JP4486407B2 - Resistance welding control method - Google Patents

Resistance welding control method Download PDF

Info

Publication number
JP4486407B2
JP4486407B2 JP2004137147A JP2004137147A JP4486407B2 JP 4486407 B2 JP4486407 B2 JP 4486407B2 JP 2004137147 A JP2004137147 A JP 2004137147A JP 2004137147 A JP2004137147 A JP 2004137147A JP 4486407 B2 JP4486407 B2 JP 4486407B2
Authority
JP
Japan
Prior art keywords
welding
temperature
value
current
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004137147A
Other languages
Japanese (ja)
Other versions
JP2005319469A (en
Inventor
卓治 松浦
伸也 加治
丈夫 雪永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2004137147A priority Critical patent/JP4486407B2/en
Publication of JP2005319469A publication Critical patent/JP2005319469A/en
Application granted granted Critical
Publication of JP4486407B2 publication Critical patent/JP4486407B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Description

本発明は、スポット溶接に使用される抵抗溶接に関し、特に、抵抗溶接中の溶接部の温度を熱伝導計算によって推定し、この溶接部温度推定値が予め定めた温度変化目標パターンに略沿うように溶接電流値を増減させる温度パターン追従電流制御を行う抵抗溶接制御方法の改善に関する。   The present invention relates to resistance welding used for spot welding, and in particular, estimates the temperature of a welded part during resistance welding by heat conduction calculation so that the estimated temperature of the welded part substantially follows a predetermined temperature change target pattern. The present invention relates to improvement of a resistance welding control method for performing temperature pattern tracking current control for increasing or decreasing a welding current value.

複数枚重ねた被溶接材を1対の電極によって加圧・通電して溶接する抵抗スポット溶接において、溶接部の良好な品質を得るためには、ナゲット径が適正範囲内で形成されること及び溶接中にチリが発生しないことが重要である。特に、最近多く使用されている亜鉛メッキ鋼板、アルミニウムメッキ鋼板及び高張力鋼板の抵抗溶接では、ナゲット径が変動しやすく、かつ、チリも発生しやすいために、これらの発生を抑制する制御方法が提案されている。   In resistance spot welding, in which a plurality of stacked materials to be welded are pressed and energized by a pair of electrodes, in order to obtain good quality of the welded portion, the nugget diameter must be formed within an appropriate range; It is important that no dust is generated during welding. In particular, in resistance welding of galvanized steel sheets, aluminum plated steel sheets, and high-tensile steel sheets, which are widely used recently, the nugget diameter is likely to fluctuate and dust is likely to occur. Proposed.

ナゲット径の適正化及びチリの発生の防止のためには、抵抗溶接中の溶接部の温度変化を被溶接材の材質及び形状、電極の形状及び消耗度、被溶接材間及び被溶接材・電極間の接触状態等に応じて適正化する必要がある。すなわち、1つの打点位置において溶接開始時点から溶接終了時点までの溶接部の温度変化を、上記の種々の溶接条件に応じて予め定めた温度変化目標パターンに沿うように溶接電流を制御することによって、ナゲット径の適正なチリも発生しない良好な溶接品質を得ることができる。このような温度パターン追従電流制御では、抵抗溶接中の溶接部の温度変化を計測する必要があるが、溶接部は外部から見えないために直接その温度変化を計測することは困難である。このために、溶接部の温度変化を熱伝導計算によってリアルタイムに演算して溶接部温度推定値を求める方法が多く提案されている。   In order to optimize the nugget diameter and prevent the occurrence of dust, the temperature change of the welded part during resistance welding is performed by determining the material and shape of the material to be welded, the shape and consumption of the electrode, the space between the materials to be welded and the material to be welded. It is necessary to optimize in accordance with the contact state between the electrodes. That is, by controlling the welding current so that the temperature change of the welded portion from the welding start time point to the welding end time point at a single spot position follows a predetermined temperature change target pattern according to the various welding conditions described above. In addition, it is possible to obtain good welding quality that does not generate dust with an appropriate nugget diameter. In such temperature pattern tracking current control, it is necessary to measure the temperature change of the weld during resistance welding, but it is difficult to directly measure the temperature change because the weld is not visible from the outside. For this reason, many methods have been proposed in which the temperature change of the weld is calculated in real time by heat conduction calculation to obtain the estimated temperature of the weld.

上記の熱伝導計算方法には、微分方程式及び有限要素分析法を用いる方法、溶接部のエネルギーバランスモデルに基づく平均温度推定値を計算する方法等がある。これらの熱伝導計算方法では、溶接電流値、溶接電圧値並びに電極及び被溶接材の物理的定数を入力として、溶接部温度推定値を演算する。   The heat conduction calculation method includes a method using a differential equation and a finite element analysis method, a method of calculating an average temperature estimated value based on an energy balance model of a welded part, and the like. In these heat conduction calculation methods, the welding current temperature estimated value is calculated by inputting the welding current value, the welding voltage value, and the physical constants of the electrode and the workpiece to be welded.

図5は、上述した温度パターン追従電流制御の一例を示す溶接部温度推定値Tc及び溶接電流Iwの時間変化図である。同図において、横軸は溶接開始時点からの経過時間tを慣例により商用電源の1周期(50Hz又は60Hzの逆数)=1サイクル(cyc)として表わしている。また、左の縦軸は溶接部温度推定値Tc[℃]及び温度変化目標パターンTp[℃]を表わし、右の縦軸は制御操作量である溶接電流Iw[kA]を実効値で表わしたものである。温度パターン追従電流制御では、各経過時間における溶接部温度推定値Tcを熱伝導計算によって演算し、温度変化目標パターンTpとの誤差増幅値ΔT=Gain・(Tp−Tc)を算出し、この温度誤差増幅値ΔTに応じて溶接電流Iwを増減させて溶接部温度推定値Tcが温度変化目標パターンTpに略沿うようにしている。これにより、溶接部の温度変化が適正化されて、ナゲット径の適正なチリの発生しない良好な溶接品質を得ることができる。   FIG. 5 is a time change diagram of the weld temperature estimation value Tc and the welding current Iw showing an example of the temperature pattern following current control described above. In the figure, the horizontal axis represents the elapsed time t from the start of welding as one cycle of commercial power supply (reciprocal of 50 Hz or 60 Hz) = 1 cycle (cyc). Further, the left vertical axis represents the weld temperature estimated value Tc [° C.] and the temperature change target pattern Tp [° C.], and the right vertical axis represents the welding current Iw [kA], which is the control operation amount, as an effective value. Is. In temperature pattern tracking current control, the weld temperature estimated value Tc at each elapsed time is calculated by heat conduction calculation, and an error amplification value ΔT = Gain · (Tp−Tc) with respect to the temperature change target pattern Tp is calculated. The welding current Iw is increased / decreased in accordance with the error amplification value ΔT so that the weld temperature estimated value Tc substantially follows the temperature change target pattern Tp. Thereby, the temperature change of a welding part is optimized and the favorable weld quality which does not generate | occur | produce the dust with appropriate nugget diameter can be obtained.

同図に示すように、時間経過に伴って温度変化目標パターンTpは上昇するように設定されている。このため、溶接部温度推定値Tcはこれに追従して上昇し最大値Tmに達する。溶接電流Iwも時間経過に伴って上昇するのが通常である。ただし、溶接電流Iwは、フィードバック制御によって変化するので、溶接部状態によって変化パタ−ンは多様であり、時には上昇しないで略一定値となる場合もある。上記の温度変化目標パターンTpは、電極及び被溶接材の材質、形状等に応じて予め試験によって設定する。ただし、基準となる電極及び被溶接材の材質、形状等を定めて基準温度変化目標パターンを予め設定しておき、被溶接材の板厚が異なる場合にはこの基準温度変化目標パターンを基にして計算によって温度変化目標パターンTpを新たに生成する方法もある(上記の従来技術としては、例えば特許文献1、特願2003−371663等を参照)。   As shown in the figure, the temperature change target pattern Tp is set to increase with time. For this reason, the welding part temperature estimated value Tc rises following this and reaches the maximum value Tm. Usually, the welding current Iw also increases with time. However, since the welding current Iw is changed by feedback control, the change pattern varies depending on the state of the welded portion, and sometimes does not increase and may be a substantially constant value. The temperature change target pattern Tp is set by a test in advance according to the material and shape of the electrode and the material to be welded. However, the reference temperature change target pattern is set in advance by determining the material and shape of the reference electrode and the workpiece, and if the plate thickness of the workpiece is different, the reference temperature change target pattern is used as the basis. There is also a method of newly generating a temperature change target pattern Tp by calculation (see, for example, Patent Document 1, Japanese Patent Application No. 2003-371663, etc. as the above-described conventional technology).

特許第3221296号公報Japanese Patent No. 3212296

上述したようにナゲット径の適正化及びチリ発生の抑制が難しいメッキ鋼板、高張力鋼板等に対する抵抗溶接において、電極の消耗度、電極の表面状態、電極・被溶接材間の接触状態、複数の被溶接材間の接触状態等の溶接部状態が変動しても、上述した温度パターン追従電流制御を行うことによって高品質な溶接結果を得ることができる。しかし、稀な頻度ではあるが、溶接部状態が通常の変動範囲を超えて異常変動する場合がある。このようなケ−スとしては、抵抗溶接開始直後に発生した大きな粒状のチリ(以下、スパッタという)が電極・被溶接材間に挟まれて接触状態が非常に悪くなるケースがある。また、消耗によって電極の形状が歪に変形して電極・被溶接材間の接触状態が非常に悪くなるケースもある。また、被溶接材間に隙間が存在して接触状態が非常に悪くなるケースもある。このような溶接部状態の異常変動が発生すると、温度パターン追従電流制御を行っていても適正な溶接品質を得ることができない場合が生じる。以下、この異常変動状態の発生時の温度パターン追従電流制御について図面を参照して説明する。   As described above, in resistance welding to plated steel sheets, high-tensile steel sheets, etc., where it is difficult to optimize the nugget diameter and suppress the generation of dust, the degree of electrode wear, the electrode surface state, the contact state between the electrode and the workpiece, multiple Even if the state of the welded portion such as the contact state between the workpieces fluctuates, a high-quality welding result can be obtained by performing the above-described temperature pattern tracking current control. However, although it is a rare frequency, the weld state may abnormally vary beyond the normal variation range. As such a case, there is a case where a large granular dust (hereinafter referred to as spatter) generated immediately after the start of resistance welding is sandwiched between the electrode and the material to be welded, resulting in a very poor contact state. In some cases, the shape of the electrode is deformed due to wear and the contact state between the electrode and the material to be welded becomes very poor. In addition, there is a case where a gap exists between the materials to be welded and the contact state becomes very bad. When such abnormal fluctuations in the welded portion state occur, there may be a case where proper welding quality cannot be obtained even if temperature pattern tracking current control is performed. Hereinafter, temperature pattern tracking current control when this abnormal variation state occurs will be described with reference to the drawings.

図6は、温度パターン追従電流制御中に溶接部状態が異常変動したときの溶接部温度推定値Tc及び溶接電流Iwの時間変化を示す図である。同図は、溶接開始直後に大粒のスパッタが発生して電極・被溶接材間に挟まれて接触状態が異常状態になった場合である。この状態になると、電極・被溶接材間の接触抵抗値が異常値になるために、熱伝導計算による溶接部温度推定値Tcは大きな誤差を含んだ値となる。しかし、この誤差を含んだ溶接部温度推定値Tcをフィードバック値として制御されるために、同図に示すように、溶接部温度推定値Tcは温度変化目標パターンTpに沿うように溶接電流Iwが増減する。しかし、この溶接部温度推定値Tcは溶接部の温度を正確に推定した値ではないために、ナゲット径は適正値よりも小さくなる。こ場合、溶接部温度推定値Tcは真の値よりも高く演算されるので、溶接電流Iwの値は通常変動時のL1曲線(図5のIw)よりも相当に低くなる。この結果、ナゲット径は適正範囲よりも小さくなり不良な溶接結果となる。   FIG. 6 is a diagram showing temporal changes in the weld temperature estimated value Tc and the welding current Iw when the weld state changes abnormally during temperature pattern tracking current control. This figure shows a case where large-sized spatter occurs immediately after the start of welding and is sandwiched between the electrode and the workpiece and the contact state becomes abnormal. In this state, the contact resistance value between the electrode and the material to be welded becomes an abnormal value, so that the estimated temperature Tc of the welded part by the heat conduction calculation includes a large error. However, since the welding portion temperature estimated value Tc including this error is controlled as a feedback value, as shown in the figure, the welding portion temperature estimated value Tc has a welding current Iw along the temperature change target pattern Tp. Increase or decrease. However, since this weld temperature estimated value Tc is not a value that accurately estimates the temperature of the weld, the nugget diameter is smaller than the appropriate value. In this case, since the weld temperature estimated value Tc is calculated to be higher than the true value, the value of the welding current Iw is considerably lower than the L1 curve (Iw in FIG. 5) during normal fluctuation. As a result, the nugget diameter becomes smaller than the appropriate range, resulting in a poor welding result.

図7は、温度パターン追従電流制御中に溶接部状態が異常変動したときの溶接部温度推定値Tc及び溶接電流Iwの時間変化を示す図である。同図は、上述した図6の場合と同様に溶接開始直後に大粒のスパッタが発生して電極・被溶接材間に挟まれた場合である。しかし図6とは異なり、5cycが経過した時点でこのスパッタが溶融等して除去されて通常の変動状態に戻った場合である。したがって、5cycまでは図6と同様に溶接部温度推定値Tcが真の値よりも高いために、溶接電流Iwは通常変動時L1よりも低くなる。5cyc経過後は通常の変動状態に戻るので、溶接部温度推定値Tcは真の値と一致する。このために、5cyc経過時点での溶接部温度推定値Tcは温度変化目標パターンTpよりも低くなる。この偏差を小さくするために溶接電流Iwは急増する。しかし、溶接途中での溶接電流Iwの増加では溶接部温度推定値Tcを温度変化目標パターンTpに一致させることができないまま溶接が終了する。この結果、通常変動時に比べて溶接電流値Iwが低く溶接部温度推定値Tcも低くなるために、ナゲット径は適正範囲よりも小さくなり不良な溶接品質となる。   FIG. 7 is a diagram showing temporal changes in the weld temperature estimated value Tc and the welding current Iw when the weld state changes abnormally during temperature pattern tracking current control. This figure shows a case where large spatter is generated immediately after the start of welding and is sandwiched between the electrode and the workpiece to be welded, as in the case of FIG. 6 described above. However, unlike FIG. 6, when 5 cyc has elapsed, this spatter is melted and removed to return to the normal fluctuation state. Therefore, up to 5 cyc, since the weld temperature estimated value Tc is higher than the true value as in FIG. 6, the welding current Iw is lower than the normal fluctuation time L1. Since the normal fluctuation state is restored after 5 cyc has elapsed, the weld temperature estimated value Tc matches the true value. For this reason, the weld temperature estimated value Tc at the time when 5 cyc has elapsed is lower than the temperature change target pattern Tp. In order to reduce this deviation, the welding current Iw increases rapidly. However, if the welding current Iw is increased during welding, the welding is terminated while the weld temperature estimated value Tc cannot be matched with the temperature change target pattern Tp. As a result, since the welding current value Iw is low and the weld temperature estimation value Tc is also low compared to the normal fluctuation, the nugget diameter is smaller than the appropriate range, resulting in poor welding quality.

そこで、本発明では、溶接部状態が異常変動したときでも良好な溶接品質を得ることができる抵抗溶接制御方法を提供する。   Therefore, the present invention provides a resistance welding control method capable of obtaining good welding quality even when the welded portion state abnormally varies.

上述した課題を解決するために、第1の発明は、抵抗溶接中の溶接部の温度を熱伝導計算によって推定し、この溶接部温度推定値が予め定めた温度変化目標パターンに略沿うように溶接電流値を増減させる温度パターン追従電流制御を行う抵抗溶接制御方法において、
1つの打点位置での溶接が終了した際に、前記溶接部温度推定値の最大値が予め定めた基準最大値未満である場合及び/又は通電した前記溶接電流値の平均値が予め定めた基準平均値未満である場合には、その打点位置で、前記温度パターン追従電流制御によってナゲット径を大きくして適正範囲に入るように再度の抵抗溶接を行うことを特徴とする抵抗溶接制御方法である。

In order to solve the above-described problem, the first invention estimates the temperature of a welded part during resistance welding by heat conduction calculation so that the estimated temperature of the welded part substantially follows a predetermined temperature change target pattern. In the resistance welding control method for performing temperature pattern tracking current control to increase or decrease the welding current value,
When welding at one spot position is finished, the maximum value of the weld temperature estimated value is less than a predetermined reference maximum value and / or the average value of the energized welding current value is a predetermined reference In the resistance welding control method, if the average value is less than the average value, the resistance welding is performed again so that the nugget diameter is increased by the temperature pattern follow-up current control at the spot position so as to fall within an appropriate range. .

上記第1の発明によれば、抵抗溶接中に溶接部状態に異常変動状態が発生しても、この異常変動状態を自動判別して再度の抵抗溶接を行うので、異常変動状態が発生したときでも適正なナゲット径を形成することができる。   According to the first aspect, even if an abnormal fluctuation state occurs in the welded part state during resistance welding, the abnormal fluctuation state is automatically determined and resistance welding is performed again. However, an appropriate nugget diameter can be formed.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係る抵抗溶接制御方法を示すフローチャートである。以下、同図を参照して説明する。
[Embodiment 1]
FIG. 1 is a flowchart showing a resistance welding control method according to Embodiment 1 of the present invention. Hereinafter, a description will be given with reference to FIG.

ステップST1において、1つの打点位置で温度パターン追従電流制御によって抵抗溶接を行う。ステップST2において、1打点の溶接中における溶接部温度推定値Tcの最大値(溶接部温度推定最大値)Tm及び溶接電流Iwの平均値Iaを算出し、この溶接部温度推定最大値Tmが予め定めた基準最大値Tt未満でありかつこの溶接電流平均値Iaが予め定めた基準平均値It未満であるかを判別する。判別結果がYESならばステップST3に進み、NOならばこの打点位置での溶接を終了する。ここのステップST2では、溶接部状態が異常変動状態にあったかを判別している。この判別方法は以下のとおりである。   In step ST1, resistance welding is performed by temperature pattern tracking current control at one spot position. In step ST2, a maximum value (estimated weld temperature) Tm of the weld temperature estimate Tc during welding at one spot and an average value Ia of the weld current Iw are calculated, and the weld temperature estimate maximum value Tm is calculated in advance. It is determined whether the welding current average value Ia is less than a predetermined reference maximum value It and is less than a predetermined reference average value It. If the determination result is YES, the process proceeds to step ST3, and if NO, the welding at this spot position is terminated. In step ST <b> 2 here, it is determined whether or not the welded part state is in an abnormal fluctuation state. This determination method is as follows.

上述した図6において、溶接部状態が異常変動状態になると、溶接電流Iwの平均値Iaが通常変動時の溶接電流L1の平均値よりも小さくなる。したがって、通常変動時の溶接電流L1の平均値又はそれに係数を乗じた値を基準平均値Itとして予め設定し、溶接電流平均値Iaがこの基準平均値It未満のときは異常変動状態であったと判別する。   In FIG. 6 described above, when the welded part state changes abnormally, the average value Ia of the welding current Iw becomes smaller than the average value of the welding current L1 during normal fluctuation. Accordingly, the average value of the welding current L1 at the time of normal fluctuation or a value obtained by multiplying the average value by the coefficient is set in advance as a reference average value It. Determine.

また、上述した図7において、溶接部状態が異常変動状態になると、溶接電流Iwの平均値Iaが通常変動時の溶接電流L1の平均値よりも小さくなる。さらに、溶接部温度推定値Tcの最大値Tmが温度変化目標パターンTpの最大値よりも低くなる。したがって、通常変動時の溶接電流L1の平均値又はそれに係数を乗じた値を基準平均値Itとして予め設定し、溶接電流平均値Iaがこの基準平均値It未満のときは異常変動状態であったと判別する。または、温度変化目標パターンTpの最大値又はそれに係数を乗じた値を基準最大値Ttとして予め設定し、溶接部温度推定値Tcの最大値Tmがこの基準最大値Tt未満のときは異常変動状態であったと判別する。すなわち、Tm<Tt及び/又はIa<Itであるときには、溶接部状態が異常変動状態であったと判別することができる。異常変動状態が発生すると上述したようにナゲット径は適正範囲よりも小さくなり不良となる。   Further, in FIG. 7 described above, when the welded portion state is in an abnormal fluctuation state, the average value Ia of the welding current Iw becomes smaller than the average value of the welding current L1 during the normal fluctuation. Further, the maximum value Tm of the weld temperature estimation value Tc is lower than the maximum value of the temperature change target pattern Tp. Accordingly, the average value of the welding current L1 at the time of normal fluctuation or a value obtained by multiplying the average value by the coefficient is set in advance as a reference average value It. Determine. Alternatively, the maximum value of the temperature change target pattern Tp or a value obtained by multiplying the maximum value by the coefficient is set in advance as a reference maximum value Tt. When the maximum value Tm of the weld temperature estimation value Tc is less than the reference maximum value Tt, an abnormal variation state It is determined that it was. That is, when Tm <Tt and / or Ia <It, it can be determined that the welded portion state is an abnormal variation state. When an abnormal variation state occurs, the nugget diameter becomes smaller than the appropriate range as described above, resulting in a failure.

ステップST3において、同一の打点位置で温度パターン追従電流制御によって再度の抵抗溶接を行う。この再度の抵抗溶接によってナゲット径を大きくして適正範囲に入るようにする。上述したように、溶接部状態が異常変動状態であってもそれを自動判別して再度溶接することによって、良好な溶接品質を確保することができる。再度の溶接時も温度パターン追従電流制御を行う理由は、ナゲット径を大きくして適正範囲にすると共に少しでもチリの発生を抑制するためである。   In step ST3, resistance welding is performed again by temperature pattern tracking current control at the same spot position. By this resistance welding again, the nugget diameter is increased so as to fall within an appropriate range. As described above, even if the welded portion is in an abnormal fluctuation state, it is possible to ensure good welding quality by automatically distinguishing it and performing welding again. The reason why the temperature pattern follow-up current control is performed also during the re-welding is to increase the nugget diameter to be within an appropriate range and suppress the generation of dust even a little.

図2は、上述した実施の形態1に係る抵抗溶接制御方法を実施するための溶接装置のブロック図である。以下、同図を参照して各ブロックについて説明する。   FIG. 2 is a block diagram of a welding apparatus for carrying out the resistance welding control method according to Embodiment 1 described above. Hereinafter, each block will be described with reference to FIG.

サイリスタSCRは、商用交流電源ACを入力として、後述する駆動信号Dvに従って溶接電流Iwの実効値が所定値になるように位相制御する。変圧器TRは、抵抗溶接に適した電圧値に降圧する。1対の電極1a、1bは、複数枚の被溶接材2を加圧し、電極を介して溶接電流Iwが通電し溶接電圧Vwが印加する。   The thyristor SCR receives the commercial AC power supply AC as an input and performs phase control so that the effective value of the welding current Iw becomes a predetermined value according to a drive signal Dv described later. The transformer TR steps down to a voltage value suitable for resistance welding. The pair of electrodes 1a and 1b pressurize a plurality of materials to be welded 2, and a welding current Iw is passed through the electrodes and a welding voltage Vw is applied.

電流検出回路IDは、上記の溶接電流Iwを検出して電流検出信号Idを出力する。電圧検出回路VDは、上記の溶接電圧Vwを検出して電圧検出信号Vdを出力する。溶接部温度推定値演算回路TCは、上記の電流検出信号Id及び電圧検出信号Vdを入力として、予め定めた被溶接材及び電極の物理定数を使用して熱伝導計算によって演算して溶接部温度推定値信号Tcを出力する。温度変化目標パターン設定回路TPは、予め定めた温度変化目標パターン信号Tpを出力する。温度誤差増幅回路ETは、上記の温度変化目標パターン信号Tpと上記の溶接部温度推定値信号Tcとの誤差を増幅して、温度誤差増幅信号ΔT=Gain・(Tp−Tc)を出力する。温度誤差積分回路SDTは、適当な初期値Isi及び上記の温度誤差増幅信号ΔTを入力として、電流制御設定信号Isc=Isi+∫ΔT・dtを出力する。上記の温度誤差増幅回路ET及び上記の温度誤差積分回路SDTによって温度パターン追従電流制御を行っている。   The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The weld temperature estimated value calculation circuit TC receives the current detection signal Id and the voltage detection signal Vd as input, and calculates the weld temperature by using a predetermined physical constant of the material to be welded and the electrode by heat conduction calculation. An estimated value signal Tc is output. The temperature change target pattern setting circuit TP outputs a predetermined temperature change target pattern signal Tp. The temperature error amplification circuit ET amplifies an error between the temperature change target pattern signal Tp and the welded portion temperature estimated value signal Tc, and outputs a temperature error amplification signal ΔT = Gain · (Tp−Tc). The temperature error integration circuit SDT receives the appropriate initial value Isi and the temperature error amplification signal ΔT, and outputs a current control setting signal Isc = Isi + ∫ΔT · dt. Temperature pattern tracking current control is performed by the temperature error amplification circuit ET and the temperature error integration circuit SDT.

電流実効値演算回路IRMは、上記の電流検出信号Idを入力としてその実効値を演算して、電流実効値信号Irmを出力する。電流誤差増幅回路EIは、上記の電流制御設定信号Iscと上記の電流実効値信号Irmとの誤差を増幅して、電流誤差増幅信号Eiを出力する。駆動回路DVは、後述する起動信号OnがHighレベルのときはこの電流誤差増幅信号Eiに従って上記のサイリスタSCRを位相制御するための駆動信号Dvを出力する。   The current effective value calculation circuit IRM calculates the effective value of the current detection signal Id as an input, and outputs the current effective value signal Irm. The current error amplification circuit EI amplifies an error between the current control setting signal Isc and the current effective value signal Irm and outputs a current error amplification signal Ei. The drive circuit DV outputs a drive signal Dv for controlling the phase of the thyristor SCR according to the current error amplification signal Ei when a later-described activation signal On is at a high level.

溶接部温度推定最大値検出回路TMは、上記の溶接部温度推定値信号Tcの最大値を検出して、溶接部温度推定最大値信号Tmを出力する。溶接電流平均値演算回路IAは、上記の電流実効値信号Irmを1回の溶接にわたって平均化して、溶接電流平均値信号Iaを出力する。溶接制御回路CCは、上記の溶接部温度推定最大値信号Tm及び溶接電流平均値信号Iaを入力として、上述した図1の各ステップを実行するための起動信号Onを出力する。すなわち、この溶接制御回路CCは、ステップST1を実行するために起動信号OnをHighレベルにして1回目の温度パターン追従電流制御による抵抗溶接を行う。次に、上記の溶接部温度推定最大値信号Tm及び溶接電流平均値信号IaによってステップST2の判別を実行する。そして、その判別結果に基づいてステップST3を実行する。   The weld zone temperature estimated maximum value detection circuit TM detects the maximum value of the weld zone temperature estimate value signal Tc and outputs a weld zone temperature estimate maximum value signal Tm. The welding current average value arithmetic circuit IA averages the current effective value signal Irm over one welding and outputs a welding current average value signal Ia. The welding control circuit CC outputs the start signal On for executing each step of FIG. 1 described above, with the above-described weld temperature estimation maximum value signal Tm and the welding current average value signal Ia as inputs. That is, this welding control circuit CC sets the activation signal On to the High level in order to execute step ST1, and performs resistance welding by the first temperature pattern following current control. Next, the discrimination in step ST2 is executed based on the above-mentioned weld zone temperature estimation maximum value signal Tm and welding current average value signal Ia. Then, step ST3 is executed based on the determination result.

[実施の形態2]
図3は、本発明の実施の形態2に係る抵抗溶接制御方法を示すフローチャートである。同図において上述した図1と同一のステップには同一符号を付してそれらの説明は省略する。以下、図1とは異なる点線で示すステップST31について説明する。
[Embodiment 2]
FIG. 3 is a flowchart showing a resistance welding control method according to Embodiment 2 of the present invention. In the figure, the same steps as those in FIG. 1 described above are denoted by the same reference numerals, and description thereof will be omitted. Hereinafter, step ST31 indicated by a dotted line different from FIG. 1 will be described.

ステップST2において溶接部状態が異常変動状態にあったと判別されると、ステップST31において所定溶接電流値によって再度抵抗溶接を行う。上述した図1では再度の抵抗溶接も温度パターン追従電流制御によって行っていたが、同図においては再度の抵抗溶接は温度パターン追従電流制御を停止して予め定めた一定値の溶接電流を通電して行う。このようにする理由は、再度の抵抗溶接時には十分に大きな溶接電流を通電して十分なナゲット径を確実に形成するためである。このときにチリが発生することがあっても、強度を確保するために適正なナゲット径を形成することを優先するためである。そもそも上述したように異常変動状態が発生して再度の溶接を行う頻度は稀であるために、このような場合は適正なナゲット径を形成することを優先するという考え方である。   If it is determined in step ST2 that the welded part state is in an abnormal fluctuation state, resistance welding is performed again with a predetermined welding current value in step ST31. In FIG. 1 described above, the resistance welding is performed again by the temperature pattern tracking current control. However, in the same figure, the resistance welding is performed again by stopping the temperature pattern tracking current control and supplying a predetermined constant welding current. Do it. The reason for this is to ensure that a sufficient nugget diameter is formed by energizing a sufficiently large welding current at the time of resistance welding again. This is because even if dust is generated at this time, priority is given to forming an appropriate nugget diameter to ensure strength. In the first place, as described above, since the abnormal fluctuation state occurs and the frequency of performing the welding again is rare, in such a case, the idea is to give priority to forming an appropriate nugget diameter.

図4は、上述した実施の形態2に係る抵抗溶接制御方法を実施するための溶接装置のブロック図である。同図において上述した図2と同一のブロックには同一符号を付してそれらの説明は省略する。以下、同図を参照して図2とは異なる点線で示す第2溶接制御回路CC2、電流設定回路IS及び電流設定切換回路SWについて説明する。   FIG. 4 is a block diagram of a welding apparatus for carrying out the resistance welding control method according to the second embodiment described above. In the figure, the same blocks as those in FIG. 2 described above are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, the second welding control circuit CC2, the current setting circuit IS, and the current setting switching circuit SW indicated by dotted lines different from those in FIG. 2 will be described with reference to FIG.

第2溶接制御回路CC2は、溶接部温度推定最大値信号Tm及び溶接電流平均値信号Iaを入力として、上述した図3の各ステップを実行するための起動信号On及び切換信号Swを出力する。すなわち、この第2溶接制御回路CC2は、ステップST1を実行するために起動信号On及び切換信号SwをHighレベルにして1回目の温度パターン追従電流制御による抵抗溶接を行う。次に、上記の溶接部温度推定最大値信号Tm及び溶接電流平均値信号IaによってステップST2の判別を実行する。そして、その判別結果に基づいてステップST31を実行するために起動信号Onを再びHighレベルにし切換信号SwをLowレベルにして後述する電流設定信号Isによって定まる所定溶接電流値による再度の抵抗溶接を行う。電流設定回路ISは、予め定めた電流設定信号Isを出力する。電流設定切換回路SWは、上記の切換信号SwがHighレベルのときはa側に切り換わって電流制御設定信号Iscを電流切換設定信号Iswとして出力し、Lowレベルのときは上記の電流設定信号Isを電流切換設定信号Iswとして出力する。この回路によって1回目は温度パターン追従電流制御による抵抗溶接を行い、2回目は所定溶接電流値による抵抗溶接を行う。   The second welding control circuit CC2 receives the welding portion temperature estimated maximum value signal Tm and the welding current average value signal Ia as inputs, and outputs a start signal On and a switching signal Sw for executing each step of FIG. That is, the second welding control circuit CC2 sets the start signal On and the switching signal Sw to High level in order to execute Step ST1, and performs resistance welding by the first temperature pattern tracking current control. Next, the discrimination in step ST2 is executed based on the above-mentioned weld zone temperature estimation maximum value signal Tm and welding current average value signal Ia. Then, in order to execute step ST31 based on the determination result, the activation signal On is set to the high level again, the switching signal Sw is set to the low level, and resistance welding is again performed with a predetermined welding current value determined by the current setting signal Is described later. . The current setting circuit IS outputs a predetermined current setting signal Is. The current setting switching circuit SW switches to the a side when the switching signal Sw is at the high level and outputs the current control setting signal Isc as the current switching setting signal Isw, and when the switching signal Sw is at the low level, the current setting signal Is. Is output as the current switching setting signal Isw. By this circuit, resistance welding is performed by temperature pattern following current control for the first time, and resistance welding is performed for the second time by a predetermined welding current value.

本発明の実施の形態1に係る抵抗溶接制御方法を示すフローチャートである。It is a flowchart which shows the resistance welding control method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る溶接装置のブロック図である。It is a block diagram of the welding apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る抵抗溶接制御方法を示すフローチャートである。It is a flowchart which shows the resistance welding control method which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る溶接装置のブロック図である。It is a block diagram of the welding apparatus which concerns on Embodiment 2 of this invention. 従来技術の温度パターン追従電流制御による抵抗溶接を行ったときの溶接部温度推定値Tc及び溶接電流Iwの時間変化を示す図である。It is a figure which shows the time change of the welding part temperature estimated value Tc and welding current Iw when resistance welding by the temperature pattern tracking current control of a prior art is performed. 従来技術の課題を説明するための異常変動状態における溶接部温度推定値Tc及び溶接電流Iwの時間変化を示す図である。It is a figure which shows the time change of the welding part temperature estimated value Tc and the welding current Iw in the abnormal fluctuation state for demonstrating the subject of a prior art. 従来技術の課題を説明するための異常変動状態における溶接部温度推定値Tc及び溶接電流Iwの図6とは別の時間変化を示す図である。It is a figure which shows the time change different from FIG. 6 of the welding part temperature estimated value Tc and the welding current Iw in the abnormal fluctuation state for demonstrating the subject of a prior art.

符号の説明Explanation of symbols

1a、1b 電極
2 被溶接材
CC 溶接制御回路
CC2 第2溶接制御回路
DV 駆動回路
Dv 駆動信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
ET 温度誤差増幅回路
IA 溶接電流平均値演算回路
Ia 溶接電流平均値(信号)
ID 電流検出回路
Id 電流検出信号
IRM 電流実効値演算回路
Irm 電流実効値信号
IS 電流設定回路
Is 電流設定信号
Isc 電流制御設定信号
Isi 初期値
Isw 電流切換設定信号
It 基準平均値
Iw 溶接電流
On 起動信号
SCR サイリスタ
SDT 温度誤差積分回路
SW 電流設定切換回路
Sw 切換信号
TC 溶接部温度推定値演算回路
Tc 溶接部温度推定値(信号)
TM 溶接部温度推定最大値検出回路
Tm 溶接部温度推定最大値(信号)
TP 温度変化目標パターン設定回路
Tp 温度変化目標パターン(信号)
TR 変圧器
Tt 基準最大値
VD 電圧検出回路
Vd 電圧検出信号
Vw 溶接電圧
ΔT 温度誤差増幅(値/信号)

1a, 1b Electrode 2 Workpiece material CC Welding control circuit CC2 Second welding control circuit DV Drive circuit Dv Drive signal EI Current error amplification circuit Ei Current error amplification signal ET Temperature error amplification circuit IA Welding current average value calculation circuit Ia Welding current average Value (signal)
ID Current detection circuit Id Current detection signal IRM Current effective value calculation circuit Irm Current effective value signal IS Current setting circuit Is Current setting signal Isc Current control setting signal Isi Initial value Isw Current switching setting signal It Reference average value Iw Welding current On Start signal SCR Thyristor SDT Temperature error integration circuit SW Current setting switching circuit Sw Switching signal TC Weld temperature estimation value calculation circuit Tc Weld temperature estimation (signal)
TM Weld temperature estimation maximum value detection circuit Tm Weld temperature estimation maximum value (signal)
TP Temperature change target pattern setting circuit Tp Temperature change target pattern (signal)
TR transformer Tt reference maximum value VD voltage detection circuit Vd voltage detection signal Vw welding voltage ΔT temperature error amplification (value / signal)

Claims (1)

抵抗溶接中の溶接部の温度を熱伝導計算によって推定し、この溶接部温度推定値が予め定めた温度変化目標パターンに略沿うように溶接電流値を増減させる温度パターン追従電流制御を行う抵抗溶接制御方法において、
1つの打点位置での溶接が終了した際に、前記溶接部温度推定値の最大値が予め定めた基準最大値未満である場合及び/又は通電した前記溶接電流値の平均値が予め定めた基準平均値未満である場合には、その打点位置で、前記温度パターン追従電流制御によってナゲット径を大きくして適正範囲に入るように再度の抵抗溶接を行うことを特徴とする抵抗溶接制御方法。
Resistance welding that performs temperature pattern follow-up current control that estimates the temperature of the weld during resistance welding by heat conduction calculation and increases or decreases the welding current value so that the estimated temperature of the weld is approximately in line with a predetermined temperature change target pattern In the control method,
When welding at one spot position is finished, the maximum value of the weld temperature estimated value is less than a predetermined reference maximum value and / or the average value of the energized welding current value is a predetermined reference A resistance welding control method comprising: performing resistance welding again so that the nugget diameter is increased by the temperature pattern tracking current control at a hit point position so that the nugget diameter is within an appropriate range when the average value is less than the average value.
JP2004137147A 2004-05-06 2004-05-06 Resistance welding control method Active JP4486407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137147A JP4486407B2 (en) 2004-05-06 2004-05-06 Resistance welding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137147A JP4486407B2 (en) 2004-05-06 2004-05-06 Resistance welding control method

Publications (2)

Publication Number Publication Date
JP2005319469A JP2005319469A (en) 2005-11-17
JP4486407B2 true JP4486407B2 (en) 2010-06-23

Family

ID=35467134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137147A Active JP4486407B2 (en) 2004-05-06 2004-05-06 Resistance welding control method

Country Status (1)

Country Link
JP (1) JP4486407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267066B2 (en) 2018-03-20 2022-03-08 Lincoln Global, Inc. Weld signature analysis for weld quality determination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401047B2 (en) * 2008-03-31 2014-01-29 Jfeスチール株式会社 Series spot or indirect spot welding of high-tensile steel plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171189A (en) * 1984-09-14 1986-04-12 Kanto Jidosha Kogyo Kk Method of monitoring weld zone of spot welding
JPH01228677A (en) * 1988-03-09 1989-09-12 Kanto Auto Works Ltd Spot welding condition automatic setting device
JPH0994673A (en) * 1995-09-29 1997-04-08 Matsushita Electric Ind Co Ltd Device and method for controlling resistance welding
JP2004188495A (en) * 2002-11-27 2004-07-08 Daihen Corp Resistance welding control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171189A (en) * 1984-09-14 1986-04-12 Kanto Jidosha Kogyo Kk Method of monitoring weld zone of spot welding
JPH01228677A (en) * 1988-03-09 1989-09-12 Kanto Auto Works Ltd Spot welding condition automatic setting device
JPH0994673A (en) * 1995-09-29 1997-04-08 Matsushita Electric Ind Co Ltd Device and method for controlling resistance welding
JP2004188495A (en) * 2002-11-27 2004-07-08 Daihen Corp Resistance welding control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267066B2 (en) 2018-03-20 2022-03-08 Lincoln Global, Inc. Weld signature analysis for weld quality determination

Also Published As

Publication number Publication date
JP2005319469A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP5920523B2 (en) Resistance spot welding method
JP5900699B2 (en) Resistance spot welding method
US6512200B2 (en) Welding control system
US9895764B2 (en) Resistance spot welding system
JP5825454B1 (en) Resistance spot welding method
WO2016174842A1 (en) Resistance spot welding method
US10081074B2 (en) Resistance spot welding device and resistance spot welding method
JP5473048B2 (en) Resistance welding control method
JP5653116B2 (en) Resistance welding control method for plated steel sheet
JP4486407B2 (en) Resistance welding control method
JP5582277B1 (en) Resistance spot welding system
JP5584026B2 (en) Resistance welding control method
JP2006095572A (en) Resistance welding control method
JP4262050B2 (en) Resistance welding control method
JP4290448B2 (en) Resistance welding control method
JP5988015B1 (en) Resistance spot welding method
JP5558886B2 (en) Resistance welding control method
JP7158144B2 (en) welding equipment
JP3489760B2 (en) Joining method
JP2005334903A (en) Resistance welding control method
JP2010069507A (en) Resistance welding control method
JP5511462B2 (en) Plasma MIG welding method
JP2006061962A (en) Resistance welding control method
WO2020004115A1 (en) Resistance spot welding method and method for manufacturing welded member
JP3136866B2 (en) Method and apparatus for monitoring quality of resistance welding electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

R150 Certificate of patent or registration of utility model

Ref document number: 4486407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250