JP3489760B2 - Joining method - Google Patents

Joining method

Info

Publication number
JP3489760B2
JP3489760B2 JP18410195A JP18410195A JP3489760B2 JP 3489760 B2 JP3489760 B2 JP 3489760B2 JP 18410195 A JP18410195 A JP 18410195A JP 18410195 A JP18410195 A JP 18410195A JP 3489760 B2 JP3489760 B2 JP 3489760B2
Authority
JP
Japan
Prior art keywords
value
joined
members
joining
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18410195A
Other languages
Japanese (ja)
Other versions
JPH0929450A (en
Inventor
正雄 菊池
良裕 加柴
勝 岡田
隆夫 廣澤
裕太郎 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18410195A priority Critical patent/JP3489760B2/en
Publication of JPH0929450A publication Critical patent/JPH0929450A/en
Application granted granted Critical
Publication of JP3489760B2 publication Critical patent/JP3489760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】一対の被接合部材を一対の電極に
より所定の圧力で挟持して、被接合部材に電流を流し抵
抗発熱によって被接合部材同士を接合する接合方法に係
り、特に接合品質の安定化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining method of joining a pair of members to be joined with a pair of electrodes at a predetermined pressure, and applying a current to the members to be joined to each other by resistance heat generation. The stabilization of.

【0002】[0002]

【従来の技術】一般に、抵抗発熱を用いた接合方法は、
一対の被接合部材の接合箇所に電極を介して電流を供給
することによりジュール熱を発生させ、この熱により接
合箇所の溶融を引き起こして接合させるようにしたもの
である。今、この抵抗発熱を用いた接合方法において、
通電時間中における電極間の抵抗は図15に示すように
変化する。すなわち、通電初期には被接合部材の表面と
電極の表面とのミクロな接触点の拡がりや、表面汚染の
状態に依存して図中aで示す範囲のように減少の過程を
たどる。
2. Description of the Related Art Generally, a joining method using resistance heating is
A Joule heat is generated by supplying an electric current to the joining portion of a pair of members to be joined via an electrode, and the heat causes melting of the joining portion to join the members. Now, in the joining method using this resistance heating,
The resistance between the electrodes during the energization time changes as shown in FIG. That is, at the initial stage of energization, the micro contact point spreads between the surface of the member to be joined and the surface of the electrode, and the reduction process follows the range indicated by a in the figure depending on the state of surface contamination.

【0003】そして、初期表面接触抵抗は通電開始後数
サイクルで消滅し、温度上昇による固有抵抗の増加分お
よび被接合部材の軟化、圧潰による通電路面積の拡大過
程に移行する。次いで、図中bで示す範囲においては、
固有抵抗の増加分が通電路面積の拡大による抵抗減少分
を上回るため、電極間抵抗は増加する。さらに、接合が
進行してナゲットが生成、成長するとともに、被接合部
材の温度上昇が飽和領域に達するため、電極間の抵抗は
図中cで示す範囲のように減少する。
Then, the initial surface contact resistance disappears within several cycles after the start of energization, and the process proceeds to the process of increasing the specific resistance due to temperature rise and softening and crushing of the members to be joined to increase the area of the energizing path. Then, in the range indicated by b in the figure,
Since the increase in the specific resistance exceeds the decrease in the resistance due to the increase in the area of the current-carrying path, the inter-electrode resistance increases. Further, as the bonding progresses to generate and grow a nugget and the temperature rise of the members to be bonded reaches the saturation region, the resistance between the electrodes decreases as in the range indicated by c in the figure.

【0004】又、被接合部材内での発熱量は、接合品質
を左右する重要な要因となり、Q(発熱量)=I2(電
流値)×R(t)(電極および被接合部材内の抵抗値)
で概ね求めることができるため、発熱量の大小は被接合
部材の発熱による赤光状態、電極表面の観察、抜き取り
による強度測定等、経験的な判断に基づいて通電条件を
変更することにより、電極表面状態の経時変化による接
合品質への影響を抑制し、電極ドレシングおよび交換を
する方法が一般的に行われ、また、電極消耗に応じて接
合条件を自動的に制御する方法も行われている。
Further, the amount of heat generated in the members to be joined is an important factor that influences the joining quality, and Q (heat amount) = I 2 (current value) × R (t) (in the electrodes and the members to be joined). Resistance values)
Therefore, the amount of heat generation can be determined by changing the energization conditions based on empirical judgment, such as the red light state due to the heat generated by the members to be joined, observation of the electrode surface, and strength measurement by extraction. In general, a method of suppressing the influence of the surface condition over time on the bonding quality and performing electrode dressing and replacement, and a method of automatically controlling the bonding conditions according to the consumption of the electrode are also used. .

【0005】図16は例えば特開昭61−78579号
公報に記載されたこの種の従来の接合方法を実施するた
めの装置の構成を示すブロック図、図17は接合打点の
増加に伴う電極間抵抗の平均値の変化と、溶接品質を補
正するためのいくつかの消耗等級別に対応する境界値と
の関連を示す特性図である。一般的に、上記図15にお
いて説明した電極間抵抗の変化過程の中で、初期接触抵
抗消滅後の最小値は、電極消耗度に比例することが知ら
れている。したがって、図16における設定器1には図
17に示すように、電極消耗度等級を平均値の大きさで
区分し、各等級の境界値が予め設定されている。
FIG. 16 is a block diagram showing the construction of an apparatus for carrying out this type of conventional joining method described in, for example, Japanese Patent Laid-Open No. 61-78579, and FIG. It is a characteristic view which shows the change of the average value of resistance, and the boundary value corresponding to several consumption grades for correct | amending welding quality. It is generally known that the minimum value after the initial contact resistance disappears in the process of changing the interelectrode resistance described in FIG. 15 is proportional to the degree of electrode wear. Therefore, as shown in FIG. 17, the setter 1 in FIG. 16 divides the electrode wear degree grades according to the magnitude of the average value and presets the boundary value of each grade.

【0006】まず、任意サイクルの初期通電期間に、電
極2、3間の電圧および、トロイダルコイル4によって
測定される電流に基づいて、最低抵抗演算回路5におい
て電極2、3間の抵抗値が演算される。次いで、記憶保
持回路6において演算された抵抗値のうち最小値のみが
順次記憶されるとともに、これら最小値の平均値が平均
値演算回路7において算出される。
First, the resistance value between the electrodes 2 and 3 is calculated in the minimum resistance calculation circuit 5 based on the voltage between the electrodes 2 and 3 and the current measured by the toroidal coil 4 during the initial energization period of an arbitrary cycle. To be done. Next, only the minimum value among the resistance values calculated in the memory holding circuit 6 is sequentially stored, and the average value of these minimum values is calculated in the average value calculation circuit 7.

【0007】そして、このようにして算出された平均値
は比較演算回路8において、設定器1に設定される図7
に示す境界値と比較され、例えば境界値Iを越えると等
級Iから等級IIへと一段進め、等級IIで予め設定さ
れた諸条件と一致させるよう、位相制御点弧回路9によ
りサイリスタ10を制御して接合が行われる。このよう
に、従来の接合方法は電極消耗を電極間抵抗値で監視し
ながら接合条件を変えることにより、電極のドレシング
や交換の周期を伸ばし、生産性の向上を図るというもの
である。
Then, the average value thus calculated is set in the setter 1 in the comparison operation circuit 8 as shown in FIG.
The phase control ignition circuit 9 controls the thyristor 10 so as to make a further step from the class I to the class II when the boundary value I is exceeded and to match the preset conditions of the class II. Then, the joining is performed. As described above, the conventional joining method is to improve the productivity by changing the joining conditions while monitoring the electrode wear with the resistance value between the electrodes, thereby extending the period of dressing or replacement of the electrodes.

【0008】[0008]

【発明が解決しようとする課題】従来の抵抗発熱によっ
て被接合部材同士を接合する接合方法は以上のようにし
て行われているので、経験的な判断によって接合条件が
決められる一般的な接合方法では、作業者の熟練した高
度な技術に基づく判断力が必要であることは勿論のこ
と、安定した接合品質を得るためには作業に手間がかか
り人件費が増大する。又、電極消耗に対して順次接合条
件、すなわち通電電流を適正な値に変更していくことは
実作業上容易ではなく、接合品質の安定を求めることが
困難であるという問題点があった。
Since the conventional joining method for joining members to be joined by resistance heating is performed as described above, a general joining method in which joining conditions are determined by empirical judgment. Then, it is needless to say that the operator must have a judgment based on a highly advanced technique, and in order to obtain stable joining quality, the work is troublesome and the labor cost increases. Further, there is a problem that it is not easy in actual work to sequentially change the joining condition, that is, the applied current to an appropriate value with respect to electrode consumption, and it is difficult to obtain stable joining quality.

【0009】さらに又、図16に示すように溶接条件を
自動的に制御する方法を用いた場合は、軟鋼板のスポッ
ト溶接における電極先端径の拡大という限られた現象の
範囲内では、適用可能であると考えられるが、電極と被
接合部材との当接面が電極の方が大きい場合等、接合打
点毎における当たり具合のばらつきが大きく、且つその
ばらつき度合が刻々変化する場合や、軟鋼板以外の被接
合部材に適用する場合については考慮されていないため
追従できず、また、電極もしくは被接合部材の爆飛とい
った突発的な不良モードの発生が考慮されていないため
全自動化という点からは不十分であるという問題点があ
った。
Furthermore, when a method of automatically controlling welding conditions as shown in FIG. 16 is used, it can be applied within a limited phenomenon of expanding the electrode tip diameter in spot welding of mild steel plate. However, when the contact surface between the electrode and the member to be joined is larger than the electrode, there is a large variation in the degree of contact at each welding point, and the degree of variation varies momentarily, or the mild steel sheet. Since it is not considered when applied to other joined members other than, it is not possible to follow, and since the occurrence of sudden failure modes such as explosion of the electrode or the joined members is not considered, from the point of full automation There was a problem that it was insufficient.

【0010】この発明は上記のような問題点を解消する
ためになされたもので、電極表面の消耗に起因する電極
と被接合部材との当接状態の経時点変化を把握して、電
極の消耗度合を総合的に判定することによって、通電条
件を適正化すること、電極の交換時期を自動的に判定す
ること、および一接合打点中における接合条件のフィー
ドバック制御を行うことにより、常に接合品質を安定さ
せることが可能な接合方法を提供することを目的とする
ものである。
The present invention has been made in order to solve the above-mentioned problems, and grasps the change over time in the contact state between the electrode and the member to be joined due to the consumption of the electrode surface, and Welding quality is constantly evaluated by optimizing energization conditions by automatically determining the degree of wear, automatically determining the electrode replacement timing, and performing feedback control of the welding conditions during one welding point. It is an object of the present invention to provide a joining method capable of stabilizing the.

【0011】[0011]

【課題を解決するための手段】この発明の請求項1に係
る接合方法は、一対の被接合部材を一対の電極により所
定の圧力で挟持して被接合部材に電流を流し抵抗発熱に
よって被接合部材同士を接合する接合方法において、打
点毎に通電開始から所定時間後の両電極間の抵抗値を順
次測定するとともに打点の回数が所定の打点数に達した
時点で所定の打点数間における抵抗値の平均値およびば
らつき度合を算出しこれら算出値に応じて少なくとも通
電電流値または通電時間のいずれか一方の補正を行うよ
うにしたものである。
According to a first aspect of the present invention, there is provided a joining method in which a pair of electrodes are sandwiched by a pair of electrodes at a predetermined pressure, an electric current is passed through the members to be joined, and the members are joined by resistance heating. In the joining method of joining members, the resistance value between both electrodes is measured one after another for a predetermined time from the start of energization for each dot, and the resistance between the specified number of dots is reached when the number of dots reaches the specified number of dots. The average value and the degree of variation of the values are calculated, and at least one of the energization current value and the energization time is corrected according to these calculated values.

【0012】又、この発明の請求項2に係る接合方法
は、請求項1において、抵抗値は打点毎の最小値とした
ものである。
According to a second aspect of the present invention, in the first aspect, the resistance value is the minimum value for each dot.

【0013】又、この発明の請求項3に係る接合方法
は、一対の被接合部材を一対の電極により所定の圧力で
挟持して被接合部材に電流を流し抵抗発熱によって被接
合部材同士を接合する接合方法において、打点毎に接合
の状態を検出して状態が所定の状態に達するまでの時間
を順次測定するとともに打点の回数が所定の打点数に達
した時点で所定の打点数間における時間の平均値および
ばらつき度合を算出しこれら算出値に応じて少なくとも
通電電流値または通電時間のいずれか一方の補正を行う
ようにしたものである。
According to the third aspect of the present invention, the pair of members to be joined are sandwiched between the pair of electrodes at a predetermined pressure, an electric current is passed through the members to be joined, and the members to be joined are joined together by resistance heating. In the joining method, the time between the specified number of dots is measured at the time when the number of the dots reaches the specified number of dots and the time until the state reaches the specified state is detected by detecting the state of the connection for each dot. Is calculated, and at least one of the energization current value and the energization time is corrected according to these calculated values.

【0014】又、この発明の請求項4に係る接合方法
は、一対の被接合部材を一対の電極により所定の圧力で
挟持して被接合部材に電流を流し抵抗発熱によって被接
合部材同士を接合する接合方法において、打点毎に通電
開始から所定時間後の両電極間の抵抗値を順次測定する
とともに打点の回数が所定の打点数に達した時点で所定
の打点数間における抵抗値の平均値およびばらつき度合
を算出しこれら算出値に応じて少なくとも通電電流値ま
たは通電時間のいずれか一方の補正を行い、さらに、打
点毎に接合の状態を検出して状態が所定の状態に達する
までの時間を順次測定するとともに打点の回数が所定の
打点数に達した時点で所定の打点数間における時間の平
均値およびばらつき度合を算出しこれら算出値に応じて
補正された通電電流値または通電時間の補正を再び行う
ようにしたものである。
According to a fourth aspect of the present invention, the pair of members to be joined are sandwiched by a pair of electrodes at a predetermined pressure, an electric current is passed through the members to be joined, and the members to be joined are joined together by resistance heating. In the joining method, the resistance value between both electrodes after a predetermined time from the start of energization is sequentially measured for each dot and the average value of the resistance values between the predetermined number of dots is reached when the number of dots reaches the predetermined number of dots. And the degree of variation is calculated, at least one of the energizing current value and energizing time is corrected according to these calculated values, and the time until the state reaches the predetermined state by detecting the state of the joint at each dot. Is measured sequentially, and when the number of RBIs reaches the predetermined number of RBIs, the average value of the time between the predetermined number of RBIs and the degree of variation are calculated, and the energizing current corrected according to these calculated values. Or correction of the conduction time is obtained to perform again.

【0015】又、この発明の請求項5に係る接合方法
は、請求項1、3、4のいずれかにおいて、ばらつき度
合が所定の値に達したら接合加工を停止するようにした
ものである。
Further, a joining method according to a fifth aspect of the present invention is such that, in any one of the first, third, and fourth aspects, the joining process is stopped when the degree of variation reaches a predetermined value.

【0016】又、この発明の請求項6に係る接合方法
は、請求項3または4において、両電極間の抵抗値が最
大値に達した時点を所定の状態としたものである。
Further, a joining method according to a sixth aspect of the present invention is, in the third or fourth aspect, a predetermined state when a resistance value between both electrodes reaches a maximum value.

【0017】又、この発明の請求項7に係る接合方法
は、請求項3または4において、接合部に光ビームを照
射するとともに接合部で反射される反射光の量が所定の
値に達した時点を所定の状態としたものである。
Further, in the joining method according to claim 7 of the present invention, in claim 3 or 4, the amount of the reflected light reflected by the joining part while irradiating the joining part with a light beam has reached a predetermined value. The time is set to a predetermined state.

【0018】又、この発明の請求項8に係る接合方法
は、請求項3または4において、接合部近傍に被接合部
材よりも低い融点を有する部材を配設し部材の表面に光
ビームを照射するとともに部材の表面で反射される反射
光の量が所定の値に達した時点を所定の状態としたもの
である。
Further, the bonding method according to claim 8 of the present invention is the bonding method according to claim 3 or 4, wherein a member having a melting point lower than that of the members to be bonded is disposed in the vicinity of the bonding portion, and the surface of the members is irradiated with a light beam. At the same time, the time when the amount of light reflected by the surface of the member reaches a predetermined value is set to a predetermined state.

【0019】又、この発明の請求項9に係る接合方法
は、一対の被接合部材を一対の電極により所定の圧力で
挟持して被接合部材に電流を流し抵抗発熱によって被接
合部材同士を接合する接合方法において、打点毎に通電
開始から所定時間後の両電極間の最大抵抗値を順次測定
して最大抵抗値が予め設定された第1の基準値を越え、
且つ次の打点以降の最大抵抗値が予め設定された第2の
基準値を越えた場合に以降の接合加工を停止するように
したものである。
According to a ninth aspect of the present invention, a pair of electrodes to be joined are sandwiched between a pair of electrodes at a predetermined pressure, a current is passed through the members to be joined, and the members to be joined are joined together by resistance heating. In the joining method, the maximum resistance value between the electrodes is measured sequentially after a predetermined time has passed from the start of energization for each dot, and the maximum resistance value exceeds a preset first reference value,
Further, when the maximum resistance value after the next hitting point exceeds the preset second reference value, the subsequent joining process is stopped.

【0020】又、この発明の請求項10に係る接合方法
は、請求項9において、第1および第2の基準値を同値
としたものである。
According to a tenth aspect of the present invention, in the ninth aspect, the first and second reference values are the same.

【0021】又、この発明の請求項11に係る接合方法
は、請求項1ないし10のいずれかにおいて、被接合部
材と電極とがそれぞれ当接する各当接面の面積を、電極
の方がそれぞれ大に形成するようにしたものである。
Further, in a joining method according to an eleventh aspect of the present invention, in each of the first to tenth aspects, the area of each contact surface where the member to be joined and the electrode contact each other is larger for the electrode. It was designed to be large.

【0022】又、この発明の請求項12に係る接合方法
は、請求項1ないし10のいずれかにおいて、電極を被
接合部材より電気抵抗率の大きな材料で形成するように
したものである。
Further, a joining method according to a twelfth aspect of the present invention is the joining method according to any one of the first to tenth aspects, wherein the electrode is formed of a material having a larger electrical resistivity than the members to be joined.

【0023】又、この発明の請求項13に係る接合方法
は、請求項1ないし10のいずれかにおいて、両被接合
部材間に被接合部材よりも低い融点を有する導電性の部
材を介在させ部材を溶融させることにより被接合部材同
士を接合するようにしたものである。
The joining method according to a thirteenth aspect of the present invention is the joining method according to any one of the first to tenth aspects, wherein a conductive member having a melting point lower than that of the members to be joined is interposed between the members to be joined. The members to be joined are joined together by melting.

【0024】[0024]

【作用】この発明の請求項1における接合方法は、所定
の打点数間における両電極間の抵抗値の平均値およびば
らつき度合に応じて少なくとも通電電流値または通電時
間のいずれか一方の補正を行う。
In the joining method according to the first aspect of the present invention, at least one of the energization current value and the energization time is corrected in accordance with the average value and the degree of dispersion of the resistance value between both electrodes between the predetermined number of dots. .

【0025】又、この発明の請求項2における接合方法
は、打点毎に通電開始から所定時間後の電極間の抵抗値
の最小値を順次測定する。
Further, in the joining method according to the second aspect of the present invention, the minimum value of the resistance value between the electrodes is measured successively after a lapse of a predetermined time from the start of energization for each dot.

【0026】又、この発明の請求項3における接合方法
は、所定の打点数間における所定の状態に対するまでの
時間の平均値およびばらつき度合に応じて、少なくとも
通電電流値または通電時間のいずれか一方の補正を行
う。
Further, in the joining method according to the third aspect of the present invention, at least one of the energizing current value and the energizing time is determined depending on the average value and the degree of dispersion of the time until the predetermined state between the predetermined number of dots. Is corrected.

【0027】又、この発明の請求項4における接合方法
は、所定の打点数間における両電極間の抵抗値の平均値
およびばらつき度合に応じて少なくとも通電電流値また
は通電時間のいずれか一方の補正を行うとともに、所定
の打点数間における所定の状態に対するまでの時間の平
均値およびばらつき度合に応じて、通電電流値または通
電時間の補正を再び行う。
Further, in the joining method according to the fourth aspect of the present invention, at least one of the energization current value and the energization time is corrected in accordance with the average value and the degree of dispersion of the resistance value between both electrodes between the predetermined number of dots. At the same time, the energization current value or the energization time is corrected again according to the average value and the degree of dispersion of the time to the predetermined state between the predetermined number of dots.

【0028】又、この発明の請求項5における接合方法
は、所定の打点数間における両電極間の抵抗値のばらつ
き度合、または所定の打点数間における所定の状態に達
するまでの時間のばらつき度合が所定の値に達したら接
合加工を停止する。
Further, in the joining method according to the fifth aspect of the present invention, the degree of variation in the resistance value between the electrodes between the predetermined number of dots or the degree of variation in the time until the predetermined state is reached between the predetermined number of dots. When reaches a predetermined value, the joining process is stopped.

【0029】又、この発明の請求項6における接合方法
は、所定の打点数間における両電極間の抵抗値が最大値
に達するまでの時間の平均値およびばらつき度合に応じ
て、少なくとも通電電流値または通電時間のいずれか一
方の補正を行う。
Further, according to a sixth aspect of the present invention, in the joining method, at least the energizing current value is determined in accordance with the average value and the degree of dispersion of the time until the resistance value between both electrodes reaches the maximum value between the predetermined number of dots. Alternatively, either one of the energization times is corrected.

【0030】又、この発明の請求項7における接合方法
は、所定の打点数間における接合部に照射された光ビー
ムの反射光の量が所定の値に達するまでの時間の平均値
およびばらつき度合に応じて、少なくとも通電電流値ま
たは通電時間のいずれか一方の補正を行う。
Further, in the joining method according to the seventh aspect of the present invention, the average value and the variation degree of the time until the amount of the reflected light of the light beam applied to the joining portion between the predetermined number of spots reaches the predetermined value. Accordingly, at least one of the energizing current value and the energizing time is corrected.

【0031】又、この発明の請求項8における接合方法
は、所定の打点数間における接合部近傍に配設された部
材に照射された光ビームの反射光の量が所定の値に達す
るまでの時間の平均値およびばらつき度合に応じて、少
なくとも通電電流値または通電時間のいずれか一方の補
正を行う。
Further, in the joining method according to the eighth aspect of the present invention, until the amount of reflected light of the light beam applied to the member arranged in the vicinity of the joining portion during a predetermined number of hit points reaches a predetermined value. At least one of the energizing current value and the energizing time is corrected according to the average value of time and the degree of variation.

【0032】又、この発明の請求項9における接合方法
は、両電極間の最大抵抗値が予め設定された第1の基準
値を越え、且つ次の打点以降の最大抵抗値が予め設定さ
れた第2の基準値を越えた場合に以降の接合加工を停止
する。
In the joining method according to claim 9 of the present invention, the maximum resistance value between both electrodes exceeds the preset first reference value, and the maximum resistance value after the next dot is preset. When the second reference value is exceeded, the subsequent joining process is stopped.

【0033】又、この発明の請求項10における接合方
法は、第1の基準値および第2の基準値を同値とするこ
とにより、両判断回路に互換性を持たせることができ
る。
In the joining method according to the tenth aspect of the present invention, the determination circuits can be made compatible by setting the first reference value and the second reference value to the same value.

【0034】又、この発明の請求項11における接合方
法は、被接合部材の当接面より電極の当接面の方が面積
を大にすることにより、接合加工の進行に伴う電極表面
の被接合部材へのなじみを積極的に引き起こし、通電路
の拡大を図って接合品質の向上を達成する。
In the joining method according to the eleventh aspect of the present invention, the contact surface of the electrode is made larger in area than the contact surface of the member to be joined, so that the electrode surface is covered with the progress of the joining process. By actively causing familiarity with the joining members, the energization path is enlarged and the joining quality is improved.

【0035】又、この発明の請求項12における接合方
法は、電極を被接合部材より電気抵抗率の大きな材料で
形成することにより、接合加工の進行に伴う電極表面の
被接合部材へのなじみを積極的に引き起こし、通電路の
拡大を図って接合品質の向上を達成し、電極変形による
電極内部での抵抗値の変化を明確にとらえて測定を容易
にする。
Further, in the joining method according to the twelfth aspect of the present invention, the electrode is formed of a material having a larger electric resistivity than the members to be joined, so that the surface of the electrode becomes familiar with the member to be joined as the joining process progresses. By positively inducing it, the energization path is expanded to improve the joining quality, and the change in the resistance value inside the electrode due to the electrode deformation is clearly captured to facilitate the measurement.

【0036】又、この発明の請求項13における接合方
法は、両被接合部材間に介在される被接合部材よりも低
い融点を有する導電性部材を溶融させて接合することに
より、被接合部材の過度の発熱・変形を抑制し電極間の
抵抗値の変化過程を精度よく検出する。
In the joining method according to the thirteenth aspect of the present invention, the conductive member having a melting point lower than that of the joined members interposed between the joined members is melted and joined to form the joined members. It suppresses excessive heat generation and deformation and accurately detects the changing process of the resistance value between electrodes.

【0037】[0037]

【実施例】【Example】

実施例1.以下、この発明の実施例を図について説明す
る。図1はこの発明の実施例1における接合方法を適用
した接合装置の構成を示すブロック図、図2は接合打点
の増加に伴う電極間抵抗値の変化および、電極間抵抗値
の200打点毎の平均値、偏差値をそれぞれ示す曲線
図、図3は被接合部材間にそれよりも融点の低いろう材
を挟んで接合加工した場合の通電時間中における電極間
抵抗の変化を示す曲線図、図4は図2に示す電極間抵抗
値の平均値および偏差値に応じて通電電流値および通電
時間を変更、または、接合加工を中止して電極交換時期
を判定するための基準テーブルの一例を示す図である。
Example 1. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a joining apparatus to which the joining method according to the first embodiment of the present invention is applied, and FIG. 2 shows a change in inter-electrode resistance value with an increase in joining points and an inter-electrode resistance value at every 200 points. FIG. 3 is a curve diagram showing an average value and a deviation value, and FIG. 3 is a curve diagram showing a change in inter-electrode resistance during energization when joining is performed by sandwiching a brazing material having a lower melting point between the members to be joined. 4 shows an example of a reference table for changing the energizing current value and energizing time according to the average value and deviation value of the interelectrode resistance value shown in FIG. 2 or for stopping the joining process and determining the electrode replacement time. It is a figure.

【0038】図において、11、12は一対の被接合部
材、13、14はこれら両被接合部材11、12を所定
の圧力で挟持する一対の電極、15は両電極13、14
間の電圧を検出する電圧検出部、16はトロイダルコイ
ル17を介して、両電極13、14間に流れる電流を検
出する電流検出部、18はこれら電圧検出部15および
電流検出部16によって検出された電圧値、電流値か
ら、両電極13、14間の抵抗値を順次演算する抵抗演
算回路、19は打点毎に通電開始から所定時間後の各抵
抗値を記憶、保持する記憶保持回路、20はこの記憶保
持回路19に保持される抵抗値の所定の打点数間の平均
値を算出する平均値算出回路である。
In the figure, 11 and 12 are a pair of members to be joined, 13 and 14 are a pair of electrodes that sandwich these members to be joined 11 and 12 with a predetermined pressure, and 15 is both electrodes 13 and 14.
A voltage detection unit for detecting a voltage between them, 16 is a current detection unit for detecting a current flowing between the electrodes 13 and 14 via the toroidal coil 17, and a detection unit 18 is detected by the voltage detection unit 15 and the current detection unit 16. A resistance calculation circuit that sequentially calculates the resistance value between the electrodes 13 and 14 from the voltage value and the current value. Reference numeral 19 is a memory holding circuit that stores and holds each resistance value after a predetermined time from the start of energization for each dot. Is an average value calculation circuit for calculating the average value of the resistance values held in the memory holding circuit 19 between a predetermined number of dots.

【0039】21は記憶保持回路19に保持される抵抗
値の所定の打点数間のばらつき度、例えば一般的な標準
偏差を算出する標準偏差算出回路、22は予め基準の平
均値および標準偏差値を設定して収納する基準設定回
路、23はこの基準設定回路22に収納される基準の平
均値と、平均値算出回路20で算出される平均値とを比
較する第1の比較演算回路、24は基準設定回路22に
収納される基準の標準偏差値と、標準偏差算出回路21
で算出される標準偏差値とを比較する第2の比較演算回
路、25は両比較演算回路23、24の比較結果に応じ
て電流値および通電時間を、通電制御部26を介して変
更、補正する通電条件演算回路である。
Reference numeral 21 is a standard deviation calculation circuit for calculating the degree of variation in the resistance value held in the memory holding circuit 19 between predetermined number of dots, for example, a standard deviation calculation circuit, and 22 is a reference average value and standard deviation value in advance. A reference setting circuit for setting and storing the reference value 23, a first comparison arithmetic circuit 23 for comparing the reference average value stored in the reference setting circuit 22 with the average value calculated by the average value calculation circuit 20, 24 Is the standard deviation value of the standard stored in the standard setting circuit 22, and the standard deviation calculation circuit 21.
The second comparison operation circuit for comparing with the standard deviation value calculated in step 25, the current value and the energization time are changed and corrected via the energization controller 26 in accordance with the comparison result of both comparison operation circuits 23, 24. Is an energization condition calculating circuit.

【0040】今、接合打点の増加に伴う電極13、14
間の抵抗値の推移を実験的に測定し、200打点毎の平
均値および標準偏差値を求めると図2に示すようにな
る。図から明らかなように各電極13、14と被接合部
材11、12との当接状態は、電極交換直後の初期領域
dにおいては電極13、14の変形が過渡的に変化して
いくため、被接合部材11、12の位置によってばらつ
きが生じる。
Now, the electrodes 13 and 14 accompanying the increase in the number of joining points
The transition of the resistance value during the experiment is experimentally measured, and the average value and the standard deviation value for every 200 dots are obtained as shown in FIG. As is clear from the figure, in the contact state between the electrodes 13 and 14 and the members to be joined 11 and 12, the deformation of the electrodes 13 and 14 changes transiently in the initial region d immediately after the electrode replacement. Variation occurs depending on the positions of the members to be joined 11 and 12.

【0041】その後、接合加工が進行するにつれて電極
13、14の表面が被接合部材11、12になじむよう
な形状に変形するため、電極13、14間の抵抗値は小
さくなる傾向を示し、ばらつき度合、すなわち標準偏差
値についても、初期領域dに比べて小さくなり、加工の
安定領域eにはいる。そして、この状態が続くと電極1
3、14のなじみ変形によって通電路が拡大し、電流値
が一定に制御されている場合には、抵抗の減少に伴って
発熱が不足し接合品質に影響を及ぼすことになる。
After that, as the bonding process progresses, the surfaces of the electrodes 13 and 14 are deformed into a shape conforming to the members 11 and 12 to be bonded, so that the resistance value between the electrodes 13 and 14 tends to be small, and variations occur. The degree, that is, the standard deviation value, is smaller than that in the initial area d, and is in the stable area e for processing. If this state continues, electrode 1
When the current path is expanded due to the conforming deformation of Nos. 3 and 14, and the current value is controlled to be constant, heat generation becomes insufficient as the resistance decreases, and the joining quality is affected.

【0042】さらに、接合加工を続行すると、電極1
3、14の表面の過度の変形が、被接合部材11、12
の位置ばらつきを自立的に補正できる限界を逸脱する
か、爆飛、凝着の発生によって電極13、14の表面の
形状が突発的に劣化して、当接状態のばらつき度合が増
大する不安定領域fに突入する。この不安定領域fでは
発熱状態のばらつきを誘発し、接合加工の継続が困難に
なる。
When the joining process is further continued, the electrode 1
Excessive deformation of the surfaces of the members 3 and 14 causes the members 11 and 12 to be joined.
Deviates from the limit that can independently correct the position variation of the electrode, or the shape of the surface of the electrodes 13 and 14 suddenly deteriorates due to the occurrence of bombing and adhesion, and the degree of variation of the contact state increases. Enter the area f. In this unstable region f, variation in the heat generation state is induced, and it becomes difficult to continue the joining process.

【0043】又、被接合部材11、12間にそれよりも
融点の低いろう材を挟んでろう付けをした場合の通電時
間中における電極13、14間の抵抗値は、図3に示す
ように通電開始後5〜10サイクル程度の初期は接触抵
抗の低下により減少し、以降は固有抵抗の増加、または
ろう材溶融時の抵抗変化も少なく安定するため、通電開
始後10サイクル以降の早い時期で抵抗値を算出するよ
うにすれば、安定して正確な値を得ることができる。
When the brazing material having a lower melting point is sandwiched between the members 11 and 12 to be joined, the resistance value between the electrodes 13 and 14 during the energization time is as shown in FIG. In the initial stage of about 5 to 10 cycles after the start of energization, it decreases due to the decrease of the contact resistance, and thereafter, the increase of the specific resistance or the resistance change during the melting of the brazing material is small and stable. If the resistance value is calculated, a stable and accurate value can be obtained.

【0044】したがって、上記のように構成された実施
例1における接合装置では、まず、電圧検出部15によ
って両電極13、14間の電圧を、また、電流検出部1
6によって両電極13、14間の通電電流をそれぞれ検
出する。そして、これら検出された電圧値および電流値
に基づいて、抵抗演算回路18では両電極13、14間
の抵抗値が順次演算される。次いで、記憶保持回路19
で打点毎に通電開始から所定時間後の各抵抗値、例え
ば、図15に示す最小抵抗値をそれぞれ記憶、保持す
る。この場合、最小抵抗値は初期の接触状態の変化に影
響されず、電極13、14と被接合部材11、12との
当接状態を反映した値なので、正確な値の把握が可能と
なる。
Therefore, in the bonding apparatus according to the first embodiment configured as described above, first, the voltage detecting unit 15 detects the voltage between the electrodes 13 and 14 and the current detecting unit 1 first.
The current flowing between the electrodes 13 and 14 is detected by 6 respectively. Then, the resistance value between the electrodes 13 and 14 is sequentially calculated in the resistance calculation circuit 18 based on the detected voltage value and current value. Next, the memory holding circuit 19
At, each resistance value after a predetermined time from the start of energization, for example, the minimum resistance value shown in FIG. 15 is stored and held. In this case, the minimum resistance value is not affected by the change in the initial contact state and reflects the contact state between the electrodes 13 and 14 and the members to be joined 11 and 12, so that the accurate value can be grasped.

【0045】続いて、記憶保持回路19に記憶された各
抵抗値から、平均値算出回路20では所定の打点数間の
平均値が、また、標準偏差値算出回路21では所定の打
点数間のばらつき度、例えば一般的な標準偏差値がそれ
ぞれ算出される。そして、これら算出された平均値およ
び標準偏差値は、それぞれ第1および第2の比較演算回
路23、24により、基準設定回路22に予め設定して
収納される基準の平均値および基準の標準偏差値と比較
演算され、比較演算された結果に応じて通電条件演算回
路25により通電電流値および通電時間、すなわち通電
条件が演算され、この通電条件により通電制御部26で
具体的な制御が行われる。
Subsequently, from the resistance values stored in the storage holding circuit 19, the average value calculation circuit 20 gives the average value between the predetermined number of dots and the standard deviation value calculation circuit 21 gives the average value between the predetermined number of dots. The degree of variation, for example, a general standard deviation value is calculated. Then, the calculated average value and standard deviation value are the standard average value and standard standard deviation stored in advance in the standard setting circuit 22 by the first and second comparison operation circuits 23 and 24, respectively. The energization condition calculation circuit 25 calculates the energization current value and the energization time, that is, the energization condition according to the result of the comparison calculation, and the energization control unit 26 specifically controls the energization condition. .

【0046】次に、通電条件の決定ならびにこの通電条
件に基づく具体的な制御方法についてもう少し詳しく説
明する。図2に示すように、まず初期領域dにおいて
は、標準偏差値および平均値が共に大きいため、通電電
流値を抑え通電時間を長くすることにより、局部的な過
度の入熱を抑えながら概ね均熱を図る。そして、電極1
3、14と被接合部材11、12のなじみが進行し、標
準偏差値および平均値は徐々に減少するため、これに伴
って通電電流値を増大させるとともに、過度の入熱を抑
えるために通電時間を短くして行く。
Next, the determination of the energization condition and the specific control method based on this energization condition will be described in a little more detail. As shown in FIG. 2, first, in the initial region d, both the standard deviation value and the average value are large. Therefore, the energization current value is suppressed and the energization time is lengthened, so that the local excessive heat input is suppressed and the substantially uniform heat input is achieved. Get the heat. And the electrode 1
3, 14 and the members 11, 12 to be joined progress, and the standard deviation value and the average value gradually decrease. Therefore, the energization current value is increased accordingly, and the energization is performed to suppress excessive heat input. Shorten the time.

【0047】次いで、安定領域eでは平均値の低下にし
たがって通電電流値を増大させて発熱不足を補償する。
そして、不安定領域fではばらつき度合、すなわち標準
偏差値の増大に伴って再び通電電流値を下げるとともに
通電時間を長くする。さらに、標準偏差値が予め設定し
た値を越えると、電極13、14の消耗が過度と判定し
て接合加工を中止し、電極13、14の交換を行う。
Next, in the stable region e, the energization current value is increased as the average value decreases to compensate for insufficient heat generation.
Then, in the unstable region f, the energization current value is decreased again and the energization time is lengthened as the variation degree, that is, the standard deviation value increases. Further, when the standard deviation value exceeds a preset value, it is determined that the electrodes 13 and 14 have been consumed excessively, the joining process is stopped, and the electrodes 13 and 14 are replaced.

【0048】このように通電条件は電極13、14間の
抵抗値の平均値および標準偏差値によって決めることが
できるのは明らかであり、図4に示した基準テーブルの
ように実際に実験的な加工を行うことで、定量的に数値
を決定することができ、又、基準テーブルの条件数も電
極13、14や被接合部材11、12の構成といった接
合加工の形態によって実験的に決定することができる。
As described above, it is obvious that the energization condition can be determined by the average value and the standard deviation value of the resistance values between the electrodes 13 and 14, and it is actually experimental as in the reference table shown in FIG. By performing the processing, the numerical value can be quantitatively determined, and the condition number of the reference table can be experimentally determined depending on the mode of the bonding processing such as the configurations of the electrodes 13 and 14 and the members 11 and 12 to be bonded. You can

【0049】例えば、電極間抵抗の平均値Rおよび標準
偏差値σから、下記式(1)、(2)に基づいて次打点
の適正な通電電流値Ioptおよび通電時間toptを求める
ことができる。 Iopt=k1(Ri−R)+k2(σi−σ)+Iref・・・・・(1) topt=k3(Ri−R)+k4(σi−σ)+tref・・・・・(2) ここで、Iref、trefは予め実験的に求められる基準と
なる通電電流値および通電時間、k1〜k4はそれぞれ実
験的に求めることができる係数、Riおよびσiは実験的
に求められる基準となる電極間抵抗の平均値および標準
偏差値である。したがって、通電条件演算回路25では
上記式(1)、(2)に基づいて基準テーブルを設定
し、この基準テーブルに従って通電条件の変更を行う。
For example, an appropriate energizing current value I opt and energizing time t opt at the next welding point can be obtained from the average value R of the interelectrode resistance and the standard deviation value σ based on the following equations (1) and (2). it can. I opt = k 1 (R i −R) + k 2i −σ) + I ref (1) t opt = k 3 (R i −R) + k 4i −σ) + t ref (2) Here, I ref and t ref are conducting current values and conducting times that serve as a reference that are experimentally obtained in advance, k 1 to k 4 are coefficients that can be experimentally obtained, and R i and σ i are the average value and standard deviation value of the interelectrode resistance, which is a reference experimentally obtained. Therefore, the energization condition calculation circuit 25 sets a reference table based on the above equations (1) and (2), and changes the energization condition according to this reference table.

【0050】電極間抵抗の平均値Rおよび標準偏差値σ
の算出に用いられる所定の打点数についても接合加工の
形態によって異なり、数十点ないし数百点から実験的に
検証を行って決定するのが簡便且つ有効である。また、
この平均値Rおよび標準偏差値σは現在打点している直
前の所定の打点数での値であり、次の打点時には更新さ
れて最も古い打点数での値は除外される。
Average value R and standard deviation value σ of interelectrode resistance
The predetermined number of points used for the calculation also varies depending on the form of the joining process, and it is simple and effective to experimentally determine from several tens to several hundreds of points. Also,
The average value R and the standard deviation value σ are values at a predetermined number of dots immediately before the current point is hit, and are updated at the next dot, and the value at the oldest number of dots is excluded.

【0051】このように上記実施例1によれば、所定の
打点数間における電極間抵抗値の平均値および標準偏差
値を算出し、この算出値に応じて通電電流値および通電
時間の補正を行うとともに、標準偏差値が所定の値に達
したら接合加工を停止するようにしたので、接合品質の
向上を図ることができ、また、電極間抵抗値は打点毎の
最小値を測定するようにしたので、正確な値の把握が可
能になる。
As described above, according to the first embodiment, the average value and the standard deviation value of the interelectrode resistance value between the predetermined number of dots are calculated, and the energization current value and the energization time are corrected according to the calculated values. At the same time, the joining process is stopped when the standard deviation reaches a predetermined value, so the joining quality can be improved, and the inter-electrode resistance value is measured at the minimum value for each dot. As a result, it is possible to grasp the accurate value.

【0052】実施例2.尚、上記実施例1では、算出さ
れた電極間抵抗値の平均値および標準偏差値に応じて、
通電電流値および通電時間の補正を行う場合について説
明したが、適宜通電電流値および通電時間のうちのいず
れか一方を補正するようにしても良く、上記実施例1の
場合と同様の効果を得ることができる。
Example 2. In addition, in the above-mentioned Example 1, according to the average value and standard deviation value of the calculated inter-electrode resistance value,
Although the case where the energization current value and the energization time are corrected has been described, either one of the energization current value and the energization time may be appropriately corrected, and the same effect as in the case of the first embodiment is obtained. be able to.

【0053】実施例3.図5はこの発明の実施例3にお
ける接合方法を適用した接合装置の構成を示すブロック
図である。図において、上記実施例1におけると同様な
部分は同一符号を付して説明を省略する。27は所定の
接合状態に達した時間、例えば抵抗演算回路18で演算
される電極間抵抗が、最大値に達するまでの時間を打点
毎に演算する加工時間演算回路、28はこの加工時間演
算回路27で演算された各時間を記憶、保持する記憶保
持回路、29、30はこの記憶保持回路28に保持され
た時間の所定の打点数間の平均値および標準偏差値をそ
れぞれ算出する平均値算出回路および標準偏差値算出回
路である。
Example 3. FIG. 5 is a block diagram showing the configuration of a joining device to which the joining method according to the third embodiment of the present invention is applied. In the figure, the same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. Reference numeral 27 denotes a processing time calculation circuit for calculating, for each dot, the time required to reach a predetermined bonding state, for example, the time until the inter-electrode resistance calculated by the resistance calculation circuit 18 reaches the maximum value, and 28 denotes this processing time calculation circuit. A memory holding circuit for storing and holding each time calculated in 27, 29 and 30 are average value calculation for calculating an average value and a standard deviation value between the predetermined number of dots of the time held in the memory holding circuit 28, respectively. It is a circuit and a standard deviation value calculation circuit.

【0054】31は予め基準の平均値および標準偏差値
を設定して格納する基準設定回路、32はこの基準設定
回路31に収納される基準の平均値と、平均値算出回路
29で算出される平均値とを比較する第1の比較演算回
路、33は基準設定回路31に収納される基準の標準偏
差値と、標準偏差値算出回路30で算出される標準偏差
値とを比較する第2の比較演算回路、34は両比較演算
回路32、33の比較結果に応じて通電電流値および通
電時間を、通電制御部26を介して変更、補正する通電
条件演算回路である。
Reference numeral 31 is a reference setting circuit for setting and storing the reference average value and standard deviation value in advance, and 32 is the reference average value stored in the reference setting circuit 31, and is calculated by the average value calculating circuit 29. A first comparison operation circuit for comparing the average value, 33 is a second comparison operation circuit for comparing the standard deviation value of the standard stored in the standard setting circuit 31 and the standard deviation value calculated by the standard deviation value calculation circuit 30. The comparison operation circuit 34 is an energization condition operation circuit that changes and corrects the energization current value and the energization time through the energization control unit 26 according to the comparison result of both comparison operation circuits 32 and 33.

【0055】上記のように構成された実施例3における
接合装置においては、加工時間演算回路27により、抵
抗演算回路18で演算される電極間抵抗が、最大値に達
するまでの時間を打点毎に演算し、この演算された時間
の所定の打点数間における平均値および標準偏差値を平
均値算出回路29および標準偏差値算出回路30で算出
し、この算出値に応じて通電条件演算回路34により通
電電流値および通電時間の補正を行うとともに、標準偏
差値が所定の値に達したら接合加工を停止する。
In the joining apparatus according to the third embodiment having the above-described structure, the machining time calculating circuit 27 causes the interelectrode resistance calculated by the resistance calculating circuit 18 to reach the maximum value at each dot. The average value and the standard deviation value are calculated by the average value calculation circuit 29 and the standard deviation value calculation circuit 30 during a predetermined number of dots for the calculated time, and the energization condition calculation circuit 34 is calculated according to the calculated value. The energizing current value and energizing time are corrected, and when the standard deviation value reaches a predetermined value, the joining process is stopped.

【0056】このように上記実施例3によれば、所定の
打点数間における電極間抵抗が最大値に達するまでの時
間の平均値および標準偏差値に応じて、通電電流値およ
び通電時間の補正を行うようにしているので、電極消耗
という経時的な変還に伴う接合品質変化過程、特には接
合不足移行過程あるいは過剰な電極消耗時の電極診断を
行うことが可能になり、接合品質をより向上させること
ができる。
As described above, according to the third embodiment, the energization current value and the energization time are corrected in accordance with the average value and the standard deviation value of the time until the interelectrode resistance reaches the maximum value during the predetermined number of dots. Therefore, it is possible to perform electrode diagnosis during the process of changing the bonding quality due to the change over time of electrode consumption, especially the transition process of insufficient bonding or excessive electrode consumption, and to improve the bonding quality. Can be improved.

【0057】実施例4.図6はこの発明の実施例4にお
ける接合方法を適用した接合装置の構成を示すブロック
図、図7は図6における受光器の受光量の変化を示す曲
線図である。図において、上記各実施例におけると同様
な部分は同一符号を付して説明を省略する。35は両被
接合部材11、12間に挟持され、両被接合部材11、
12より低い融点を有するろう材、36は光ビーム源、
37はこの光ビーム源36と対向して配設される受光
器、38は光ビーム源36からろう材が溶融排出される
箇所に照射される光ビームで、照射位置からそれぞれ異
なる方向に反射光38a、38bが反射される。
Example 4. FIG. 6 is a block diagram showing the configuration of a joining device to which the joining method according to the fourth embodiment of the present invention is applied, and FIG. 7 is a curve diagram showing changes in the amount of light received by the light receiver in FIG. In the figure, the same parts as those in each of the above-described embodiments are designated by the same reference numerals, and the description thereof will be omitted. 35 is sandwiched between both members 11 and 12 to be joined,
A brazing material having a melting point lower than 12, 36 is a light beam source,
Numeral 37 is a light receiver arranged to face the light beam source 36, and numeral 38 is a light beam which is irradiated from the light beam source 36 to a portion where the brazing material is melted and discharged. 38a and 38b are reflected.

【0058】39は受光器37で検出される受光量を電
圧に変換する光電変換回路、40はこの光電変換回路3
9で変換された電圧変換値を、例えば図7に示すように
予め設定された閾値Vthと比較して、これを越えるとろ
う材35の排出を検出する比較演算回路、41はこの比
較演算回路40で検出されるろう材35が排出されるま
での時間を、打点毎に演算する加工時間演算回路、42
はこの加工時間演算回路41で演算された各時間を記
憶、保持する記憶保持回路、43、44はこの記憶保持
回路42に保持された時間の所定の打点数間の平均値お
よび標準偏差値をそれぞれ算出する平均値算出回路およ
び標準偏差値算出回路である。
Reference numeral 39 is a photoelectric conversion circuit for converting the amount of light received by the light receiver 37 into voltage, and 40 is this photoelectric conversion circuit 3.
The voltage conversion value converted in 9 is compared with, for example, a preset threshold value V th as shown in FIG. 7, and when it exceeds the threshold value Vth , a comparison operation circuit for detecting discharge of the brazing material 35, 41 is this comparison operation. A processing time calculation circuit that calculates the time until the brazing material 35 is discharged, which is detected by the circuit 40, for each dot, 42
Is a memory holding circuit for storing and holding each time calculated by the machining time calculating circuit 41, and 43 and 44 are the average value and standard deviation value of the times held in the memory holding circuit 42 between the predetermined number of dots. They are an average value calculation circuit and a standard deviation value calculation circuit which respectively calculate.

【0059】45は予め基準の平均値および標準偏差値
を設定して格納する基準設定回路、46はこの基準設定
回路45に収納される基準の平均値と、平均値算出回路
43で算出される平均値とを比較する第1の比較演算回
路、47は基準設定回路45に収納される基準の標準偏
差値と、標準偏差値算出回路44で算出される標準偏差
値とを比較する第2の比較演算回路、48は両比較演算
回路46、47の比較結果に応じて通電電流値および通
電時間を、通電制御部26を介して変更、補正する通電
条件演算回路である。
Reference numeral 45 is a reference setting circuit for setting and storing the reference average value and standard deviation value in advance, and 46 is the reference average value stored in the reference setting circuit 45 and calculated by the average value calculating circuit 43. A first comparison operation circuit for comparing the average value, and a second reference operation circuit 47 for comparing the standard deviation value of the standard stored in the standard setting circuit 45 and the standard deviation value calculated by the standard deviation value calculation circuit 44. The comparison operation circuit 48 is an energization condition operation circuit that changes and corrects the energization current value and the energization time via the energization control unit 26 according to the comparison result of both comparison operation circuits 46 and 47.

【0060】上記のように構成された実施例4における
接合装置は、被接合部材11、12間にろう材35を挟
持しこれを溶融することにより接合するろう付け加工に
おいて、まず、温度上昇に伴ってろう材35が溶融し被
接合部材11、12間から排出される位置に、光ビーム
源36から光ビーム38を照射し、その反射光38aを
受光器37によって検出する。この時、受光器37で検
出される受光量は、ろう材35の排出具合に伴って反射
光38aの一部が異なる方向に反射光38bとして反射
されるため変化し、図7に示すようにg〜hからiとい
うように減少する。
In the joining apparatus according to the fourth embodiment having the above-described structure, in the brazing process for holding the brazing material 35 between the members to be joined 11 and 12 and melting the brazing material 35 to join the brazing material 35, first, the temperature rises. Accordingly, the light beam 38 is emitted from the light beam source 36 to the position where the brazing material 35 is melted and discharged from between the members 11 and 12 to be joined, and the reflected light 38 a is detected by the light receiver 37. At this time, the amount of light received by the light receiver 37 changes as part of the reflected light 38a is reflected in different directions as the reflected light 38b as the brazing material 35 is discharged, and as shown in FIG. It decreases from g to h, and so on.

【0061】このため、例えば比較演算回路40によっ
て閾値Vthと光電変換回路39で得られる電圧変換値と
を比較することにより、ろう材35の排出をとらえるこ
とができる。この際、例えば通電開始から上記比較によ
ってろう材35の排出を検出するまでの時間は、接合加
工中における発熱状態、すなわち電極消耗状態に大きく
依存する。時間が長い場合には発熱が小さく、時間が短
い場合には発熱が大きいことを示す。したがって、打点
毎に閾値Vthに達するまでの時間を加工時間記憶保持回
路41によって演算し、これら演算によって得られた各
時間は記憶保持回路42に記憶、保持される。
Therefore, for example, by comparing the threshold value V th with the voltage conversion value obtained by the photoelectric conversion circuit 39 by the comparison operation circuit 40, the discharge of the brazing material 35 can be caught. At this time, for example, the time from the start of energization until the discharge of the brazing material 35 is detected by the above comparison largely depends on the heat generation state during the bonding process, that is, the electrode wear state. When the time is long, the heat generation is small, and when the time is short, the heat generation is large. Therefore, the processing time storage / holding circuit 41 calculates the time until the threshold value V th is reached for each hit point, and the respective times obtained by these calculations are stored and held in the storage / holding circuit 42.

【0062】以下、このようにして記憶、保持された各
時間から、平均値算出回路43および標準偏差値算出回
路44によって、所定の打点数間における平均値および
標準偏差値が算出され、これら平均値および標準偏差値
はそれぞれ第1および第2の比較演算回路46によっ
て、基準設定回路45に収納された各基準の平均値およ
び標準偏差値と比較演算され、この比較演算された結果
に応じて通電条件演算回路48により通電電流値および
通電時間、すなわち通電条件が演算され通電制御部26
を介して制御が行われる。
Thereafter, the average value calculation circuit 43 and the standard deviation value calculation circuit 44 calculate the average value and the standard deviation value between the predetermined number of dots from the respective times stored and held in this way. The value and the standard deviation value are respectively compared and calculated by the first and second comparison operation circuits 46 with the average value and the standard deviation value of each reference stored in the reference setting circuit 45, and according to the result of the comparison operation. The energization condition calculation circuit 48 calculates the energization current value and the energization time, that is, the energization condition, and the energization control unit 26.
Control is performed via.

【0063】このように上記実施例4によれば、所定の
打点数間におけるろう材35が検出されるまでの時間の
平均値および標準偏差値に応じて、通電電流値および通
電時間の補正を行うようにしているので、接合加工、す
なわち、ろう付け加工の進行状態、すなわち品質の程度
を直接的且つ定量的にとらえることが可能になり、接合
品質をより向上させることができる。
As described above, according to the fourth embodiment, the energization current value and the energization time are corrected according to the average value and the standard deviation value of the time until the brazing material 35 is detected between the predetermined number of dots. Since it is performed, it is possible to directly and quantitatively grasp the progress of the joining process, that is, the brazing process, that is, the degree of quality, and it is possible to further improve the joining quality.

【0064】実施例5.尚、上記実施例4では、被接合
部材11、12間に介装されるろう材35の排出を、光
ビーム38の反射光38aの光量変化により検出して、
接合状態を判別する場合について説明したが、例えば、
電極13、14の側面13、14等のような接合部の近
傍に、被接合部材11、12よりも低い融点を有する部
材を配設し、この部材の表面に光ビームを照射し、この
部材の溶融による反射光の光量の変化により、接合状態
を判別するようにしても良く、上記実施例4の場合と同
様の効果を発揮し得ることは勿論のこと、溶融状態の把
握が確実になる分、接合品質をさらに向上させることが
できる。
Example 5. In the fourth embodiment, the discharge of the brazing material 35 interposed between the members to be joined 11 and 12 is detected by the change in the light amount of the reflected light 38a of the light beam 38,
The case where the joining state is determined has been described.
A member having a melting point lower than that of the members 11 and 12 to be joined is disposed in the vicinity of the joint such as the side surfaces 13 and 14 of the electrodes 13 and 14, and the surface of the member is irradiated with a light beam to form the member. The joining state may be determined by the change in the amount of the reflected light due to the melting of No. 4, and the same effect as in the case of the above-described Embodiment 4 can be exhibited, and the grasping of the melting state can be ensured. Therefore, the joining quality can be further improved.

【0065】実施例6.図8はこの発明の実施例6にお
ける接合方法を適用した接合装置の構成を示すブロック
図、図9は図8における基準設定回路によって設定され
た基準テーブルの一例を示す図、図10は通電条件を説
明するための図である。図において、上記各実施例にお
けると同様な部分は同一符号を付して説明を省略する。
Example 6. FIG. 8 is a block diagram showing the configuration of a joining apparatus to which the joining method according to the sixth embodiment of the present invention is applied, FIG. 9 is a diagram showing an example of a reference table set by the reference setting circuit in FIG. 8, and FIG. It is a figure for explaining. In the figure, the same parts as those in each of the above-described embodiments are designated by the same reference numerals, and the description thereof will be omitted.

【0066】49は例えば図9に示すような基準テーブ
ルを予め設定して格納する基準値設定回路、50は加工
時間演算回路27で演算された打点毎の電極間抵抗が最
大値に達するまでの時間と、基準値設定回路49で予め
設定された基準テーブルの内容とを比較演算する比較演
算回路、51はこの比較演算回路50で比較演算された
結果に応じて、通電条件演算回路25で演算された通電
電流値を、通電制御部26を介して再び変更、補正する
通電量再設定回路である。
Reference numeral 49 is a reference value setting circuit for presetting and storing a reference table as shown in FIG. 9, and reference numeral 50 is a value until the interelectrode resistance for each dot calculated by the machining time arithmetic circuit 27 reaches the maximum value. A comparison calculation circuit for comparing and calculating time and the contents of the reference table preset by the reference value setting circuit 49, 51 is calculated by the energization condition calculation circuit 25 according to the comparison calculation result by the comparison calculation circuit 50. It is an energization amount resetting circuit that changes and corrects the energized current value thus determined again via the energization control unit 26.

【0067】上記のように構成された実施例6における
接合装置においては、まず、実施例1の場合と同様に、
抵抗演算回路18、記憶保持回路19、平均値算出回路
20、標準偏差値算出回路21、基準設定回路22、第
1および第2の比較演算回路23、24および通電条件
演算回路25によって、通電電流値および通電時間とい
った通電条件が随時設定される。次いで、実施例3の場
合と同様に、加工時間演算回路27により、抵抗演算回
路18で演算される電極間抵抗が、最大値に達するまで
の時間が打点毎に演算される。
In the joining apparatus according to the sixth embodiment having the above structure, first, as in the case of the first embodiment,
The resistance operation circuit 18, the memory holding circuit 19, the average value calculation circuit 20, the standard deviation value calculation circuit 21, the reference setting circuit 22, the first and second comparison operation circuits 23 and 24, and the energization condition operation circuit 25 cause the energization current to flow. Energization conditions such as value and energization time are set at any time. Next, as in the case of the third embodiment, the machining time calculation circuit 27 calculates the time until the interelectrode resistance calculated by the resistance calculation circuit 18 reaches the maximum value for each dot.

【0068】このようにして演算された時間tは、比較
演算回路50により基準値設定回路49で図9に示すよ
うに予め設定された基準テーブルと比較される。例えば
時間tがt1以上の場合には外乱の影響がなく、適正な
接合加工が行われたと判断して、予め設定された通電電
流値I0、通電時間t0の通電条件で加工を行う。次に
t<t1の場合には過大発熱であると判断して、検出時
間の長さに従って時間が短くなる(t1>t2>t3>
t4)ほど、図10に示すように検出時間後の通電電流
値を小さく両設定(I0>I1>I2>I3)して、発
熱過大を抑制し均熱を確保する。
The time t calculated in this way is compared by the comparison calculation circuit 50 in the reference value setting circuit 49 with the reference table preset as shown in FIG. For example, when the time t is t1 or more, there is no influence of disturbance and it is determined that proper joining processing has been performed, and the welding is performed under energization conditions of a preset energization current value I0 and energization time t0. Next, when t <t1, it is determined that excessive heat is generated, and the time becomes shorter according to the length of the detection time (t1>t2>t3>).
At t4), the energization current value after the detection time is set to be smaller (I0>I1>I2> I3) as shown in FIG. 10 to suppress excessive heat generation and ensure uniform heating.

【0069】そして、例えば実施例4において既に説明
したような、被接合部材11、12間にろう材35を挟
んで通電し、ろう材35を溶融させて接合加工を行うろ
う付け加工の場合には、特にろう材35の位置のばらつ
きによって通電路の形成に偏りが生じるだけでなく、ろ
う材35が中心より片側に偏っている場合には、適正な
通電条件で接合加工を行ってもろう材35の拡がりに偏
りが生じ、ろう材35の排出は不均一になって、未ろう
付部の発生、過剰排出といった不具合が生じる場合があ
る。
In the case of brazing in which the brazing material 35 is sandwiched between the members 11 and 12 to be energized and the brazing material 35 is melted to perform the joining process as already described in the fourth embodiment, for example. In particular, if the formation of the current-carrying path is biased due to variations in the position of the brazing filler metal 35, and if the brazing filler metal 35 is biased to one side from the center, the joining process may be performed under appropriate energizing conditions. The spread of the material 35 may be uneven, and the discharge of the brazing material 35 may be non-uniform, resulting in problems such as generation of unbrazed parts and excessive discharge.

【0070】この不具合を観察すると、検出時間が短い
場合に多く発生しており、また、検出時間が短い場合に
は過度の変形をきたし、製品としての要求形状精度を満
足していないことが判った。したがって、上記実施例6
で説明したような方法を用いることにより、電極消耗に
起因しない通電路形成のばらつき、および表面状態等に
起因する電極間抵抗値のばらつき分を補償することがで
きるとともに、外乱の影響を小さく抑えることができる
ので、上記各実施例と比較しても著しく接合品質を向上
させることができる。
Observing this problem, it was found that it often occurred when the detection time was short, and when the detection time was short, excessive deformation occurred, and the required shape accuracy as a product was not satisfied. It was Therefore, in Example 6 above.
By using the method described above, it is possible to compensate for the variation in the formation of the current-carrying path that is not caused by electrode consumption and the variation in the inter-electrode resistance value that is caused by the surface condition, etc., and suppress the influence of disturbance. Therefore, it is possible to remarkably improve the bonding quality as compared with the above-mentioned respective examples.

【0071】実施例7.図11はこの発明の実施例7に
おける接合方法を適用した接合装置の構成を示すブロッ
ク図、図12は被接合部材間にそれよりも融点の低いろ
う材を挟んで接合加工した場合の通電時間中における電
極間抵抗の変化を示す曲線図である。図において、上記
各実施例におけると同様な部分は同一符号を付して説明
を省略する。
Example 7. FIG. 11 is a block diagram showing the configuration of a joining apparatus to which the joining method according to the seventh embodiment of the present invention is applied, and FIG. 12 is an energization time when joining is performed by sandwiching a brazing material having a lower melting point than the joining members. It is a curve figure which shows the change of the resistance between electrodes in the inside. In the figure, the same parts as those in each of the above-described embodiments are designated by the same reference numerals, and the description thereof will be omitted.

【0072】52は図示はしないが図1に示す抵抗演算
回路18、記憶保持回路19、平均値算出回路20、標
準偏差値算出回路21、基準設定回路22、第1および
第2の比較演算回路23、24および通電条件演算回路
25で構成される通電条件設定回路、53は抵抗演算回
路18で演算される両電極13、14間の抵抗から、打
点毎に通電開始から所定時間以後の最大抵抗値を算出す
る最大値算出回路、54は予め第1の基準値としての図
12中Rth1で示す閾値および第2の基準値としてR
th2で示す閾値をそれぞれ設定して格納する閾値設定
回路である。
Reference numeral 52 is not shown, but the resistance calculation circuit 18, the memory holding circuit 19, the average value calculation circuit 20, the standard deviation value calculation circuit 21, the reference setting circuit 22, and the first and second comparison calculation circuits shown in FIG. An energization condition setting circuit composed of 23 and 24 and an energization condition calculation circuit 25, and 53 is a maximum resistance after a predetermined time from the start of energization for each dot based on the resistance between both electrodes 13 and 14 calculated by the resistance calculation circuit 18. A maximum value calculation circuit for calculating a value, 54 is a threshold value indicated by Rth1 in FIG. 12 in advance as a first reference value, and R is a second reference value.
This is a threshold setting circuit that sets and stores the thresholds indicated by th2.

【0073】55は最大値算出回路53で算出される最
大抵抗値と、閾値設定回路54に予め設定されている閾
値Rth1とを比較するとともに、次の打点以降の最大
抵抗値と閾値Rth2と比較して、いずれ一つの最大抵
抗値が閾値Rth1を越え、且つ次の打点以降の最大抵
抗値が閾値Rth2を越えると出力する比較演算回路、
56は比較演算回路55の出力により接合加工の中止を
表示する例えばLED、CRT等でなる表示部、57は
比較演算回路55の出力により通電制御部26に中止信
号を送出して接合加工を中止する中止信号出力回路であ
る。
Reference numeral 55 compares the maximum resistance value calculated by the maximum value calculation circuit 53 with the threshold value Rth1 preset in the threshold value setting circuit 54, and also compares the maximum resistance value after the next hitting point with the threshold value Rth2. Then, when any one of the maximum resistance values exceeds the threshold value Rth1 and the maximum resistance value after the next hitting point exceeds the threshold value Rth2, a comparison operation circuit is outputted.
Reference numeral 56 indicates a display unit formed of, for example, an LED, CRT or the like, which indicates the termination of the joining processing by the output of the comparison operation circuit 55, and 57 indicates the termination operation by sending an interruption signal to the energization control unit 26 by the output of the comparison operation circuit 55. Is a stop signal output circuit.

【0074】上記のように構成された実施例7における
接合装置においては、まず、通電条件設定回路52によ
って通電電流値および通電時間等の通電条件が随時設定
される。一方、最大値算出回路53において、抵抗演算
回路18で演算される電極間抵抗から、打点毎に通電開
始から所定時以後の最大抵抗値が算出される。
In the joining apparatus according to the seventh embodiment having the above-described structure, first, the energization condition setting circuit 52 sets the energization conditions such as the energization current value and the energization time as needed. On the other hand, in the maximum value calculation circuit 53, the maximum resistance value after a predetermined time from the start of energization is calculated for each dot from the inter-electrode resistance calculated by the resistance calculation circuit 18.

【0075】次いで、比較演算回路55において、上記
のようにして算出された最大抵抗値と閾値設定回路54
に予め設定されている閾値Rth1とが比較され、最大
抵抗値が閾値Rth1を越えると、その打点以降の打点
毎の最大抵抗値と閾値Rth2とが比較されて、最大抵
抗値が閾値Rth2を越えると信号が送出される。そし
て、比較演算回路55からの信号により表示部56では
接合加工の中止が表示され、又、中止信号出力回路57
からは通電制御部26に中止信号が送出され接合加工は
中止される。
Next, in the comparison operation circuit 55, the maximum resistance value and the threshold value setting circuit 54 calculated as described above are set.
When the maximum resistance value exceeds the threshold value Rth1, the maximum resistance value and the threshold value Rth2 are compared with each other and the maximum resistance value exceeds the threshold value Rth2. And the signal is sent. Then, a signal from the comparison calculation circuit 55 indicates that the joining process is stopped on the display unit 56, and the stop signal output circuit 57
Then, a stop signal is sent to the energization control unit 26 to stop the joining process.

【0076】そして、例えば実施例4において既に説明
したような、被接合部材11、12間にろう材35を挟
んで通電し、ろう材35を溶融させて接合加工を行うろ
う付け加工の場合、電極間抵抗値は図12(A)中破線
で示すように、初期抵抗分が通電初期で減少し、その後
電極13、14、被接合部材11、12の固有抵抗分で
わずかに抵抗が増加するものの、良好な加工時にはほと
んど抵抗値は一定となる。一方、例えば被接合部材1
1、12の位置が大きくくずれたり、あるいは電極1
3、14の表面の突起状の消耗部に被接合部材11、1
2が当接するような時には、局部的に過剰発熱となって
爆飛が発生する。この場合の電極間抵抗値は図12
(A)中実線で示すように最大値Rmax(n)を有する。し
たがって、この最大値Rmax(n)と閾値Rth1とを比較
演算回路55で比較することにより、爆飛を検出するこ
とができる。
Then, in the case of brazing in which the brazing material 35 is sandwiched between the members to be joined 11 and 12 and electric current is applied to melt the brazing material 35 to perform the joining process as already described in Example 4, for example, As for the inter-electrode resistance value, as shown by the broken line in FIG. 12 (A), the initial resistance component decreases at the initial stage of energization, and thereafter the resistance component slightly increases due to the specific resistance components of the electrodes 13 and 14 and the members to be joined 11 and 12. However, the resistance value is almost constant during good processing. On the other hand, for example, the bonded member 1
The positions of 1 and 12 are greatly collapsed, or the electrode 1
The members to be joined 11, 1
When the two come into contact with each other, excessive heat is locally generated and a bomb is generated. The inter-electrode resistance value in this case is shown in FIG.
(A) It has the maximum value R max (n) as shown by the solid line. Therefore, by comparing the maximum value R max (n) and the threshold value Rth1 with the comparison operation circuit 55, it is possible to detect the bombing.

【0077】なお、爆飛が生じると、電極13、14お
よび被接合部材11、12の一部が欠けることになる
が、欠けた状態、すなわち電極13、14の表面形状の
変化具合によっては、この後も連続して接合加工を続行
することが可能である。このことは爆飛発生以後の打点
での電極間抵抗の変化によって判断することができる。
すなわち図12(B)に示すように、打点毎の最大抵抗
値を閾値Rth2と比較し、最大抵抗値が閾値Rth2
を越えると、局部的な片当り状態が発生しているか、も
しくは爆飛発生のおそれがあると判断し接合加工を中止
することができる。
When the bombing occurs, the electrodes 13 and 14 and the members 11 and 12 to be joined are partly chipped. However, depending on the chipped state, that is, how the surface shape of the electrodes 13 and 14 changes. It is possible to continue the joining process continuously after this. This can be judged by the change in the resistance between the electrodes at the hitting point after the explosion.
That is, as shown in FIG. 12B, the maximum resistance value for each dot is compared with the threshold value Rth2, and the maximum resistance value is determined as the threshold value Rth2.
If it exceeds, it can be judged that a local one-sided contact state has occurred or there is a risk of explosion, and the joining process can be stopped.

【0078】このように上記実施例7によれば、電極間
抵抗の最大値と閾値Rth1とを比較することにより、
突発的な爆飛現象の発生を推定し、さらに、爆飛現象発
生以後の電極間抵抗の最大値と閾値Rth2とを比較す
ることにより、加工続行の可否を判断するようにしてい
るので、不要な電極交換をなくして電極寿命の向上を図
るとともに、電極交換に要する作業時間の削減を図るこ
とができる。
As described above, according to the seventh embodiment, by comparing the maximum value of the interelectrode resistance with the threshold value Rth1,
It is not necessary to estimate whether or not to continue machining by estimating the occurrence of a sudden explosion phenomenon and comparing the maximum value of the interelectrode resistance after the occurrence of the explosion phenomenon with the threshold value Rth2. It is possible to improve the life of the electrode by eliminating the need to replace the electrode, and to reduce the working time required for the electrode replacement.

【0079】実施例8.尚、上記実施例7では、各閾値
Rth1、Rth2をそれぞれ異なる値に設定した場合
について説明したが、適宜同一の値としても良く、上記
実施例7の場合と同様の効果を得ることは勿論のこと、
両判断回路に互換性を持たせることができ回路的に簡略
化される。
Example 8. In the seventh embodiment, the threshold values Rth1 and Rth2 are set to different values, but the same values may be set as appropriate, and the same effects as in the case of the seventh embodiment can be obtained. thing,
Both judgment circuits can be made compatible with each other and the circuits can be simplified.

【0080】実施例9.図13はこの発明の実施例9に
おける接合方法の概念を説明するための斜視図である。
今、電極13、14と被接合部材11、12が図に示す
ような構成となっている場合、電極13、14の表面に
は高温による軟化がサイクル的に生じるため、被接合部
材11、12と当接する位置に電極変形、すなわち窪み
部13a、14aが発生し、この窪み部13a、14a
がなじみを積極的に引き起こして、接合加工の進行に伴
い通電路が拡大される。そして、この現象は電極13、
14の方が被接合部11、12より当接面の面積が大き
い場合に顕著に現れる。
Example 9. FIG. 13 is a perspective view for explaining the concept of the joining method in the ninth embodiment of the present invention.
When the electrodes 13 and 14 and the members to be joined 11 and 12 are configured as shown in the figure, softening due to high temperature occurs cyclically on the surfaces of the electrodes 13 and 14, and thus the members to be joined 11 and 12 are joined. The electrode is deformed, that is, the depressions 13a and 14a are generated at the positions where the depressions 13a and 14a come into contact with
Gap familiarization is positively caused, and the energization path is expanded as the joining process progresses. And this phenomenon is caused by the electrode 13,
14 is remarkable when the area of the contact surface is larger than that of the joined parts 11 and 12.

【0081】このように上記実施例9によれば、電極1
3、14の方が被接合部材11、12より当接面の面積
を大きくしたので、窪み部13a、14aによるなじみ
をより積極的に引き起こして通電路の拡大を図ることが
でき、品質の安定した接合加工を可能にする。
As described above, according to the ninth embodiment, the electrode 1
Since the areas of the contact surfaces of the members 3 and 14 are larger than those of the members 11 and 12, the recesses 13a and 14a are more likely to become familiar and the energization path can be expanded, and the quality is stable. It enables the joining process.

【0082】実施例10.尚、電極13、14に接合部
材11、12より電気抵抗率が大きい材料を用いると、
電極13、14の内部の主として被接合部材11、12
との当接面近傍での抵抗発熱が大きくなるため、電極1
3、14の当接面の軟化および変形に寄与する熱が多く
なり、例えば図13に示した窪み部13a、14aの形
成が促進されて、通電路の拡大が顕著となる。さらに、
電気抵抗率が大きいため、電極変形による電極内部での
抵抗値の変化を明確にとらえることができる。
Example 10. If a material having a higher electrical resistivity than the joining members 11 and 12 is used for the electrodes 13 and 14,
Mainly members to be joined 11, 12 inside the electrodes 13, 14
Since resistance heat generation in the vicinity of the contact surface with
The amount of heat that contributes to the softening and deformation of the contact surfaces of 3 and 14 increases, for example, the formation of the depressions 13a and 14a illustrated in FIG. 13 is promoted, and the energization path is significantly expanded. further,
Since the electric resistivity is high, it is possible to clearly detect the change in the resistance value inside the electrode due to the electrode deformation.

【0083】例えば、銀系もしくは銅系あるいは鉄系の
材料の接合加工においては、電極13、14の材料とし
てモリブデン、タングステン、銅タングステン合金、銀
タングステン合金、クロム銅合金等を用いることが好ま
しく、特に被接合部材11、12が銀系の接点材料と銅
系の台座による構成である場合には、上記のような材料
を用いるとより好ましい。
For example, when joining silver-based, copper-based, or iron-based materials, it is preferable to use molybdenum, tungsten, copper-tungsten alloy, silver-tungsten alloy, chromium-copper alloy, or the like as the material of the electrodes 13 and 14. In particular, when the members 11 and 12 to be joined are composed of a silver-based contact material and a copper-based pedestal, it is more preferable to use the above materials.

【0084】実施例11.図14はこの発明の実施例1
1における接合方法を適用した接合装置の構成を示すブ
ロック図である。図において、上記各実施例におけると
同様な部分は同一符号を付して説明を省略する。58は
図1に示す抵抗演算回路18、記憶保持回路19、平均
値算出回路20、標準偏差値算出回路21、基準設定回
路22、第1および第2の比較演算回路23、24、通
電条件演算回路25で構成される第1の通電条件設定回
路、59は図6に示す光電変換回路39、比較演算回路
40、加工時間演算回路41、基準値設定回路45、第
1および第2の比較演算回路46、47、通電条件演算
回路48で構成される第1の通電条件演算回路、60は
図11に示す最大値算出回路53、閾値設定回路54、
比較演算回路55、表示部56、中止信号出力回路57
で構成される通電中止信号出力回路である。
Example 11. FIG. 14 is a first embodiment of the present invention.
It is a block diagram which shows the structure of the joining apparatus to which the joining method in 1 is applied. In the figure, the same parts as those in each of the above-described embodiments are designated by the same reference numerals, and the description thereof will be omitted. Reference numeral 58 denotes the resistance calculation circuit 18, the memory holding circuit 19, the average value calculation circuit 20, the standard deviation value calculation circuit 21, the reference setting circuit 22, the first and second comparison calculation circuits 23 and 24, and the energization condition calculation shown in FIG. A first energization condition setting circuit composed of the circuit 25, 59 is the photoelectric conversion circuit 39, the comparison operation circuit 40, the processing time operation circuit 41, the reference value setting circuit 45, the first and second comparison operations shown in FIG. A first energization condition operation circuit composed of the circuits 46 and 47 and the energization condition operation circuit 48, and 60 is a maximum value calculation circuit 53, a threshold value setting circuit 54, shown in FIG.
Comparison calculation circuit 55, display unit 56, stop signal output circuit 57
Is a power supply stop signal output circuit.

【0085】上記のように構成された実施例11におけ
る接合装置において、例えば4×6×2mmの銀系接点
材料、3×50×6mmの銅の台座を被接合部材11、
12として、その間に板状または予め接点材料の台座当
接面側に固着した銀ろうまたはりん銅ろうを挟み、被接
合部材11、12との当接面が10×10mmの銀−タ
ングステン合金電極および銅−タングステン合金電極1
3、14の構成により通電しろう付け加工を行った。こ
の際、被接合部材11、12の電極13、14との当接
面は、接点側が4×6mm、台座側が3×8mmとなる
ようにした。
In the joining apparatus of the eleventh embodiment configured as described above, for example, a silver-based contact material having a size of 4 × 6 × 2 mm, a copper pedestal having a size of 3 × 50 × 6 mm and a member 11 to be joined,
A silver-tungsten alloy electrode 12 having a plate-shaped or silver brazing or phosphor copper brazing material fixed in advance on the pedestal contact surface side of the contact material is sandwiched between them and the contact surface with the members to be joined 11, 12 is 10 × 10 mm. And copper-tungsten alloy electrode 1
With the configurations of 3 and 14, electricity was applied to perform brazing. At this time, the contact surfaces of the members 11, 12 to be contacted with the electrodes 13, 14 were 4 × 6 mm on the contact side and 3 × 8 mm on the pedestal side.

【0086】そして、第1の通電条件設定回路58によ
って、所定の打点数間における電極間抵抗値の平均値お
よび標準偏差値を算出し、この算出値に応じて通電電流
値および通電時間の補正を行うとともに、第2の通電条
件設定回路59によって、所定の打点数間におけるろう
材35が検出されるまでの時間の平均値および標準偏差
値に応じて、通電電流値および通電時間の補正を行うよ
うにし、さらに、突発的な電極消耗という異常を検出す
るために、通電中止信号出力回路60によって、電極間
抵抗の最大値と閾値Rth1とを比較することにより、
突発的な爆飛現象の発生を推定し、さらに、爆飛現象発
生以後の電極間抵抗の最大値と閾値Rth2とを比較す
ることにより、加工続行の可否を判断するようにした。
なお、所定の打点数としては、数十点ないし数百点の打
点数での値を用いることが好ましく、さらには数十点な
いし100点、さらには50点ないし100点の打点数
での値を用いることがより好ましい。
Then, the first energization condition setting circuit 58 calculates the average value and standard deviation value of the interelectrode resistance value between the predetermined number of dots and corrects the energization current value and the energization time according to the calculated values. In addition, the second energization condition setting circuit 59 corrects the energization current value and the energization time according to the average value and standard deviation value of the time until the brazing material 35 is detected between the predetermined number of dots. In addition, in order to detect the abnormality of sudden electrode consumption, the energization stop signal output circuit 60 compares the maximum value of the interelectrode resistance with the threshold value Rth1.
Whether or not the machining can be continued is determined by estimating the occurrence of a sudden explosion phenomenon and comparing the maximum value of the interelectrode resistance after the occurrence of the explosion phenomenon with the threshold value Rth2.
As the predetermined number of RBIs, it is preferable to use a value with several tens to several hundreds of RBIs, further several tens to 100, and further 50 to 100 RMBs. Is more preferably used.

【0087】このように上記実施例11によれば、被接
合部材11、12間にこれより融点の低いろう材35を
挟み、このろう材35を溶融させてろう付け加工を行う
ようにしているので、被接合部材11、12自身が過度
の入熱によって変形し、溶融するものではないため、電
極13、14に当接する面の形状が著しく変形すること
がなく、また、固有抵抗の変動分が少なく、電極表面変
形に伴う電極間抵抗値の変化過程を精度良く検出するこ
とができる。
As described above, according to the eleventh embodiment, the brazing material 35 having a lower melting point is sandwiched between the members 11 and 12 to be joined, and the brazing material 35 is melted to perform the brazing process. Therefore, since the members to be joined 11 and 12 themselves are not deformed and melted due to excessive heat input, the shape of the surface contacting the electrodes 13 and 14 is not significantly deformed, and the fluctuation of the specific resistance is small. It is possible to accurately detect the changing process of the inter-electrode resistance value due to the electrode surface deformation.

【0088】[0088]

【発明の効果】以上のように、この発明の請求項1によ
れば、一対の被接合部材を一対の電極により所定の圧力
で挟持して被接合部材に電流を流し抵抗発熱によって被
接合部材同士を接合する接合方法において、打点毎に通
電開始から所定時間後の両電極間の抵抗値を順次測定す
るとともに打点の回数が所定の打点数に達した時点で所
定の打点数間における抵抗値の平均値およびばらつき度
合を算出しこれら算出値に応じて少なくとも通電電流値
または通電時間のいずれか一方の補正を行うようにした
ので、接合品質の向上ならびに安定化が可能な接合方法
を提供することができる。
As described above, according to claim 1 of the present invention, a pair of members to be joined are sandwiched by a pair of electrodes at a predetermined pressure, an electric current is passed through the members to be joined, and the members to be joined are heated by resistance heating. In the joining method of joining each other, the resistance value between both electrodes after a predetermined time from the start of energization is sequentially measured for each dot and the resistance value between the predetermined number of dots is reached when the number of dots reaches the predetermined number of dots. Since the average value and the degree of variation of the values are calculated and at least one of the energizing current value and the energizing time is corrected according to these calculated values, a joining method capable of improving and stabilizing the joining quality is provided. be able to.

【0089】又、この発明の請求項2によれば、請求項
1において、抵抗値を打点毎の最小値としたので、正確
な値の把握が容易となり、接合品質の向上ならびに安定
化が可能な接合方法を提供することができる。
According to the second aspect of the present invention, the resistance value is set to the minimum value for each dot in the first aspect, so that the accurate value can be easily grasped, and the bonding quality can be improved and stabilized. It is possible to provide a simple joining method.

【0090】又、この発明の請求項3によれば、一対の
被接合部材を一対の電極により所定の圧力で挟持して被
接合部材に電流を流し抵抗発熱によって被接合部材同士
を接合する接合方法において、打点毎に接合の状態を検
出して状態が所定の状態に達するまでの時間を順次測定
するとともに打点の回数が所定の打点数に達した時点で
所定の打点数間における時間の平均値およびばらつき度
合を算出しこれら算出値に応じて少なくとも通電電流値
または通電時間のいずれか一方の補正を行うようにした
ので、電極消耗時の電極診断ができるようになり、接合
品質の向上ならびに安定化がさらに可能な接合方法を提
供することができる。
According to claim 3 of the present invention, a pair of electrodes are sandwiched by a pair of electrodes at a predetermined pressure, an electric current is passed through the members to be joined, and the members to be joined are joined by resistance heating. In the method, the state of the joint is detected for each RBI and the time until the condition reaches a predetermined state is sequentially measured, and when the number of RBI reaches the predetermined number of RMB, the average of the time between the predetermined number of RMB Since the value and the degree of variation are calculated and at least one of the energizing current value and the energizing time is corrected according to these calculated values, it becomes possible to diagnose the electrode when the electrode is worn out, and to improve the bonding quality. It is possible to provide a joining method that can be further stabilized.

【0091】又、この発明の請求項4によれば、一対の
被接合部材を一対の電極により所定の圧力で挟持して被
接合部材に電流を流し抵抗発熱によって被接合部材同士
を接合する接合方法において、打点毎に通電開始から所
定時間後の両電極間の抵抗値を順次測定するとともに打
点の回数が所定の打点数に達した時点で所定の打点数間
における抵抗値の平均値およびばらつき度合を算出しこ
れら算出値に応じて少なくとも通電電流値または通電時
間のいずれか一方の補正を行い、さらに、打点毎に接合
の状態を検出して状態が所定の状態に達するまでの時間
を順次測定するとともに打点の回数が所定の打点数に達
した時点で所定の打点数間における時間の平均値および
ばらつき度合を算出しこれら算出値に応じて補正された
通電電流値または通電時間の補正を再び行うようにした
ので、電極間抵抗値のばらつき分を補償することができ
るとともに、外乱の影響を抑制することができ、接合品
質の一層の向上ならびに安定化が可能な接合方法を提供
することができる。
According to claim 4 of the present invention, a pair of electrodes to be joined are sandwiched by a pair of electrodes at a predetermined pressure, a current is passed through the members to be joined, and the members to be joined are joined by resistance heating. In the method, the resistance value between both electrodes is measured one after another for a predetermined time from the start of energization for each dot, and when the number of dots reaches the specified number of dots, the average value and variation of the resistance value between the specified number of dots are measured. The degree is calculated and at least one of the energizing current value and energizing time is corrected according to these calculated values.Furthermore, the time until the state reaches a predetermined state by detecting the joining state at each dot is sequentially When the number of hit points reaches the specified number of hit points while measuring, the average value of the time and the degree of variation between the specified number of hit points are calculated, and the energization current value corrected according to these calculated values or Since the electrical time is corrected again, it is possible to compensate for the variation in the inter-electrode resistance value, suppress the influence of disturbance, and further improve and stabilize the bonding quality. A method can be provided.

【0092】又、この発明の請求項5によれば、請求項
1、3、4のいずれかにおいて、ばらつき度合が所定の
値に達したら接合加工を停止するようにしたので、接合
品質の向上ならびに安定化が可能な接合方法を提供する
ことができる。
According to the fifth aspect of the present invention, in any one of the first, third, and fourth aspects, the joining process is stopped when the degree of variation reaches a predetermined value, so that the joining quality is improved. In addition, it is possible to provide a bonding method that can be stabilized.

【0093】又、この発明の請求項6によれば、請求項
3または4において、両電極間の抵抗値が最大値に達し
た時点を所定の状態としたので、電極消耗時の電極診断
ができるようになり、接合品質の一層の向上ならびに安
定化が可能な接合方法を提供することができる。
Further, according to claim 6 of the present invention, in claim 3 or 4, since the time when the resistance value between both electrodes reaches the maximum value is set to a predetermined state, the electrode diagnosis at the time of electrode consumption can be performed. As a result, it is possible to provide a joining method capable of further improving and stabilizing the joining quality.

【0094】又、この発明の請求項7によれば、請求項
3または4において、接合部に光ビームを照射するとと
もに接合部で反射される反射光の量が所定の値に達した
時点を所定の状態としたので、接合加工の進行状態をと
らえることができ、接合品質をより向上ならびに安定化
することが可能な接合方法を提供することができる。
According to a seventh aspect of the present invention, in the third or fourth aspect, the time when the light beam is applied to the joint portion and the amount of the reflected light reflected by the joint portion reaches a predetermined value. Since the predetermined state is adopted, it is possible to provide a joining method capable of grasping the progress of the joining process and further improving and stabilizing the joining quality.

【0095】又、この発明の請求項8によれば、請求項
3または4において、接合部近傍に被接合部材よりも低
い融点を有する部材を配設し部材の表面に光ビームを照
射するとともに部材の表面で反射される反射光の量が所
定の値に達した時点を所定の状態としたので、溶融状態
の把握が確実となり、接合品質をより向上ならびに安定
化させることが可能な接合方法を提供することができ
る。
According to claim 8 of the present invention, in claim 3 or 4, a member having a melting point lower than that of the members to be joined is disposed in the vicinity of the joining portion, and the surface of the member is irradiated with a light beam. A joining method capable of reliably grasping the molten state and further improving and stabilizing the joining quality because the time when the amount of the reflected light reflected on the surface of the member reaches a predetermined value is set to a predetermined state. Can be provided.

【0096】又、この発明の請求項9によれば、一対の
被接合部材を一対の電極により所定の圧力で挟持して被
接合部材に電流を流し抵抗発熱によって被接合部材同士
を接合する接合方法において、打点毎に通電開始から所
定時間後の両電極間の最大抵抗値を順次測定して最大抵
抗値が予め設定された第1の基準値を越え、且つ次の打
点以降の最大抵抗値が予め設定された第2の基準値を越
えた場合に以降の接合加工を停止するようにしたので、
接合品質の向上ならびに安定化は勿論のこと、電極寿命
の向上ならびに電極交換作業時間の削減を図ることが可
能な接合方法を提供することができる。
According to claim 9 of the present invention, a pair of electrodes to be joined are sandwiched by a pair of electrodes at a predetermined pressure, an electric current is passed through the members to be joined, and the members to be joined are joined by resistance heating. In the method, the maximum resistance value between the electrodes is sequentially measured after a lapse of a predetermined time from the start of energization for each dot, and the maximum resistance value exceeds a preset first reference value, and the maximum resistance value after the next dot is set. When the value exceeds the preset second reference value, the subsequent joining process is stopped.
It is possible to provide a joining method capable of improving the joining quality and stabilizing it, as well as improving the electrode life and reducing the electrode replacement work time.

【0097】又、この発明の請求項10によれば、請求
項9において、第1および第2の基準値を同値としたの
で、接合品質の向上ならびに安定化は勿論のこと、判断
回路の簡略化が可能な接合方法を提供することができ
る。
According to the tenth aspect of the present invention, since the first and second reference values are the same in the ninth aspect, not only is the joining quality improved and stabilized, but the decision circuit is simplified. It is possible to provide a joining method that can be realized.

【0098】又、この発明の請求項11によれば、請求
項1ないし10のいずれかにおいて、被接合部材と電極
とがそれぞれ当接する各当接面の面積を、電極の方がそ
れぞれ大に形成するようにしたので、通電路の拡大を図
ることができ、接合品質の向上ならびに安定化が可能な
接合方法を提供することができる。
According to the eleventh aspect of the present invention, in each of the first to tenth aspects, the area of each contact surface where the member to be bonded and the electrode contact each other is larger for the electrode. Since it is formed, the energization path can be enlarged, and a joining method capable of improving and stabilizing the joining quality can be provided.

【0099】又、この発明の請求項12によれば、請求
項1ないし10のいずれかにおいて、電極を被接合部材
より電気抵抗率の大きな材料で形成するようにしたの
で、通電路の拡大を図るとともに電極内部での抵抗値の
変化を明確にとらえることができ、接合品質の向上なら
びに安定化が可能な接合方法を提供することができる。
According to a twelfth aspect of the present invention, in any one of the first to tenth aspects, the electrodes are formed of a material having a larger electric resistivity than the members to be joined, so that the energization path can be expanded. Further, it is possible to provide a joining method capable of clearly grasping the change of the resistance value inside the electrode and improving and stabilizing the joining quality.

【0100】又、この発明の請求項13によれば、請求
項1ないし10のいずれかにおいて、両被接合部材間に
被接合部材よりも低い融点を有する導電性の部材を介在
させ部材を溶融させることにより被接合部材の過度の発
熱・変形を抑制して被接合部材同士を接合するようにし
たので、電極表面変形に伴う電極間抵抗値の変化を精度
良く検出することができ、接合品質の向上ならびに安定
化が可能な接合方法を提供することができる。
According to a thirteenth aspect of the present invention, in any one of the first to tenth aspects, a member having a melting point lower than that of the members to be joined is interposed between the members to be joined and the members are melted. By doing so, excessive heat generation and deformation of the members to be joined are suppressed and the members to be joined are joined together, so changes in the interelectrode resistance value due to electrode surface deformation can be accurately detected, and the joining quality can be improved. It is possible to provide a joining method capable of improving and stabilizing

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1における接合方法を適用
した接合装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a joining device to which a joining method according to a first embodiment of the present invention is applied.

【図2】 接合打点の増加に伴う電極間抵抗値の変化お
よび、電極間抵抗値の200打点毎の平均値、偏差値を
それぞれ示す曲線図。
FIG. 2 is a curve diagram showing a change in inter-electrode resistance value with an increase in the number of joining dots and an average value and a deviation value of the inter-electrode resistance value at every 200 dots.

【図3】 被接合部材間にそれよりも融点の低いろう材
を挟んで接合加工した場合の通電時間中における電極間
抵抗の変化を示す曲線図である。
FIG. 3 is a curve diagram showing a change in interelectrode resistance during energization time when a brazing material having a lower melting point is sandwiched between the members to be joined and joined.

【図4】 図2に示す電極間抵抗値の平均値および偏差
値に応じて通電電流値および通電時間を変更、または、
接合加工を中止して電極交換時期を判定するための基準
テーブルの一例を示す図である。
FIG. 4 changes the energizing current value and energizing time according to the average value and the deviation value of the interelectrode resistance values shown in FIG.
It is a figure which shows an example of the reference table for stopping a joining process and determining an electrode exchange time.

【図5】 この発明の実施例3における接合方法を適用
した接合装置の構成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of a joining device to which a joining method according to a third embodiment of the present invention is applied.

【図6】 この発明の実施例4における接合方法を適用
した接合装置の構成を示すブロック図である。
FIG. 6 is a block diagram showing a configuration of a joining device to which a joining method according to a fourth embodiment of the present invention is applied.

【図7】 図6における受光器の受光量の変化を示す曲
線図である。
FIG. 7 is a curve diagram showing changes in the amount of light received by the light receiver in FIG.

【図8】 この発明の実施例6における接合方法を適用
した接合装置の構成を示すブロック図である。
FIG. 8 is a block diagram showing a configuration of a joining device to which a joining method according to a sixth embodiment of the present invention is applied.

【図9】 図8における基準設定回路によって設定され
た基準テーブルの一例を示す図である。
9 is a diagram showing an example of a reference table set by a reference setting circuit in FIG.

【図10】 通電条件を説明するための図である。FIG. 10 is a diagram for explaining energization conditions.

【図11】 この発明の実施例7における接合方法を適
用した接合装置の構成を示すブロック図である。
FIG. 11 is a block diagram showing a configuration of a joining device to which a joining method according to a seventh embodiment of the present invention is applied.

【図12】 被接合部材間にそれよりも融点の低いろう
材を挟んで接合加工した場合の通電時間中における電極
間抵抗の変化を示す曲線図である。
FIG. 12 is a curve diagram showing a change in interelectrode resistance during energization time when a brazing material having a lower melting point is sandwiched between the members to be joined and joined.

【図13】 この発明の実施例9における接合方法の概
念を説明するための斜視図である。
FIG. 13 is a perspective view for explaining the concept of the joining method in the ninth embodiment of the present invention.

【図14】 この発明の実施例11における接合方法を
適用した接合装置の構成を示すブロック図である。
FIG. 14 is a block diagram showing a configuration of a joining device to which a joining method according to an eleventh embodiment of the present invention is applied.

【図15】 通電時間中における電極間抵抗の変化を示
す曲線図である。
FIG. 15 is a curve diagram showing changes in inter-electrode resistance during energization time.

【図16】 従来の接合方法を実施するための装置の構
成を示すブロック図である。
FIG. 16 is a block diagram showing a configuration of an apparatus for carrying out a conventional joining method.

【図17】 接合打点の増加に伴う電極間抵抗の平均値
の変化と、溶接品質を補正するためのいくつかの消耗等
級別に対応する境界値との関連を示す特性図である。
FIG. 17 is a characteristic diagram showing a relationship between a change in average value of inter-electrode resistance with an increase in the number of joining points and boundary values corresponding to several wear grades for correcting welding quality.

【符号の説明】[Explanation of symbols]

11,12 被接合部材、13,14 電極、13a,
14a 窪み部、15 電圧検出部、16 電流検出
部、18 抵抗演算回路、19,28,42 記憶保持
回路、20,29,43 平均値算出回路、21,3
0,44 標準偏差値算出回路、22,31,45,4
9 基準設定回路、23,32,46 第1の比較演算
回路、24,33,47 第2の比較演算回路、25,
34,48 通電条件演算回路、26 通電制御部、2
7,41 加工時間演算回路、35 ろう材、36 光
ビーム源、37 受光器、38 光ビーム、38a,3
8b 反射光、39 光電変換回路、40,50,55
比較演算回路、51 通電量再設定回路、52 通電
条件設定回路、53 最大値算出回路、54 閾値設定
回路、56 表示部、57 中止信号出力回路、58
第1の通電条件設定回路、59 第2の通電条件設定回
路、60 通電中止信号出力回路。
11,12 Members to be joined, 13,14 Electrodes, 13a,
14a hollow part, 15 voltage detection part, 16 current detection part, 18 resistance calculation circuit, 19, 28, 42 storage holding circuit, 20, 29, 43 average value calculation circuit 21, 3
0,44 standard deviation value calculation circuit, 22, 31, 45, 4
9 reference setting circuit, 23, 32, 46 first comparison operation circuit, 24, 33, 47 second comparison operation circuit, 25,
34, 48 energization condition calculation circuit, 26 energization control unit, 2
7, 41 Processing time arithmetic circuit, 35 brazing material, 36 light beam source, 37 light receiver, 38 light beam, 38a, 3
8b reflected light, 39 photoelectric conversion circuit, 40, 50, 55
Comparative arithmetic circuit, 51 energization amount resetting circuit, 52 energization condition setting circuit, 53 maximum value calculating circuit, 54 threshold value setting circuit, 56 display section, 57 stop signal output circuit, 58
First energization condition setting circuit, 59 Second energization condition setting circuit, 60 Energization stop signal output circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣澤 隆夫 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 安藤 裕太郎 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 昭61−78579(JP,A) 特開 平1−278973(JP,A) 特開 平2−220785(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 11/24 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takao Hirosawa 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Yutaro Ando 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Incorporated (56) Reference JP-A-61-78579 (JP, A) JP-A-1-278973 (JP, A) JP-A-2-220785 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B23K 11/24

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対の被接合部材を一対の電極により所
定の圧力で挟持して上記被接合部材に電流を流し抵抗発
熱によって上記被接合部材同士を接合する接合方法にお
いて、打点毎に通電開始から所定時間後の上記両電極間
の抵抗値を順次測定するとともに上記打点の回数が所定
の打点数に達した時点で所定の打点数間における上記抵
抗値の平均値およびばらつき度合を算出しこれら算出値
に応じて少なくとも通電電流値または通電時間のいずれ
か一方の補正を行うことを特徴とする接合方法。
1. In a joining method of sandwiching a pair of members to be joined with a pair of electrodes at a predetermined pressure and applying a current to the members to be joined to join the members to be joined by resistance heating, energization is started at each dot. After that, the resistance value between the two electrodes is measured sequentially after a predetermined time, and when the number of the above-mentioned dots reaches the predetermined number of dots, the average value and the degree of variation of the resistance value between the predetermined number of dots are calculated. A joining method characterized in that at least one of an energization current value and an energization time is corrected according to a calculated value.
【請求項2】 抵抗値は打点毎の最小値であることを特
徴とする請求項1記載の接合方法。
2. The bonding method according to claim 1, wherein the resistance value is a minimum value for each dot.
【請求項3】 一対の被接合部材を一対の電極により所
定の圧力で挟持して上記被接合部材に電流を流し抵抗発
熱によって上記被接合部材同士を接合する接合方法にお
いて、打点毎に上記接合の状態を検出して上記状態が所
定の状態に達するまでの時間を順次測定するとともに上
記打点の回数が所定の打点数に達した時点で所定の打点
数間における上記時間の平均値およびばらつき度合を算
出しこれら算出値に応じて少なくとも通電電流値または
通電時間のいずれか一方の補正を行うことを特徴とする
接合方法。
3. A joining method for joining a pair of members to be joined by a pair of electrodes at a predetermined pressure and applying a current to the members to be joined to each other by resistance heating to join the members to each other at each welding point. The time until the state reaches a predetermined state is sequentially measured, and the average value and the degree of variation of the time between the predetermined number of RBIs are measured when the number of RBIs reaches the predetermined number of RBIs. And a correction method for correcting at least one of the energizing current value and the energizing time according to these calculated values.
【請求項4】 一対の被接合部材を一対の電極により所
定の圧力で挟持して上記被接合部材に電流を流し抵抗発
熱によって上記被接合部材同士を接合する接合方法にお
いて、打点毎に通電開始から所定時間後の上記両電極間
の抵抗値を順次測定するとともに上記打点の回数が所定
の打点数に達した時点で所定の打点数間における上記抵
抗値の平均値およびばらつき度合を算出しこれら算出値
に応じて少なくとも通電電流値または通電時間のいずれ
か一方の補正を行い、さらに、打点毎に上記接合の状態
を検出して上記状態が所定の状態に達するまでの時間を
順次測定するとともに上記打点の回数が所定の打点数に
達した時点で所定の打点数間における上記時間の平均値
およびばらつき度合を算出しこれら算出値に応じて上記
補正された通電電流値または通電時間の補正を再び行う
ことを特徴とする接合方法。
4. A joining method for joining a pair of members to be joined with a pair of electrodes at a predetermined pressure to cause a current to flow through the members to be joined to join the members to be joined by resistance heat generation, and energization is started at each welding point. After that, the resistance value between the two electrodes is sequentially measured after a predetermined time, and at the time when the number of the above-mentioned dots reaches the predetermined number of dots, the average value and the degree of dispersion of the resistance value between the predetermined number of dots are calculated. At least one of the energizing current value and the energizing time is corrected according to the calculated value, and the time until the state reaches a predetermined state is detected by detecting the state of the joining for each dot and At the time when the number of RBIs reaches a predetermined number of RBIs, the average value and the degree of variation of the time between the predetermined number of RBIs are calculated, and the corrected energizing current is corrected according to these calculated values. A joining method characterized in that the value or the energization time is corrected again.
【請求項5】 ばらつき度合が所定の値に達したら接合
加工を停止することを特徴とする請求項1、3、4のい
ずれかに記載の接合方法。
5. The joining method according to claim 1, wherein the joining process is stopped when the degree of variation reaches a predetermined value.
【請求項6】 両電極間の抵抗値が最大値に達した時点
を所定の状態としたことを特徴とする請求項3または4
記載の接合方法。
6. A predetermined state when a resistance value between both electrodes reaches a maximum value is set to a predetermined state.
The joining method described.
【請求項7】 接合部に光ビームを照射するとともに上
記接合部で反射される反射光の量が所定の値に達した時
点を所定の状態としたことを特徴とする請求項3または
4記載の接合方法。
7. The method according to claim 3, wherein a time point when a light beam is applied to the joint portion and a quantity of reflected light reflected by the joint portion reaches a predetermined value is set to a predetermined state. How to join.
【請求項8】 接合部近傍に被接合部材よりも低い融点
を有する部材を配設し上記部材の表面に光ビームを照射
するとともに上記部材の表面で反射される反射光の量が
所定の値に達した時点を所定の状態としたことを特徴と
する請求項3または4記載の接合方法。
8. A member having a melting point lower than that of a member to be joined is disposed in the vicinity of the joined portion, the surface of the member is irradiated with a light beam, and the amount of reflected light reflected by the surface of the member is a predetermined value. The joining method according to claim 3 or 4, characterized in that the time point at which the temperature reaches is set to a predetermined state.
【請求項9】 一対の被接合部材を一対の電極により所
定の圧力で挟持して上記被接合部材に電流を流し抵抗発
熱によって上記被接合部材同士を接合する接合方法にお
いて、打点毎に通電開始から所定時間後の上記両電極間
の最大抵抗値を順次測定して上記最大抵抗値が予め設定
された第1の基準値を越え、且つ次の打点以降の上記最
大抵抗値が予め設定された第2の基準値を越えた場合に
以降の接合加工を停止することを特徴とする接合方法。
9. A joining method for joining a pair of members to be joined by a pair of electrodes at a predetermined pressure to cause a current to flow through the members to be joined to join the members to be joined by resistance heat generation, and energization is started at each welding point. The maximum resistance value between the both electrodes after a predetermined time is sequentially measured, and the maximum resistance value exceeds the preset first reference value, and the maximum resistance value after the next dot is preset. A joining method characterized in that the subsequent joining process is stopped when the second reference value is exceeded.
【請求項10】 第1および第2の基準値は同値である
ことを特徴とする請求項9記載の接合方法。
10. The bonding method according to claim 9, wherein the first and second reference values are the same value.
【請求項11】 被接合部材と電極とがそれぞれ当接す
る各当接面の面積は電極の方がそれぞれ大に形成されて
いることを特徴とする請求項1ないし10のいずれかに
記載の接合方法。
11. The joint according to claim 1, wherein the contact surface where the member to be joined and the electrode come into contact with each other is formed so that the electrode has a larger area. Method.
【請求項12】 電極は被接合部材より電気抵抗率の大
きな材料で形成されていることを特徴とする請求項1な
いし10のいずれかに記載の接合方法。
12. The joining method according to claim 1, wherein the electrode is made of a material having a larger electrical resistivity than the members to be joined.
【請求項13】 両被接合部材間に上記被接合部材より
も低い融点を有する導電性の部材を介在させ上記部材を
溶融させることにより上記被接合部材同士を接合するよ
うにしたことを特徴とする請求項1ないし10のいずれ
かに記載の接合方法。
13. The members to be joined are joined by interposing a conductive member having a lower melting point than the members to be joined between the members to be joined and melting the members. The joining method according to any one of claims 1 to 10.
JP18410195A 1995-07-20 1995-07-20 Joining method Expired - Fee Related JP3489760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18410195A JP3489760B2 (en) 1995-07-20 1995-07-20 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18410195A JP3489760B2 (en) 1995-07-20 1995-07-20 Joining method

Publications (2)

Publication Number Publication Date
JPH0929450A JPH0929450A (en) 1997-02-04
JP3489760B2 true JP3489760B2 (en) 2004-01-26

Family

ID=16147420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18410195A Expired - Fee Related JP3489760B2 (en) 1995-07-20 1995-07-20 Joining method

Country Status (1)

Country Link
JP (1) JP3489760B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642221B2 (en) * 2000-12-19 2011-03-02 中央精機株式会社 Pass / fail judgment device and judgment method of initial butt state in upset butt welding
JP5738702B2 (en) * 2011-07-25 2015-06-24 トヨタ自動車株式会社 Resistance welding evaluation method, resistance welding machine control method, resistance welding machine control device, and resistance welding machine
JP6897914B1 (en) * 2020-02-21 2021-07-07 株式会社オリジン Manufacturing method of joining equipment and joined members

Also Published As

Publication number Publication date
JPH0929450A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
KR101584495B1 (en) Resistance spot welding system
JP3933193B2 (en) Consumable electrode arc welding machine
US6995338B2 (en) Method and apparatus for short circuit welding
KR100299256B1 (en) Pulse Arc Welding Device
EP0080514A1 (en) Method and apparatus for controlling resistance welding
EP0070904B1 (en) Method for bonding a contact
US8357870B1 (en) Intelligent stepper welding system and method
US20190076954A1 (en) Resistance welding method and resistance welding apparatus
JPH04284980A (en) Method for spot resistance welding and its welding electrode
JP3489760B2 (en) Joining method
JP5743081B2 (en) Heat control method and apparatus for hot wire welding
JP3161315B2 (en) Control device of resistance welding machine
JP4486407B2 (en) Resistance welding control method
US20220055136A1 (en) Arc welding method and arc welding device
JP2019118921A (en) Welding device
JP3588874B2 (en) Resistance welding control method
JPS6325876B2 (en)
JPH0371982A (en) Resistance welding method
JP3223065B2 (en) Pre-energization control device for resistance welding and method for determining pre-energization conditions
KR20010038882A (en) Apparatus for compensating rewelding state of resistance spot welder
JP2005334935A (en) Method for evaluating spot weldability of steel sheet
JPH11309583A (en) Resistance welding control device
JPH10216956A (en) Method for feeding member to be welded in flash welding
JP2021053698A (en) Control device for resistance welding machine, conduction state monitoring method and normal/defective determination method of welded parts
JPS6341677B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees