JPS60170583A - Method and device for monitoring welding strength in spot welding - Google Patents

Method and device for monitoring welding strength in spot welding

Info

Publication number
JPS60170583A
JPS60170583A JP2519484A JP2519484A JPS60170583A JP S60170583 A JPS60170583 A JP S60170583A JP 2519484 A JP2519484 A JP 2519484A JP 2519484 A JP2519484 A JP 2519484A JP S60170583 A JPS60170583 A JP S60170583A
Authority
JP
Japan
Prior art keywords
circuit
welding
voltage
value
energization time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2519484A
Other languages
Japanese (ja)
Other versions
JPH0242033B2 (en
Inventor
Yoshiaki Nagasawa
長沢 義明
Akira Matsuyama
松山 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Shiyatai KK
Original Assignee
Toyota Auto Body Co Ltd
Toyota Shiyatai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Shiyatai KK filed Critical Toyota Auto Body Co Ltd
Priority to JP2519484A priority Critical patent/JPS60170583A/en
Publication of JPS60170583A publication Critical patent/JPS60170583A/en
Publication of JPH0242033B2 publication Critical patent/JPH0242033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To obtain always stable weld strength even if various factors fluctuate by monitoring the weld strength from the integrated value of the effective components of the voltage between chips with respect to individual weld points and interrupting the welding current when the target value is attained. CONSTITUTION:The decreased voltage of the voltage between chips in set time is obtd. by subtracting the output signal from an adder circuit 17 and the output signal from a min. voltage memory circuit 25 in the 3rd arithmetic circuit 36. The average value of the number of weld points is determined from the value set in a setting circuit 38 for the number of welding. The resulted average value of the decreased voltage and the value set in a setting circuit 39 for a target value are compared in an arithmetic circuit 40 and if the compared value is lower than the value set in the circuit 39, the welding current is increased from the next welding cycle and if said value is higher than the set value, the welding current is decreased by which the welding current is feedback-controlled to the stable current value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶接ガン電極に印加される溶接電圧を検出
し、との電圧から溶接電流値と通電時間を制御して、溶
接強度に影響を与える種々の要因が変動しても、常に最
適な溶接強度を得られるようにした、スポット溶接にお
ける溶接強度監視方法およびその装置に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] This invention detects the welding voltage applied to the welding gun electrode, controls the welding current value and energization time from the voltage, and influences the welding strength. The present invention relates to a welding strength monitoring method in spot welding and an apparatus therefor, which makes it possible to always obtain optimal welding strength even if various factors that affect the welding strength vary.

〔従来技術〕[Prior art]

スポット溶接において良質の製品を得るためには、被溶
接物の材質の如伺にかかわらず、過電流の監視と、その
電流の通電時間の管理を行なうようにしている。しかし
ながら従来の制御は、経験、的に決められた条件のエネ
ルギを溶接部に加えたのみで、必ずしも溶接結果と結び
つかないものであった。すなわち、電流が流れていても
、チップ摩耗、分流、加圧力変動、被溶接材の合い状態
等の種々の要因に変動があれば、溶接不良が発生するこ
とになる。そこでこれらの要因の影響をできる限シ少な
くするために、電流値、通電時間とも余裕を持たせて設
定しているのが現状である。このため電力ロスが多く、
またチップの寿命が短かくなる欠点があった。
In order to obtain a high-quality product in spot welding, it is necessary to monitor overcurrent and control the current application time, regardless of the material of the workpiece. However, conventional control only applies energy under empirically determined conditions to the welding area, and is not necessarily linked to the welding result. That is, even if current is flowing, welding defects will occur if there are variations in various factors such as tip wear, shunt flow, pressure fluctuations, and the fit of the materials to be welded. Therefore, in order to reduce the influence of these factors as much as possible, current values and energization times are set with some margin. Therefore, there is a lot of power loss,
Another drawback was that the life of the chip was shortened.

〔発明の目的〕[Purpose of the invention]

この発明は従来のものが有するこのような欠点を除去し
たスポット溶接における溶接強度監視方法とその装置を
提供することを目的とするものである。
The object of the present invention is to provide a method and apparatus for monitoring weld strength in spot welding, which eliminates the above-mentioned drawbacks of the conventional methods.

〔発明の構成〕[Structure of the invention]

この発明のうち絹1の発明の構成は、溶接ガン電極に印
加される溶接電圧を検出し、この検出された溶接電圧か
ら誘導ノイズ成分および溶接ガン電極抵抗成分を除去し
、これら両成分を除去した後の有効溶接電圧と通電時間
中におけるその最小電圧との電圧差を通電時間中積分し
、その積分値と基準設定値とを比較して前記積分値が基
準設定値に達し九時溶接電流を遮断するとともに、設定
通電時間内における電圧低下を検出し、該電圧低下によ
る電圧差を設定されたスポット溶接回数の平均値として
算出し、この電圧差をあらかじめスパッタが発生する限
界付近に設定された溶接電流に基づくピーク電圧からの
目標電圧差と比較して、前記電圧差が所定の範囲から外
れた場合に次のスポット溶接時の電流値を制御するよう
にしたことである。
The configuration of Silk 1 of this invention detects the welding voltage applied to the welding gun electrode, removes the induced noise component and the welding gun electrode resistance component from the detected welding voltage, and removes both of these components. The voltage difference between the effective welding voltage and the minimum voltage during the energization time is integrated during the energization time, and the integrated value is compared with the reference setting value, and when the integrated value reaches the reference setting value, the welding current is determined. At the same time, it detects a voltage drop within the set energization time, calculates the voltage difference due to the voltage drop as the average value of the set number of spot welding, and sets this voltage difference in advance near the limit where spatter occurs. The current value for the next spot welding is controlled when the voltage difference is out of a predetermined range, compared with a target voltage difference from the peak voltage based on the welding current.

次にこの発明のうちの第2の発明の構成は、溶接ガン電
極に印加される電圧を検出する電圧検出回路と、この電
圧検出回路の出力側に順次接続される誘導ノイズ成分除
去回路および溶接ガン電極抵抗成分除去回路と、これら
の除去回路により非有効成分を除去した後の有効溶接電
圧を通電時間中積分する積分回路と、通電時間中におけ
る最小電圧を記憶する最小電圧メモリ回路と、通電時間
を記憶する通電時間メモリ回路と、これらのメモリ回路
に記憶された最小電圧と通電時間とを乗算する第1の演
算回路と、この第1の演算回路からの出力を前記積分回
路からの出力から減算する第2の演算回路と、この第2
の演算回路からの出力値とあらかじめ設定された基準値
とを比較測定する比較測定回路と、この比較測定回路か
らの出力により被溶接物への通電時間を制御する通電時
間制御回路と、前記溶接ガン電極抵抗成分除去回路の出
力から前記最小電圧メモリ回路の出力を減算し、これを
あらかじめ設定した溶接回数で除して平均値を出し、こ
の値をあらかじめ実験的にめた目標値で減算する溶接電
流フィードバック回路と、この溶接電流フィードバック
回路からの出力信号によシ被溶接物への通電電流を制御
する電流制御回路とを(jiffえたものとしたことで
ある。
Next, the configuration of the second invention of the present invention includes a voltage detection circuit that detects the voltage applied to the welding gun electrode, an inductive noise component removal circuit that is sequentially connected to the output side of this voltage detection circuit, and a welding A gun electrode resistance component removal circuit, an integration circuit that integrates the effective welding voltage during the energization time after removing ineffective components by these removal circuits, a minimum voltage memory circuit that stores the minimum voltage during the energization time, and a minimum voltage memory circuit that stores the minimum voltage during the energization time. An energization time memory circuit that stores time, a first arithmetic circuit that multiplies the minimum voltage and energization time stored in these memory circuits, and an output from the first arithmetic circuit that is used as an output from the integration circuit. a second arithmetic circuit for subtracting from
a comparison measurement circuit that compares and measures the output value from the arithmetic circuit and a preset reference value; an energization time control circuit that controls the energization time to the workpiece based on the output from the comparison measurement circuit; Subtract the output of the minimum voltage memory circuit from the output of the gun electrode resistance component removal circuit, divide this by a preset number of welding to obtain an average value, and subtract this value by a target value determined experimentally in advance. The welding current feedback circuit and the current control circuit that controls the current flowing to the workpiece in accordance with the output signal from the welding current feedback circuit are jiffed.

〔実施例〕〔Example〕

次に、この発明のうちの第2の発明の一実施例を第1図
について説明する。この装置を作動させたとき、第1の
発明が実現することになる。
Next, an embodiment of the second aspect of the present invention will be described with reference to FIG. When this device is operated, the first invention will be realized.

1は溶接トランスであって、この溶接トランス1の1次
コイル2には、後に説明する通電時間制御回路3と電流
制御回路4とが直列に接続されて電源端子5に接続され
ている。溶接トランス1の2次コイル乙には溶接カン電
極7,8が接続されており、その先端間には被溶接物9
゜10が挾持され、溶接電流が流れることになる。
Reference numeral 1 denotes a welding transformer, and a primary coil 2 of the welding transformer 1 is connected in series with an energization time control circuit 3 and a current control circuit 4, which will be described later, and connected to a power supply terminal 5. Welding can electrodes 7 and 8 are connected to the secondary coil B of the welding transformer 1, and a workpiece 9 is connected between the tips of the welding can electrodes 7 and 8.
10 is held, and welding current flows.

11は電圧検出回路であって、溶接ガン電極7゜8間に
印加される電圧を検出するものである。
A voltage detection circuit 11 detects the voltage applied between the welding gun electrodes 7.8.

この電圧検出回路11の出力側には、次に説明する誘導
ノイズ成分除去回路12と溶接ガン電極抵抗成分除去回
路15とが順次接続され、その後段に処理回路14が接
続されている。
An inductive noise component removal circuit 12 and a welding gun electrode resistance component removal circuit 15, which will be described next, are successively connected to the output side of the voltage detection circuit 11, followed by a processing circuit 14.

誘導ノイズ成分除去回路12は、サンプル水とから成っ
ている。そして前述の電圧検出回路11の出力信号はサ
ンプルホールド回路i 5 カ受け、その出力を溶接ガ
ン電極抵抗成分除去回路13の加算回路17の1つの入
力端に与えるようになっている。溶接ガン電極8への接
続線にはl・ロイダルコイル18が巻かれており、微分
電流検出回路19を介して、誘導ノイズ成分除去回路1
2の零クロスタイミング回路16の入力側に接続されて
いる。また微分電流検出回路19の出力の一部は積分回
路2oを介して、溶接ガン電極抵抗成分除去回路13の
サンプルホールド回路21の入力側にも加えられるよう
になっている。
The induced noise component removal circuit 12 consists of sample water. The output signal of the voltage detection circuit 11 described above is received by the sample hold circuit i 5 , and its output is applied to one input terminal of the addition circuit 17 of the welding gun electrode resistance component removal circuit 13 . A l-loidal coil 18 is wound around the connection wire to the welding gun electrode 8, and the induction noise component removal circuit 1 is connected to the welding gun electrode 8 via a differential current detection circuit 19.
It is connected to the input side of the zero cross timing circuit 16 of No. 2. A part of the output of the differential current detection circuit 19 is also applied to the input side of the sample hold circuit 21 of the welding gun electrode resistance component removal circuit 13 via the integration circuit 2o.

溶接ガン電極抵抗成分除去回路13のサンプルホールド
回路21の出力側は、極性反転回路22の入力側に接続
されている。極性反転回路22の出力側は可変抵抗器2
3を介して加算回路1701つの入力端に接続されてい
る。加算回路17は2つの入力端に入力された2つの信
号を加算することになる。加算回路17の出力側は処理
回路14の積分回路24の入力側と、最小電圧メモリ回
路25の入力側に接続されている。処理回路14には通
電時間メモリ回路26も設けられていて、誘導ノイズ成
分除去回路12の零クロスタイミング回路16の出力信
号を受けるようになっている。27は第1の演算回路で
あって、その入力側に接続された最小電圧メモリ回路2
5と通電時間メモリ回路26に記憶された最小電圧と通
電時間とを乗算するものである。
The output side of the sample hold circuit 21 of the welding gun electrode resistance component removal circuit 13 is connected to the input side of the polarity inversion circuit 22. The output side of the polarity inversion circuit 22 is a variable resistor 2
3 is connected to one input of the adder circuit 170. The adder circuit 17 adds two signals input to two input terminals. The output side of the adder circuit 17 is connected to the input side of the integrating circuit 24 of the processing circuit 14 and the input side of the minimum voltage memory circuit 25. The processing circuit 14 is also provided with an energization time memory circuit 26, which receives the output signal of the zero cross timing circuit 16 of the induced noise component removal circuit 12. 27 is a first arithmetic circuit, and a minimum voltage memory circuit 2 connected to its input side.
5 by the minimum voltage stored in the energization time memory circuit 26 and the energization time.

28は第2の演算回路である。この第2の演算回路28
は、第1の演算回路27の出力を積分回路24の出力か
ら減算するものであるので、入力側にはこれらが接続さ
れている。そして出力側には、この第2の演算回路28
の出力を、目標値設定回路29にあらかじめ設定された
目標値と比較する比較判定回路3oの入力側が接続され
ている。目標値設定回路29と比較判定回路3゜とは溶
接電流遮断回路31を形成するもので、比較判定回路3
0の出力側は前述の通電時間制御回路3の制御端に接続
されている。処理回路14の通電時間メモリ回路26の
出力側には、第1の演算回路27の入力側のほか、上下
限設定回路32の出力を1つの入力側に接続した比較判
定回路63の他方の入力側が接続されている。比較判定
回路33の出力側は異常出方警報回路34に接続されて
いる。
28 is a second arithmetic circuit. This second arithmetic circuit 28
is for subtracting the output of the first arithmetic circuit 27 from the output of the integrating circuit 24, so these are connected to the input side. And on the output side, this second arithmetic circuit 28
The input side of a comparison/judgment circuit 3o is connected to compare the output of the target value setting circuit 29 with a target value set in advance in the target value setting circuit 29. The target value setting circuit 29 and the comparison judgment circuit 3° form a welding current cutoff circuit 31, and the comparison judgment circuit 3
The output side of 0 is connected to the control end of the aforementioned energization time control circuit 3. On the output side of the energization time memory circuit 26 of the processing circuit 14, in addition to the input side of the first arithmetic circuit 27, the other input of the comparison judgment circuit 63, which has one input side connected to the output of the upper and lower limit setting circuit 32, is connected. side is connected. The output side of the comparison/judgment circuit 33 is connected to an abnormality warning circuit 34.

35は溶接電流フィードバック回路である。35 is a welding current feedback circuit.

この溶接電流フィードバック回路35には、前述した加
算回路17の出力信号から前述の最小電圧メモリ回路2
5の出力信号を減算する第3の演算回路36と、この第
3の演算回路36の出力信号から平均値を算出する平均
値算出回路37と、この平均値算出回路37が平均値を
算出するために別途設定した溶接回数の設定値を与える
溶接回数設定回路38と、あらかじめ実験でめた溶接電
流の目標値を設定する目標値設定回路39と、この目標
値から平均値算出回路37の出力信号を減算する第4の
演算回路4゜とが設けられている。溶接電流フィードバ
ック回路35の出力側は電流制御回路4の制御端に接続
されると共に、比較判定回路41の入力側に接続されて
いる。比較判定回路41には、上下限設定回路42と異
常報知回路43も接続されている。
This welding current feedback circuit 35 receives the output signal from the adder circuit 17 described above from the minimum voltage memory circuit 2 described above.
5, an average value calculation circuit 37 that calculates an average value from the output signal of the third calculation circuit 36, and an average value calculation circuit 37 that calculates the average value. output of a welding number setting circuit 38 that provides a set value for the number of welding times that is separately set for the purpose of the process, a target value setting circuit 39 that sets a target value of welding current determined in advance by experiment, and an average value calculation circuit 37 from this target value. A fourth arithmetic circuit 4° for subtracting the signal is provided. The output side of the welding current feedback circuit 35 is connected to the control end of the current control circuit 4, and is also connected to the input side of the comparison/judgment circuit 41. The comparison and determination circuit 41 is also connected to an upper and lower limit setting circuit 42 and an abnormality notification circuit 43 .

次に、このように構成されたとの装置の作用を、第1の
発明とともに説明する。まず、第2図は、溶接ガン電極
7,8に接続されたリード線によって取り出された検出
電圧Vの成分を示すものである。この図に示すように、
検出電圧Vの中には、真の電極間電圧成分(有効成分)
vllLと、誘導ノイズ成分(リアクタンス成分を含む
) VNと、溶接ガン電極抵抗成分vrとが含まれてい
るものである。
Next, the operation of the device configured as described above will be explained together with the first invention. First, FIG. 2 shows the components of the detected voltage V taken out by the lead wires connected to the welding gun electrodes 7 and 8. As shown in this figure,
The detection voltage V contains the true interelectrode voltage component (effective component).
vllL, an induced noise component (including a reactance component) VN, and a welding gun electrode resistance component vr.

スポット溶接において浴接強度の具の値を知るには、ス
ポット溶接に有効成分として作用する真の電極間電圧成
分VBのみを取シ出さなければならない。しかしながら
第2図の検出電圧■から単純に誘導ノイズ成分VNと、
溶接ガン電極抵抗成分Vrを除去したのみでは、第3図
に示すl′−/ より精度よく除去できない成分VAが残存してしまう。
In order to know the value of the bath contact strength in spot welding, it is necessary to extract only the true interelectrode voltage component VB that acts as an effective component in spot welding. However, from the detection voltage ■ in Fig. 2, it is simply the induced noise component VN,
If only the welding gun electrode resistance component Vr is removed, a component VA remains that cannot be removed more accurately than l'-/ shown in FIG.

そこで成分vAを除去して真の溶接強度を知るために、
第4図に示すように、検出電圧Vから誘導ノイズ成分V
Nと溶接ガン電極抵抗成分Vrとを除去した後の成分を
積分しく第4図(イ))、この値から、最小電圧を通電
時間中積分した値(第4図(ロ))を減算して、第4図
(ハ)に示すような有効成分の積分値を得、これをあら
かじめ設定した基準値と比較することになる。
Therefore, in order to remove the component vA and find out the true welding strength,
As shown in FIG. 4, the induced noise component V is calculated from the detected voltage V.
Integrate the component after removing N and the welding gun electrode resistance component Vr (Fig. 4 (a)), and subtract from this value the value integrated during the minimum voltage application time (Fig. 4 (b)). Then, an integral value of the active ingredient as shown in FIG. 4(c) is obtained, and this is compared with a preset reference value.

以上の作用は電圧検出回路11、誘導ノイズ成分除去回
路12、溶接ガン電極抵抗成分除去回路13によって行
なわれる。そしてトロイダルコイル1日によって検出さ
れた電流は微分電流検出回路19によって処理され、d
i/dt=0のときに電圧が検出されて、誘導ノイズ成
分が除去されるのである。この信号は積分回路2゜によ
って積分された後、極性反転回路22によって極性反転
されて加算されることにょシ減算される。処理回路14
の積分回路24はこのようにして得られた有効成分を積
分する。また最小電圧メモリ回路25は通電時間中にお
ける最小電圧を記憶する。一方、通電時間メモリ回路2
6によって通電時間も記憶される。
The above operations are carried out by the voltage detection circuit 11, the induced noise component removal circuit 12, and the welding gun electrode resistance component removal circuit 13. Then, the current detected by the toroidal coil 1 is processed by the differential current detection circuit 19, and d
The voltage is detected when i/dt=0, and the induced noise component is removed. After this signal is integrated by an integrating circuit 2°, its polarity is inverted by a polarity inverting circuit 22, and the signal is added and subtracted. Processing circuit 14
The integrating circuit 24 integrates the effective component thus obtained. Further, the minimum voltage memory circuit 25 stores the minimum voltage during the energization time. On the other hand, energization time memory circuit 2
6 also stores the energization time.

第1の演算回路27は通電時間と最小電圧との乗算をす
る。次に第2の演算回路28は、積分回路24の積分値
から第1の演算回路27の出力を積分した値を減する(
第4図(イ)ないしくハ)参照)。この結果は比較判定
回路30により、目標値設定回路29KIらかしめ設定
された目標値と比較され、目標値を越えた場合に通電時
間制御回路3に信号を送って溶接電流を遮断することに
なる。目標値に達するまでの通電時間があまシに長いか
短かい場合には、通電時間メモリ回路26から信号を受
ける比較判定回路53が、上下限設定回路32の信号と
比較判断し、異常出力警報回路34に異常警報を出させ
るととKなる。
The first arithmetic circuit 27 multiplies the energization time and the minimum voltage. Next, the second arithmetic circuit 28 subtracts the value obtained by integrating the output of the first arithmetic circuit 27 from the integral value of the integrator circuit 24 (
(See Figure 4 (a) or c)). This result is compared by the comparison judgment circuit 30 with the target value set by the target value setting circuit 29KI, and if the target value is exceeded, a signal is sent to the energization time control circuit 3 to cut off the welding current. . If the energization time to reach the target value is too long or too short, the comparison/judgment circuit 53 that receives the signal from the energization time memory circuit 26 compares it with the signal from the upper/lower limit setting circuit 32 and issues an abnormal output alarm. When the circuit 34 is caused to issue an abnormality alarm, it becomes K.

次に、溶接電流の制御方法を説明する。まず第5図にお
いて、設定した時間t$の間におけるチップ間電圧の低
下電圧V1〜■3をめる。この低下電圧(1)〜(3)
は、スパッタ″発生限界付近の電流値を大、中、小の3
稿に選んだものである。
Next, a method for controlling welding current will be explained. First, in FIG. 5, the drop voltages V1 to V3 of the inter-chip voltage during the set time t$ are calculated. This reduced voltage (1) to (3)
The current value near the spatter generation limit is set to three levels: large, medium, and small.
This is what I chose for my manuscript.

この低下電圧は加算回路17の出力信号と最小電圧メモ
リ回路25の出力信号とを第3の演算回路36で減算す
ることによシ得られる。次にこの電圧を溶接回数設定回
路38にあらかじめ設定された値(第6図の(4)参照
)により、溶接点数の平均値をめる。これは第3の演算
回路36の出力信号(第6図(5)参照)を設定数で除
してめる。この場合のスポット溶接点数は、一定の繰返
しがある点数に決めるのがよい。次に、このようにして
得た低下電圧の平均値を、目標値設定回路39にあらか
じめ設定された、実験的にめられた最適な値と比較する
This reduced voltage is obtained by subtracting the output signal of the adder circuit 17 and the output signal of the minimum voltage memory circuit 25 by the third arithmetic circuit 36. Next, the average value of the number of welding points is calculated from this voltage using a value preset in the welding number setting circuit 38 (see (4) in FIG. 6). This is obtained by dividing the output signal of the third arithmetic circuit 36 (see FIG. 6 (5)) by the set number. In this case, the number of spot welding points is preferably determined to be a number with a certain number of repetitions. Next, the average value of the voltage drop obtained in this manner is compared with an experimentally determined optimal value preset in the target value setting circuit 39.

この比較は第4の演算回路40によシ行なわれる。そし
てこの値が目標値設定回路39に設定された値よシ低け
れば溶接電流を次の溶接サイクルからアップさせ、また
高騒場合には溶接電流をダウンさせて安定した電流値に
フィードバック制御することになる。溶接電流の制御は
電流制御回路4によって行なう。低下電圧の最適値は、
溶接部のスパッタから発生する限界付近に溶接電流を設
定して、そのときの低下電圧を測定しく10点以上の平
均値として請求めることになる。目標値との差があまり
にも大きい場合は、上下限設定回路42、比較判定回路
41の作動によシ、異常報知回路45が警報を発するこ
とになる。
This comparison is performed by the fourth arithmetic circuit 40. If this value is lower than the value set in the target value setting circuit 39, the welding current is increased from the next welding cycle, and if the noise is high, the welding current is decreased to perform feedback control to a stable current value. become. The welding current is controlled by a current control circuit 4. The optimal value for the voltage drop is
By setting the welding current close to the limit generated by spatter at the weld, the voltage drop at that time can be measured and claimed as an average value of 10 or more points. If the difference from the target value is too large, the upper and lower limit setting circuit 42 and the comparison judgment circuit 41 operate, and the abnormality notification circuit 45 issues an alarm.

〔発明の効果〕〔Effect of the invention〕

この発明は上述のように溶接電流を設定スポット点数ご
とに順次フィードバックして安定させ、個々の溶接点に
ついてチップ間電圧の有効成分の積分値で溶接強度を監
視し、目標値に達したら溶接電流を遮断するように制御
するものであるから、溶接強度に影響を与える種々の要
因が変動しても、常に安定した溶接強度が得られること
になる。また過剰なエネルギを加えないので、エネルギ
の節減となシ、電極チップの摩耗を少なくできる効果も
ある。
As described above, this invention stabilizes the welding current by sequentially feeding back the welding current for each set number of spots, monitors the welding strength at each welding point using the integral value of the effective component of the inter-tip voltage, and when the welding current reaches the target value, the welding current Since the welding strength is controlled to be cut off, stable welding strength can always be obtained even if various factors that affect welding strength fluctuate. Furthermore, since excessive energy is not applied, it is possible to save energy and reduce wear on the electrode tip.

第1図はこの発明のうちの第2の発明の一実施例の回路
図、 第2図はこの発明のうちのMlの発明を理論的に説明す
るだめの電圧と時間との関係を示す線図、 第3図は第2図のものの一部の成分を除去した後の状態
を示す線図、 第4図(イ)、(ロ)、(ハ)は、第1の発明の過程を
示す線図、 第5図および第6図はこの発明の詳細な説明するための
線図である。
Fig. 1 is a circuit diagram of an embodiment of the second invention of this invention, and Fig. 2 is a line showing the relationship between voltage and time to theoretically explain the invention of Ml of this invention. Figure 3 is a diagram showing the state after removing some components of Figure 2; Figures 4 (a), (b), and (c) show the process of the first invention. Diagrams FIGS. 5 and 6 are diagrams for explaining the present invention in detail.

1・・・溶接トランス 3・・・通電時間制御回路 4・・・電流制御回路 7.8・・・溶接ガン電極 9.10・・・被溶接物 11・・・電圧検出回路 12・・・誘導ノイズ成分除去回路 13・・・溶接ガン電極抵抗成分除去回路14・・・処
理回路 20.24・・・積分回路 25・・・最小電圧メモーリ回路 26・・・通電時間メモリ回路 27・・・第1の演算回路 28・・・第2の演算回路 31・・・溶接電流遮断回路 35…溶接電流フイ一ドバツク回路 特許出願人 トヨタ車体株式会社 第2図 第3図 第5図 第4図 !6@
1... Welding transformer 3... Energization time control circuit 4... Current control circuit 7.8... Welding gun electrode 9.10... Work to be welded 11... Voltage detection circuit 12... Inductive noise component removal circuit 13... Welding gun electrode resistance component removal circuit 14... Processing circuit 20.24... Integration circuit 25... Minimum voltage memory circuit 26... Current application time memory circuit 27... First calculation circuit 28...Second calculation circuit 31...Welding current cutoff circuit 35...Welding current feedback circuit Patent applicant Toyota Auto Body Co., Ltd. Figure 2 Figure 3 Figure 5 Figure 4! 6@

Claims (1)

【特許請求の範囲】 1)スポット溶接において、゛溶接ガン電極に印加され
る溶接電圧を検出し、この検出された溶接電圧から誘導
ノイズ成分および溶接ガン電極抵抗成分を除去し、これ
ら両成分を除去した後の有効溶接電圧と通電時間中にお
けるその最小電圧との電圧差を通電時間中積分し、その
積分値と基準設定値とを比較して前記積分値が基準設定
値に達した時溶接電流を遮断するとともに、設定通電時
間内における電圧低下を検出し、該電圧低下による電圧
差を設定されたスポット溶接回数の平均値として算出し
、該電圧差をあらかじめスパッタが発生する限界付近に
設定された溶接電流に基づくピーク電圧からの目椋電圧
差と比較して、前記電圧差が所定の範囲から外れた場合
に次のスポット溶接時の電流値を制御することを特徴と
するスポット溶接における溶接強度監視方法。 2)溶接ガン電極に印加される電圧を検出する電圧検出
回路と、該電圧検出回路の出力側に順次接続される誘導
ノイズ成分除去回路および溶接ガン電極抵抗成分除去回
路と、これらの除去回路によシ非有効成分を除去した後
の有効溶接電圧を通電時間中積分する積分回路と、通電
時間中における最小電圧を記憶する最小電圧メモリ回路
と、通電時間を記憶する通電時間メモリ回路と、これら
のメモリ回路に記憶された最小電圧と通電時間とを乗算
する第1の演算回路と、該第1の演算回路からの出力を
一前記積分回路からの出力から減算する第2の演算回路
と、該第2の演算回路からの出力値とあらかじめ設定さ
れた基準値とを比較測定する比較測定回路と、該比較測
定回路からの出力によシ被溶接物への通電時間を制御す
る通電時間制御回路と、前記溶接ガン電極抵抗成分除去
回路の出力から前記最小電圧メモリ回路の出力を減算し
、これをあらかじめ設定した溶接回数で除して平均値を
出し、この値をあらかじめ実験的にめた目標値で減算す
る溶接電流フィードバック回路と、該溶接電流フィード
バック回路からの出力信号によシ被溶接物への通電電流
を制御する電流
[Claims] 1) In spot welding, ``a welding voltage applied to a welding gun electrode is detected, an induced noise component and a welding gun electrode resistance component are removed from the detected welding voltage, and both these components are The voltage difference between the effective welding voltage after removal and the minimum voltage during the energization time is integrated during the energization time, and the integrated value is compared with a reference setting value, and when the integrated value reaches the reference setting value, welding is started. At the same time as cutting off the current, detecting the voltage drop within the set energization time, calculating the voltage difference due to the voltage drop as the average value of the set number of spot welding, and setting the voltage difference in advance near the limit where spatter will occur. In spot welding, the current value for the next spot welding is controlled when the voltage difference is out of a predetermined range by comparing the voltage difference from the peak voltage based on the welding current. Weld strength monitoring method. 2) A voltage detection circuit that detects the voltage applied to the welding gun electrode, an inductive noise component removal circuit and a welding gun electrode resistance component removal circuit that are sequentially connected to the output side of the voltage detection circuit, and these removal circuits. An integration circuit that integrates the effective welding voltage after removing ineffective components during the energization time, a minimum voltage memory circuit that stores the minimum voltage during the energization time, and an energization time memory circuit that stores the energization time; a first arithmetic circuit that multiplies the minimum voltage stored in the memory circuit by the energization time; a second arithmetic circuit that subtracts the output from the first arithmetic circuit from the output from the integrating circuit; a comparison measurement circuit that compares and measures the output value from the second arithmetic circuit with a preset reference value; and energization time control that controls the energization time to the workpiece based on the output from the comparison measurement circuit. The output of the minimum voltage memory circuit is subtracted from the output of the welding gun electrode resistance component removal circuit, and this is divided by a preset number of welding to obtain an average value, and this value is determined experimentally in advance. A welding current feedback circuit that subtracts by the target value, and a current that controls the current flowing to the workpiece according to the output signal from the welding current feedback circuit.
JP2519484A 1984-02-15 1984-02-15 Method and device for monitoring welding strength in spot welding Granted JPS60170583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2519484A JPS60170583A (en) 1984-02-15 1984-02-15 Method and device for monitoring welding strength in spot welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2519484A JPS60170583A (en) 1984-02-15 1984-02-15 Method and device for monitoring welding strength in spot welding

Publications (2)

Publication Number Publication Date
JPS60170583A true JPS60170583A (en) 1985-09-04
JPH0242033B2 JPH0242033B2 (en) 1990-09-20

Family

ID=12159151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2519484A Granted JPS60170583A (en) 1984-02-15 1984-02-15 Method and device for monitoring welding strength in spot welding

Country Status (1)

Country Link
JP (1) JPS60170583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305451A (en) * 1992-05-01 1993-11-19 Toyota Tekko Kk Power source controller for resistance welding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530959A (en) * 1978-08-28 1980-03-05 Toyo Rubber Chem Ind Co Ltd Mold facility
JPS5794479A (en) * 1980-12-03 1982-06-11 Toyota Auto Body Co Ltd Method and device for monitoring of weld strength in spot welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530959A (en) * 1978-08-28 1980-03-05 Toyo Rubber Chem Ind Co Ltd Mold facility
JPS5794479A (en) * 1980-12-03 1982-06-11 Toyota Auto Body Co Ltd Method and device for monitoring of weld strength in spot welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305451A (en) * 1992-05-01 1993-11-19 Toyota Tekko Kk Power source controller for resistance welding

Also Published As

Publication number Publication date
JPH0242033B2 (en) 1990-09-20

Similar Documents

Publication Publication Date Title
JP3933193B2 (en) Consumable electrode arc welding machine
JPS59206162A (en) Controller for arc length of arc welder
JP2742545B2 (en) Resistance welding control method
JPS571582A (en) Method for assessing quality of weld zone in resistance welding
JPS5823569A (en) Dc arc welding device
US20050218120A1 (en) Energy balanced weld controller
KR20200116058A (en) Real time resistance monitoring of an arc welding circuit
JPH04284980A (en) Method for spot resistance welding and its welding electrode
JPS60170583A (en) Method and device for monitoring welding strength in spot welding
JP3458632B2 (en) Welding voltage detection method and arc welding machine
US4634828A (en) Control method of resistance welding
JP2733624B2 (en) Pulse arc welding method and pulse arc welding apparatus using this method
JP3489760B2 (en) Joining method
JPS6325876B2 (en)
JPH0753819Y2 (en) Quality control equipment for resistance welding machines
KR101644566B1 (en) Method for control of welding waveform for arc stabilization
JPS6195777A (en) Method and device for groove detection
JPH069741B2 (en) Short-circuit transfer welding power source control method and apparatus
JPS6213104B2 (en)
JP2534373B2 (en) Arc welding machine
JPH0316227B2 (en)
JPS61279363A (en) Consumable electrode type welding use power source
JPS6142679Y2 (en)
JPS6159835B2 (en)
US20180264575A1 (en) Short circuit welding using self-shielded electrode