |
GB08316181A GB2121435B (en) | 1981-10-15 | 1982-10-15 | Aluminium alloy bearing |
AU89952/82A AU8995282A (en) | 1981-10-15 | 1982-10-15 | Aluminum alloy bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16338581A JPS5864334A (en) | 1981-10-15 | 1981-10-15 | Aluminum alloy bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5864334A JPS5864334A (en) | 1983-04-16 |
JPS6212297B2 true JPS6212297B2 (en) | 1987-03-18 |
Family
ID=15772878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16338581A Granted JPS5864334A (en) | 1981-10-15 | 1981-10-15 | Aluminum alloy bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5864334A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2197879B (en) * | 1986-11-26 | 1990-05-23 | Glyco Metall Werke | Laminate material for plain bearing elements with an anti-friction layer of an aluminium-based bearing material |
-
1981
- 1981-10-15 JP JP16338581A patent/JPS5864334A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5864334A (en) | 1983-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4340649A (en) | Aluminum-tin base bearing alloy and composite | |
US4789607A (en) | Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein | |
KR100505928B1 (en) | Aluminum Bearing Alloy | |
JP3472284B2 (en) | Aluminum bearing alloy | |
WO1981002025A1 (en) | Aluminum-based alloy bearing | |
US5536587A (en) | Aluminum alloy bearing | |
JPS6156305B2 (en) | ||
JPS6144140B2 (en) | ||
JPS6242983B2 (en) | ||
JPS6160906B2 (en) | ||
JPS6212298B2 (en) | ||
JPH0114990B2 (en) | ||
GB2066846A (en) | Aluminum-tin base bearing alloy | |
JPS6212297B2 (en) | ||
JPS6144141B2 (en) | ||
GB2067220A (en) | Aluminium-tin base bearing alloy | |
GB2067219A (en) | Aluminium-tin base bearing alloys | |
JPS6254853B2 (en) | ||
JPS6140297B2 (en) | ||
JPS6143421B2 (en) | ||
JPS5814866B2 (en) | Al↓-Sn bearing alloy and bearing device | |
JPS6136062B2 (en) | ||
JPS6140298B2 (en) | ||
GB2066845A (en) | Aluminum-tin bearing alloy | |
JPS5818985B2 (en) | Al-Sn bearing alloy |