JPH069741B2 - Short-circuit transfer welding power source control method and apparatus - Google Patents

Short-circuit transfer welding power source control method and apparatus

Info

Publication number
JPH069741B2
JPH069741B2 JP58074529A JP7452983A JPH069741B2 JP H069741 B2 JPH069741 B2 JP H069741B2 JP 58074529 A JP58074529 A JP 58074529A JP 7452983 A JP7452983 A JP 7452983A JP H069741 B2 JPH069741 B2 JP H069741B2
Authority
JP
Japan
Prior art keywords
welding
resistance
value
current
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58074529A
Other languages
Japanese (ja)
Other versions
JPS59199173A (en
Inventor
隆明 小笠原
徳治 丸山
敬 斉藤
正晴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58074529A priority Critical patent/JPH069741B2/en
Publication of JPS59199173A publication Critical patent/JPS59199173A/en
Publication of JPH069741B2 publication Critical patent/JPH069741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls

Description

【発明の詳細な説明】 [技術分野] この発明は短絡移行溶接に用いる溶接電源の制御方法と
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a welding power source control method and apparatus used for short-circuit transfer welding.

[従来技術の問題点] ガスシールド溶接において、溶接ワイヤと母材間で短絡
とアーク発生とをくり返しながら溶接を行なう。
[Problems of Prior Art] In gas shield welding, welding is performed while repeating short circuit and arc generation between the welding wire and the base material.

短絡移行溶接におけるスパッタの多くは、短絡が破れア
ークが再生する瞬間に発生し、またアーク再生時の電流
が高い程大粒のスパッタが発生することも明らかになっ
ている。ところが、従来のリアクトルにより電の上昇を
遅らせるだけの定電圧電源では、第1図に示すようにア
ーク再生時の電流が高いため非常にスパッタが多かっ
た。この原因に着目して、アーク再生時の電流を下げる
ことが試みられているがまだ実用に到っていない。たと
えばWelding Research international Vol.4.No.2.1974
には、大電流通電期間を短絡期の中央期間に限定させ、
大電流期間中消耗電極ワイヤと母材間の電圧を検出し、
アーク再生の前兆としての溶滴のくびれが発生した時の
電圧を設定しておき、検出電圧がある設定電圧と等しく
なった時大電流期間を終了させるようにプログラム制御
してスパッタを制御する技術が開示されている。しかし
ながら、前記文献にも記載されているように、実用にあ
たっては、ワイヤ突出長の変動によって、この部分の電
圧降下が変動するため、溶滴のくびれた時の電圧が一定
にならず、大電流期間の終了を指示する時期に誤差を生
じ、安定してスパッタを防止することができない。
It has also been clarified that most of spatters in short-circuit transfer welding are generated at the moment when the short circuit is broken and the arc is regenerated, and larger spatters are generated as the current during arc regeneration is higher. However, in a constant voltage power source that merely delays the rise of electricity by a conventional reactor, as shown in FIG. 1, the current during arc regeneration was high, and thus spatter was very much. Focusing on this cause, attempts have been made to reduce the current during arc regeneration, but this has not yet been put to practical use. For example Welding Research international Vol.4.No.2.1974
Limits the high current conduction period to the central period of the short circuit period,
Detects the voltage between the consumable electrode wire and the base material during the high current period,
Technology that controls the spatter by program control so that the voltage at the time when the droplet constriction occurs as a precursor of arc regeneration is set and the high current period is ended when the detected voltage becomes equal to a certain set voltage Is disclosed. However, as described in the above document, in practical use, the voltage drop at this portion fluctuates due to fluctuations in the wire protrusion length, so the voltage when the droplet is constricted is not constant, and a large current An error occurs at the time of instructing the end of the period, and it is impossible to stably prevent spatter.

周知のように、この種のスパッタの発生は溶接の品質を
低下させ、またスパッタを除去するために煩雑な作業が
必要であり、溶接の作業能率を低下させる。
As is well known, the generation of this kind of spatter lowers the quality of welding, and a complicated work is required to remove spatter, which lowers the welding work efficiency.

[発明の目的] この発明は従来の短絡移行溶接における上述の問題を解
決するためになされたものであって、溶接ワイヤのくび
れが生じる時期を適確に検出して溶接ワイヤ電流を抑制
することにより、スパッタの発生を防止し、溶接の品質
を向上させ、かつ溶接作業の能率向上を可能にする溶接
電源の制御方法と装置を提供することを目的とするもの
である。
[Object of the Invention] The present invention has been made in order to solve the above-mentioned problems in the conventional short-circuit transfer welding, and suppresses the welding wire current by accurately detecting the time when the necking of the welding wire occurs. Therefore, it is an object of the present invention to provide a welding power source control method and apparatus capable of preventing the generation of spatter, improving the quality of welding, and improving the efficiency of welding work.

[発明の概要] この発明に係る溶接電源の制御方法においては、短絡移
行溶接において、溶接ワイヤと母材間の抵抗の時間に関
する微分値を検知し、その微分値が所定の値に達したと
き、溶接ワイヤ電流を低減させる。
[Summary of the Invention] In the welding power source control method according to the present invention, when the differential value of the resistance between the welding wire and the base material with respect to time is detected in the short-circuit transfer welding, and the differential value reaches a predetermined value. , Reduce welding wire current.

またこの発明に係る溶接電源の制御装置においては溶接
ワイヤと母材間の抵抗値を検出する検出手段と、抵抗値
を微分する微分回路と、抵抗の微分値が設定値に達した
ことを検出する比較回路と、抵抗の微分値が設定値に達
したとき溶接ワイヤに流れる電流を低減させる制御手段
とを備えている。
Further, in the control device for the welding power source according to the present invention, the detection means for detecting the resistance value between the welding wire and the base material, the differentiating circuit for differentiating the resistance value, and the detection that the differential value of the resistance has reached the set value And a control circuit for reducing the current flowing through the welding wire when the differential value of the resistance reaches a set value.

[発明の原理] 第2図は短絡移行溶接装置の概略を示しており、101
は溶接電源、102は給電ケーブル、103は図示され
ないモータで送給される溶接ワイヤであり、この溶接ワ
イヤ103は溶接トーチ104を通って母材106へ向
かって突出しており、母材106と溶接ワイヤ103間
にアーク105が発生している。溶接トーチ104から
の溶接ワイヤ103は、母材106との間で短絡とアー
ク発生とを適宜時間間隔でくり返して、公知の短絡移行
溶接を行う。
[Principle of the Invention] FIG. 2 shows an outline of a short-circuit transfer welding apparatus.
Is a welding power source, 102 is a power supply cable, and 103 is a welding wire fed by a motor (not shown). The welding wire 103 projects through the welding torch 104 toward the base metal 106 and welds to the base metal 106. An arc 105 is generated between the wires 103. The welding wire 103 from the welding torch 104 repeats short-circuiting and arc generation with the base material 106 at appropriate time intervals to perform known short-circuit transfer welding.

第3図は上述の短絡移行溶接時における溶接ワイヤ電圧
波形、電流波形ならびに溶接ワイヤ103と母材106
との間の位置関係を示したものであり、各図において、
a,b,c,d,eはそれぞれの溶接状態を示す。即ち
アーク発生中aから徐々にアーク長が短くなり、短絡b
に至る。このとき電流を上昇させて、ある一定値に保持
する。溶滴が最も強固に、母材106に結合した時点c
を経過した後、溶接ワイヤ103の先端がくびれ始めた
d点後、溶接電流を急激に低下させて、電流が充分に低
下した時点eにてアーク再生に移行する。
FIG. 3 shows the welding wire voltage waveform, current waveform, welding wire 103 and base metal 106 during the above-described short-circuit transfer welding.
It shows the positional relationship between the
Symbols a, b, c, d, and e indicate the respective welding states. That is, during arc generation, the arc length gradually decreases from a, and short circuit b
Leading to. At this time, the current is increased and maintained at a certain constant value. Time point c when the droplet is most strongly bonded to the base material 106
After a lapse of time, after the point d at which the tip of the welding wire 103 starts to be constricted, the welding current is rapidly reduced, and the arc regeneration is started at a time point e when the current is sufficiently reduced.

第3図から明らかなようにc点からd点に至る間電流が
一定であるにもかかわらず、電圧はd点近傍で上昇す
る。これはd点近傍では、溶接ワイヤのくびれが生じ、
ワイヤ先端の溶融部の断面積が減少し抵抗が増加したこ
とに主因がある。そこで短絡時の抵抗を検出し、その抵
抗の時間的変化量すなわち、抵抗Rの微分値dR/dt
がある所定値に達したときに電流を下げればスパッタを
抑制できる。
As is apparent from FIG. 3, although the current is constant from the point c to the point d, the voltage rises near the point d. This is due to the constriction of the welding wire near point d,
The main reason is that the cross-sectional area of the fusion zone at the tip of the wire decreased and the resistance increased. Therefore, the resistance at the time of short circuit is detected, and the temporal change amount of the resistance, that is, the differential value dR / dt of the resistance R
When the current reaches a predetermined value, the current can be reduced to suppress spatter.

[実施例] 以下にこの発明の実施例を図面とともに説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第4図において、溶接トーチ104と母材106間の電
圧を検出する電圧検出器110の出力信号は抵抗検出器
111の一方の入力端子に入力され、溶接ワイヤ103
の電流を検出する電流検出器112の出力信号は割算器
を用いた抵抗検出器111の他方の入力端子に入力され
る。抵抗検出器111は電圧検出器110の出力信号と
電流検出器112の出力信号との比から溶接ワイヤ10
3と母材106間の抵抗を演算し、この演算された抵抗
値は微分回路113に印加され、この微分回路113
で、抵抗検出器111で演算された抵 され、設定器115によって設定された設定値と比較し
て、抵抗微分値が設定値より大となったとき、この比較
器114は制御信号を溶接電源101に印加して、スイ
ッチ120を低電流側の設定器121に切換えて溶接電
源101の出力を制御して、溶接ワイヤ103の電流を
低減させる。設定器115の設定値は溶接ワイヤにくび
れが生じるときの溶接ワイヤと母材間の抵抗値の微分値
に対応して定められる。
In FIG. 4, the output signal of the voltage detector 110 that detects the voltage between the welding torch 104 and the base metal 106 is input to one input terminal of the resistance detector 111, and the welding wire 103
The output signal of the current detector 112 that detects the current is input to the other input terminal of the resistance detector 111 using a divider. The resistance detector 111 determines the welding wire 10 from the ratio of the output signal of the voltage detector 110 and the output signal of the current detector 112.
3 and the resistance between the base material 106 are calculated, and the calculated resistance value is applied to the differentiating circuit 113.
Therefore, the resistance calculated by the resistance detector 111 is When the resistance differential value becomes larger than the set value compared with the set value set by the setter 115, the comparator 114 applies a control signal to the welding power source 101 to turn on the switch 120 at a low current. The setting device 121 on the side is switched to control the output of the welding power source 101 to reduce the current of the welding wire 103. The set value of the setter 115 is determined corresponding to the differential value of the resistance value between the welding wire and the base material when the welding wire is constricted.

なお122は溶接時の電流設定器であり、また溶接電源
101は誤差増幅器101aに電流設定器121、12
2のいずれかから印加される設定値と電流検出器112
から検出される溶接ワイヤ電流との偏差に応じて電力制
御回路101bの出力電流を電流設定器121、122
のいずれかで設定された値になるように制御する。
In addition, 122 is a current setting device at the time of welding, and the welding power source 101 has a current setting device 121, 12 for the error amplifier 101a.
Set value applied from any one of 2 and the current detector 112
The output current of the power control circuit 101b is set according to the deviation from the welding wire current detected from the current setting devices 121 and 122.
Control to be the value set by either

上述の装置による溶接において、第3図のa,b,c,
d,e部の溶接電圧、溶接電流の制御方法は従来のもの
と同じである。
In welding with the above-mentioned device, a, b, c, and
The method for controlling the welding voltage and welding current at the d and e portions is the same as the conventional method.

第5図において、g,h,i,j,lはそれ
ぞれワイヤ突出長が16mm,20mm,12mm,16mm,
16mmの時の電流波形であり、g,h,i
,lは短絡時間が略2msecの電流波形でjは短
絡時間が略3msecのものである。g〜jはは短絡電
流が短絡後約1msec経過後から一定に制御されており、
11,H11,I11,J11,L11は、くびれが生じたと判
断された時点の電流値であり、くびれ発生後、電流を低
下させている。lは1点鎖線で示しており、短絡電流
が時間と共に増加し、くびれ検知後の電流低下波形はg
,h,iの波形と重なっている。第6図は、第5
図の電流波形g,h,i,j,lに相当する
電圧波形でg,h,i,j,lはそれぞれワ
イヤ卒出長が16mm,20mm,12mm,16mm,16mm
の時の電圧波形である。G21,H21,I21,J21,L21
はそれぞれくびれが発生した時点の電圧値である。第7
図は、抵抗波形である。g,h,i,j,l
はそれぞれ抵抗変化を示す曲線でG31,H31,I31,J
31,L31はそれぞれくびれが発生した時の抵抗値であ
る。第8図は第7図の抵抗を微分した波形である。これ
らの波形は、曲線g,h,i,j,lで表さ
れている。また、G41,H41,I41,J41,L41はくび
れが発生した時点のdR/dtの値である。
In FIG. 5, g 1 , h 1 , i 1 , j 1 , l 1 have wire protrusion lengths of 16 mm, 20 mm, 12 mm, 16 mm, respectively.
It is a current waveform at the time of 16 mm, g 1 , h 1 , i 1 ,
j 1 and l 1 are current waveforms having a short circuit time of approximately 2 msec, and j 1 has a short circuit time of approximately 3 msec. g 1 to j 1 are controlled to be constant after the short circuit current has passed for about 1 msec after the short circuit,
G 11 , H 11 , I 11 , J 11 , and L 11 are current values at the time when it is determined that a constriction has occurred, and the current is reduced after the constriction occurs. l 1 is shown by a one-dot chain line, the short-circuit current increases with time, and the current decrease waveform after the constriction detection is g
It overlaps with the waveforms of 1 , h 1 , and i 1 . FIG. 6 shows the fifth
The voltage waveforms corresponding to the current waveforms g 1 , h 1 , i 1 , j 1 , l 1 in the figure are g 2 , h 2 , i 2 , j 2 , l 2 having wire stroke lengths of 16 mm, 20 mm, and 12 mm, respectively. , 16mm, 16mm
Is a voltage waveform at the time of. G 21 , H 21 , I 21 , J 21 , L 21
Are the voltage values at the time when the constriction occurs. 7th
The figure shows the resistance waveform. g 3, h 3, i 3 , j 3, l 3
Is a curve showing the resistance change, G 31 , H 31 , I 31 , J
31 and L 31 are resistance values when a constriction occurs, respectively. FIG. 8 is a waveform obtained by differentiating the resistance shown in FIG. These waveforms are represented by a curve g 4, h 4, i 4 , j 4, l 4. Further, G 41 , H 41 , I 41 , J 41 , and L 41 are the values of dR / dt at the time when the constriction occurs.

短絡電流を下げてもアークが再生する溶滴のくびれは、
電圧波形で電圧値がG21,H21,I21,J21,L21の時
である。G21〜L21の電圧値はワイヤ突出長と短絡時間
で左右されていることがわかる。理論的にはワイヤ突出
長や短絡時間に対応して、検知電圧レベルG21〜L21
示すレベルに各々変えれば良いが、ワイヤ突出長は溶接
者の手ぶれにより時々刻々変化し、短絡時間も溶融池の
振動やワイヤ送給速度変動などにより主として1〜4ms
ecの間で変動する。従来の技術は、溶接トーチと母材間
の電圧がある一定値になったことで、溶接ワイヤにくび
れが小じたものと判断したため、条件によりくびれ発生
電圧はG21〜L21と変化するので、くびれ発生検出に誤
差を生じくびれ検出が不正確で実施不可能に近いことが
第6図より判る。
Even if the short circuit current is lowered, the constriction of the droplet that the arc regenerates is
In the voltage waveform, the voltage values are G 21 , H 21 , I 21 , J 21 , and L 21 . It can be seen that the voltage values of G 21 to L 21 depend on the wire protrusion length and the short circuit time. Theoretically, the wire protrusion length may be changed to the level indicated by the detection voltage levels G 21 to L 21 in accordance with the wire protrusion length and the short circuit time. 1 to 4 ms mainly due to vibration of the weld pool and fluctuations in the wire feed speed
fluctuates between ec. In the conventional technique, since the voltage between the welding torch and the base metal became a certain value, it was determined that the welding wire had a small constriction, and therefore the constriction generation voltage changed from G 21 to L 21 depending on the conditions. Therefore, it can be seen from FIG. 6 that an error occurs in the detection of the necking occurrence and the necking detection is inaccurate and is almost impossible to carry out.

そこで、この発明においては、第4図の装置に示すよう
に、 (1)抵抗検出器111で溶接ワイヤ103と母材10
6間の抵抗Rを検出し、微分回路113 に達したときくびれが生じたものと判断し溶接電流を下
げれば、ワイヤ突出長lや短絡時間に大きく左右される
ことなく、スパッタを減少させることができる。ここで
41,H41,I41,J41,L41はくびれが発生した時点
の抵抗微分値を示す。
Therefore, in the present invention, as shown in the apparatus of FIG. 4, (1) the resistance detector 111 is used to weld the welding wire 103 and the base metal 10 together.
The resistance R between 6 is detected, and the differentiation circuit 113 When the welding current is reduced by determining that the constriction has occurred when the temperature reaches, the spatter can be reduced without being largely influenced by the wire protrusion length 1 and the short circuit time. Here, G 41 , H 41 , I 41 , J 41 , and L 41 represent resistance differential values at the time when the constriction occurs.

上述の値Kは設定器115により設定される。この設
定値として理想的なK値はワイヤ突出長、短絡時間に
よって変化し、それに応じてくびれ発生時のdR/dt
の値もG41〜L41と変化し、上述のようにその平均値を
用いることができるが、理想的ではない。
The above-mentioned value K 1 is set by the setter 115. The ideal K 1 value as this set value changes depending on the wire protrusion length and the short circuit time, and accordingly, dR / dt at the time of constriction occurs.
The value of changes from G 41 to L 41, and the average value can be used as described above, but it is not ideal.

(2)更により確実にスパッタを減少させるためには、
設定器115の設定値として、ワイヤ突出長、短絡時間
に応じた理想的なK値、すなわちくびれ発生時に検出
されるdR/dt値は、G41〜L41のうちくびれに起因
する抵抗微分量とそうでない抵抗微分量を分離した値を
設定しくおくことが望ましい。
(2) In order to reduce spatter even more reliably,
As a set value of the setter 115, an ideal K 1 value according to the wire protrusion length and the short-circuit time, that is, the dR / dt value detected when the constriction occurs is the resistance differential due to the constriction of G 41 to L 41. It is desirable to set a value that separates the amount of resistance differentiation and the amount of resistance differentiation that is not so.

第7図に見られるようにくびれ発生時点より前の時点
で、短絡後一定時間経過し、短絡電流が印加された後は
抵抗はわずかに上昇している。この抵抗上昇はくびれに
関係ないものであるが、ワイヤ突出長、短絡時間によっ
て変わっている。この抵抗変化量は、第8図の抵抗微分
値で表わすとそれぞれ概ねG42〜L42の値となってい
る。この抵抗微分値は、後述するようにワイヤ突出長の
抵抗が短絡電流に対応して上昇していることを意味す
る。従ってくびれに起因した抵抗微分値をKとするK
≒G41−G42≒………≒L41−L42でほぼ一定であ
る。
As shown in FIG. 7, a certain time has elapsed after the short circuit at a time point before the occurrence of the constriction, and the resistance slightly increases after the short circuit current is applied. This increase in resistance is not related to the constriction, but it changes depending on the wire protrusion length and the short circuit time. This resistance change amount is approximately a value of G 42 to L 42 when expressed by the resistance differential value of FIG. This resistance differential value means that the resistance of the wire protrusion length is increased corresponding to the short-circuit current as described later. Therefore, let K 2 be the resistance differential value caused by the constriction.
2 ≈ G 41 -G 42 ≈ ... ≈ L 41 -L 42 , which is almost constant.

溶接ワイヤ突出部の抵抗変化は、短絡電流によりこの部
分の温度が上昇し、鋼は温度が上昇すると抵抗が増加す
るために起こるもので概ね下式にて表現される。
The resistance change of the protruding portion of the welding wire occurs because the temperature of this portion rises due to the short-circuit current and the resistance of steel increases as the temperature rises, and is generally expressed by the following formula.

いま、lを除き短絡電流Iは一定になるように制御
しており、かつワイヤ径が決まっているので、 とおくと、 ΔR=kRΔT から ΔR/Δt=kR すなわちくびれに関係ない、ワイヤ突出長加熱による抵
抗変化に起因する抵抗微分値dR/dt=ΔR/Δt=
kRとみなすことができる。
Now, except for l 1 , the short-circuit current I p is controlled to be constant, and the wire diameter is determined. In other words, ΔR = kRΔT to ΔR / Δt = kR, that is, the resistance differential value dR / dt = ΔR / Δt =
It can be considered as kR.

このkR値は第8図においてG42〜J42の値に相当して
いる。従って抵抗検出値にある定数kを乗算した値kR
を用いてdR/dt≧K+kRの時くびれが生じたも
のと判断し、電流を下げれば、ワイヤ突出長や短絡時間
に左右されずにスパッタを減少させることが更に確実に
なる。
This kR value corresponds to the values G 42 to J 42 in FIG. Therefore, the value kR obtained by multiplying the resistance detection value by a constant k
If it is determined that the constriction has occurred when dR / dt ≧ K 2 + kR by using, and the current is reduced, it is possible to further surely reduce the spatter regardless of the wire protrusion length and the short circuit time.

第9図は上述の設定値を得る回路の一例を示しており、
抵抗検出器111の信号は微分回路113に印加される
とともに、増幅器116にも印加され、この増幅器11
6からkRを示す信号が得られる。このkRは加算器1
17に印加され、加算器117は設定器115から印加
される定数Kとの和を演算し、K+kRを出力す
る。この出力は比較器114に印加される。
FIG. 9 shows an example of a circuit for obtaining the above-mentioned set value,
The signal of the resistance detector 111 is applied to the differentiating circuit 113 and also to the amplifier 116.
A signal indicating kR is obtained from 6. This kR is the adder 1
17 and the adder 117 calculates the sum with the constant K 2 applied from the setter 115 and outputs K 2 + kR. This output is applied to the comparator 114.

上述の設定値kを与えるIは平均溶接電流を変えると
その最適値が変化して来る。平均電流はワイヤ送給速度
に略比例するのでワイヤ送給速度により変化すると言て
も良い。I=一定とした時(2)式が成立したわけで
あるからIが他の値になった時は、kの値を変更して
溶接を行う必要がある。もちろん使用する範囲内の代表
値Iの平均値の時のk値を用いても大きな誤差は生じ
ないが、更に精度を高めるため、ワイヤ送給速度に応じ
てIを決定してそれに応じてk値が設定されるように
しても良く、この制御は大幅なコストアップにはつなが
らない。
I P giving the setting value k discussed above its optimal value when changing the average welding current comes to change. Since the average current is substantially proportional to the wire feeding speed, it may be said that it changes depending on the wire feeding speed. When I P = constant, the equation (2) is satisfied. Therefore, when I P has another value, it is necessary to change the value of k and perform welding. Of course, a large error does not occur even if the k value at the time of the average value of the representative value I P within the range used is used, but in order to further improve the accuracy, I P is determined according to the wire feeding speed and accordingly Alternatively, the k value may be set, and this control does not lead to a significant increase in cost.

電流を一定にしない場合すなわち第4図のlのように
時間と共に電流が増加するような波形の場合、(1)式
のIが短絡時間中変化しているので抵抗加熱分のdR
/dt=kRのkが時間的に変化するが、この場合に
は、k値を電流を検出してI に比例した値に設定し
てもよい。さらに溶接電圧Vの2乗値V に応じて
k値を設定してもよい。
When the current is not constant, that is, when the waveform is such that the current increases with time like l 1 in FIG. 4, since I P in the equation (1) changes during the short circuit time, dR of the resistance heating amount is changed.
Although k of / dt = kR changes with time, in this case, the k value may be set to a value proportional to I P 2 by detecting the current. Further, the k value may be set according to the squared value V P 2 of the welding voltage V P.

[実験結果] 溶接電流を150A、溶接電圧を20V、溶接ワイヤ送
給速度を20cm/min、シールドガスCO2Ol/mi
n、の条件で1.2mmφの溶接ワイヤを用い、12mm厚
の母材に半自動溶接でビードオンプレート溶接を10分
間行いシールドノズルに付着したスパッタ量を比較し
た。
[Experimental Results] Welding current 150 A, welding voltage 20 V, welding wire feed rate 20 cm / min, shield gas CO 2 2Ol / mi
Using a 1.2 mmφ welding wire under conditions of n and n, bead-on-plate welding was performed for 10 minutes on a 12 mm-thick base metal by semi-automatic welding, and the amount of spatter adhering to the shield nozzle was compared.

なお、溶接電源として (I)市販サイリスタ型溶接電源(くびれ検出による溶
接電流の制御なし) (II)本発明による第1の装置:第3図のdのタイミン
グにおいて溶接ワイヤと母材間の抵抗Rについて (K=3.3mΩ/msec)となったとき溶接ワイヤ電
流を50Aに低下する。
As a welding power source, (I) a commercially available thyristor type welding power source (without controlling the welding current by detecting the constriction) (II) The first device according to the present invention: the resistance between the welding wire and the base metal at the timing of d in FIG. About R When (K 1 = 3.3 mΩ / msec), the welding wire current is reduced to 50 A.

(III)本発明による第2の装置:第3図のdのタイミ
ングにおいて、 (K=2.3mΩ/msec,R=0.058Ω,k=
0.016)となったとき溶接ワイヤ電流を50Aに低
下する。
(III) Second device according to the present invention: At the timing of d in FIG. (K 2 = 2.3 mΩ / msec, R = 0.058 Ω, k =
0.016), the welding wire current is reduced to 50A.

この実験により下表のような結果を得た。From this experiment, the results shown in the table below were obtained.

[発明の効果] 以上詳述したようにこの発明は短絡移行溶接において、
短絡からアーク再発生の間に生じる溶接 減するようにしたから、溶接ワイヤのくびれの発生を確
実に検知し、これに対応して電流を低減することによ
り、スパッタの発生を低減させることができ、結果的に
高品質の溶接が行えるとともに、溶接作業能率を向上す
ることができる。
[Effects of the Invention] As described in detail above, the present invention is applicable to short-circuit transfer welding.
Welding that occurs between short circuit and arc regeneration Since it is designed to reduce the number of welding wires, it is possible to reliably detect the occurrence of welding wire constriction and reduce the current accordingly to reduce the occurrence of spatter, resulting in high-quality welding. At the same time, the welding work efficiency can be improved.

なお、一般にチョッパやインバータによるパルス幅制御
により電流や電圧を制御する電源は、リアクトルなどで
平滑にしても電流、電圧にはリップルを含んでいる。こ
のような電源を溶接電源として用いた場合でも、この発
明のように抵抗の時間変化の大きさによって溶接ワイヤ
のくびれを検出する場合には、抵抗は電圧/電流で求め
られるから、電流リップルの影響は除去されて、くびれ
検出へのリップルによる誤差は含まれず、したがってく
びれ検出のタイミングも正確になる。
A power supply that controls current and voltage by pulse width control using a chopper or an inverter generally includes ripples in the current and voltage even when smoothed by a reactor or the like. Even when such a power source is used as the welding power source, when the necking of the welding wire is detected by the magnitude of the time change of the resistance as in the present invention, the resistance is obtained by the voltage / current. The effect is eliminated and the error due to ripple on the waist detection is not included and therefore the timing of waist detection is also accurate.

【図面の簡単な説明】[Brief description of drawings]

第1図は短絡移行溶接の一例を示す波形図、第2図は溶
接装置の概略を示す電気回路図、第3図は短絡移行溶接
の電圧、電流波形を溶接ワイヤの状態と併せて示す図、
第4図はこの発明の一実施例を示すブロック図、第5図
ないし第8図は溶接ワイヤの抵抗変化を示すグラフ、第
9図は第4図の実施例の変形例を示すブロック図であ
る。 101…溶接電源、103…溶接ワイヤ、 106…母材、110…電圧検出器、 112…電流検出器、111…抵抗検出器、 113…微分回路、114…比較器。
FIG. 1 is a waveform diagram showing an example of short-circuit transition welding, FIG. 2 is an electric circuit diagram showing the outline of a welding apparatus, and FIG. 3 is a diagram showing voltage and current waveforms of short-circuit transition welding together with the state of the welding wire. ,
FIG. 4 is a block diagram showing an embodiment of the present invention, FIGS. 5 to 8 are graphs showing the resistance change of the welding wire, and FIG. 9 is a block diagram showing a modification of the embodiment of FIG. is there. 101 ... Welding power source, 103 ... Welding wire, 106 ... Base material, 110 ... Voltage detector, 112 ... Current detector, 111 ... Resistance detector, 113 ... Differentiation circuit, 114 ... Comparator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 正晴 神奈川県鎌倉市手広731−1 (56)参考文献 特開 昭57−199565(JP,A) 特開 昭58−29575(JP,A) ─────────────────────────────────────────────────── --- Continued from the front page (72) Inventor Masaharu Sato 731-1 Tehiro, Kamakura City, Kanagawa Prefecture (56) References JP-A-57-199565 (JP, A) JP-A-58-29575 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】短絡を伴う溶接に用いる電源の制御方法に
おいて、短絡時の溶接ワイヤと母材間の抵抗の時間的変
化dR/dtが溶接ワイヤと母材間の抵抗に定数を乗じ
たものと一定値との和である設定値を越えたとき、電源
の出力電流を低減することを特徴とする短絡移行溶接電
源の制御方法。
1. A method of controlling a power source used for welding with a short circuit, wherein the temporal change in resistance between the welding wire and the base material at the time of short circuit dR / dt is obtained by multiplying the resistance between the welding wire and the base material by a constant. And a constant value, the output current of the power supply is reduced when the value exceeds a set value.
【請求項2】出力電流可変の溶接電源と、溶接ワイヤと
母材間の抵抗を検出する抵抗検出手段と、検出された抵
抗値の時間的変化量を演算する手段と、抵抗の時間的変
化が設定手段で設定された溶接ワイヤと母材間の抵抗に
定数を乗じたものと一定値との和である設定値を越えた
ことを検出する比較手段とを備え、比較手段の信号によ
って溶接電源の出力電流を低減することを特徴とする短
絡移行溶接電源の制御装置。
2. A welding power source having a variable output current, a resistance detecting means for detecting a resistance between a welding wire and a base material, a means for calculating a temporal change amount of the detected resistance value, and a temporal change of the resistance. Is equipped with a comparison means for detecting that the resistance between the welding wire and the base metal set by the setting means is multiplied by a constant and exceeds a set value which is a constant value. A control device for a short-circuit transfer welding power source characterized by reducing the output current of the power source.
JP58074529A 1983-04-26 1983-04-26 Short-circuit transfer welding power source control method and apparatus Expired - Lifetime JPH069741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58074529A JPH069741B2 (en) 1983-04-26 1983-04-26 Short-circuit transfer welding power source control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58074529A JPH069741B2 (en) 1983-04-26 1983-04-26 Short-circuit transfer welding power source control method and apparatus

Publications (2)

Publication Number Publication Date
JPS59199173A JPS59199173A (en) 1984-11-12
JPH069741B2 true JPH069741B2 (en) 1994-02-09

Family

ID=13549919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58074529A Expired - Lifetime JPH069741B2 (en) 1983-04-26 1983-04-26 Short-circuit transfer welding power source control method and apparatus

Country Status (1)

Country Link
JP (1) JPH069741B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543219B2 (en) * 1998-12-24 2004-07-14 金 裕哲 Arc welding method
US6906284B2 (en) 1998-12-24 2005-06-14 You-Chul Kim Arc welding method
WO2005030421A1 (en) 2003-09-26 2005-04-07 Tsinghua University Method and system for reducing spatter in short circuit transition procedure for gas-shielded welding
JP4875390B2 (en) * 2006-03-27 2012-02-15 株式会社ダイヘン Constriction detection control method for consumable electrode arc welding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE425222B (en) * 1978-05-30 1982-09-13 Thermal Dynamics Corp SHORT REAR WELDING DEVICE
JPS57199565A (en) * 1981-06-02 1982-12-07 Toyota Motor Corp Short circuit transfer arc welding machine
JPS5829575A (en) * 1981-08-13 1983-02-21 Murase Kogyo Kk Electric power source device for welding

Also Published As

Publication number Publication date
JPS59199173A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
US5225660A (en) Consumable-electrode ac gas shield arc welding method and apparatus therefor
KR101642548B1 (en) Short arc welding system
JP4739874B2 (en) Constriction detection control method for consumable electrode arc welding
JP2011516270A (en) Method and system for increasing welding heat input during a short-circuit arc welding process
US6037554A (en) Consumable electrode type pulsed arc welder and controlling method for the same
JPS6352993B2 (en)
JP6524412B2 (en) Arc welding control method
CN108890081B (en) Method and apparatus for stabilizing arc length
JPH069741B2 (en) Short-circuit transfer welding power source control method and apparatus
JP2973714B2 (en) Pulse arc welding equipment
EP2576119B1 (en) Short arc welding system
JP5154872B2 (en) Output control method of pulse arc welding
JPH078434B2 (en) Short-circuit transfer welding power source control method and apparatus
JPH0938772A (en) Ac self-shielded arc welding method
JPS626775A (en) Consumable electrode type arc welding machine
JP5871360B2 (en) Constriction detection control method for consumable electrode arc welding
JP3736065B2 (en) Output control device for consumable electrode arc welding machine
JPH09150267A (en) Carbon dioxide shield arc welding
JPH0570549B2 (en)
JPS58224070A (en) Arc welding
JPH0557071B2 (en)
JPS59202176A (en) Method and device for controlling current for short circuit transfer welding
JPH06142927A (en) Consumable electrode pulse arc welding method
JPH0377029B2 (en)
JPS60223660A (en) Arc welding method