JP4290448B2 - Resistance welding control method - Google Patents

Resistance welding control method Download PDF

Info

Publication number
JP4290448B2
JP4290448B2 JP2003078296A JP2003078296A JP4290448B2 JP 4290448 B2 JP4290448 B2 JP 4290448B2 JP 2003078296 A JP2003078296 A JP 2003078296A JP 2003078296 A JP2003078296 A JP 2003078296A JP 4290448 B2 JP4290448 B2 JP 4290448B2
Authority
JP
Japan
Prior art keywords
temperature
welding
input
maximum temperature
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003078296A
Other languages
Japanese (ja)
Other versions
JP2004283860A (en
Inventor
卓治 松浦
伸也 加治
昌則 筑摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2003078296A priority Critical patent/JP4290448B2/en
Publication of JP2004283860A publication Critical patent/JP2004283860A/en
Application granted granted Critical
Publication of JP4290448B2 publication Critical patent/JP4290448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スポット溶接に使用される抵抗溶接に関し、特に、抵抗溶接中の溶接部の温度を熱伝導計算によって推定し、この溶接部温度推定値が予め定めた温度変化目標パターンと略等しくなるように溶接電流値を増減させる抵抗溶接制御方法の改善に関する。
【0002】
【従来の技術】
複数枚重ねた被溶接材を1対の電極によって加圧・通電して溶接する抵抗スポット溶接において、溶接部の良好な品質を得るためには、ナゲット径が適正範囲内で形成されること及び溶接中に散りが発生しないことが重要である。特に、最近多く使用されている亜鉛メッキ鋼板及び高張力鋼板の抵抗溶接では、ナゲット径が変動しやすくかつ散りも発生しやすいために、これらの発生を抑制する制御方法が種々提案されている。
【0003】
ナゲット径の適正化及び散りの発生の防止のためには、抵抗溶接中の溶接部の温度変化を被溶接材の材質及び板厚等に応じて適正化する必要がある。すなわち、溶接開始時点から溶接終了時点までの溶接部の温度変化を、上記の溶接条件に応じて予め定めた温度変化目標パターンに沿うように溶接電流を制御することによって、ナゲット径の適正な散りも発生しない良好な溶接品質を得ることができる。このような温度パターン追従電流制御では、抵抗溶接中の溶接部の温度変化を計測する必要があるが、溶接部は外部から見えないために直接その温度変化を計測することは困難である。このために、溶接部の温度変化を熱伝導計算によってリアルタイムに演算して溶接部温度推定値を求める方法が多く提案されている。
【0004】
上記の熱伝導計算方法には、微分方程式及び有限要素分析法を用いる方法、溶接部のエネルギーバランスモデルに基づく平均温度推定値を計算する方法等がある。これらの熱伝導計算方法では、溶接電流値、溶接電圧値並びに電極及び被溶接材の物理的定数を入力として、溶接部温度推定値を演算する。
【0005】
図6は、上述した温度パターン追従電流制御の一例を示す溶接部温度推定値Tcの時間変化図である。同図において、横軸は溶接開始時点からの経過時間tを慣例により商用電源の1周期(50Hz又は60Hzの逆数)=1サイクル(cyc)として表わしている。また、左の縦軸は溶接部温度推定値Tc[℃]及び温度変化目標パターンTp[℃]を表わし、右の縦軸は制御操作量である溶接電流の実効値Irm[A]を表わしたものである。温度パターン追従電流制御では、各経過時間における溶接部温度推定値Tcを演算し、温度変化目標パターンTpとの温度偏差ΔT=Gain・(Tp−Tc)を算出し、この産出値に応じて溶接電流の実効値Irmを増減させて、溶接部温度推定値Tcを温度変化目標パターンTpに沿わせる。これにって、溶接部の温度変化が適正化されて、ナゲット径の適正な散りの発生しない良好な溶接品質を得ることができる(例えば、特許文献1参照)。
【0006】
【特許文献1 】
特許第3221296号公報
【0007】
【発明が解決しようとする課題】
上述した温度パターン追従電流制御では、複数枚の被溶接材の材質及び板厚の組合せに応じて温度変化目標パターンを予め設定しておく必要がある。このために、上記の溶接条件ごとに実験を繰り返して、温度変化目標パターンを作成しなければならない。しかし、被溶接材の材質として軟鋼、亜鉛メッキ鋼、高張力鋼、ステンレス鋼、アルミニウム合金等と多数あり、また、板厚として0.8mm、1.0mm、1.2mm、1.6mm等と多数ある。さらに、被溶接材を重ねる枚数も2枚、3枚等がある。このため、これらを組合せた溶接条件は膨大な数になる。この膨大な数の溶接条件ごとに実験を行い温度変化目標パターンを作成することは、事実上困難である。このために、標準的な溶接条件を数種類選択し、これら標準溶接条件における温度変化目標パターンを実験により作成している。そして、実際の溶接条件が標準溶接条件から外れる場合には、近い標準溶接条件の温度変化目標パターンをそのまま使用するか又は現場で微調整して使用するかであった。したがって、実際の溶接条件にとって最適ではない温度変化目標パターンによって制御されることになり、溶接品質にバラツキが生じるという問題がある。上述したように、特に亜鉛メッキ鋼又は高張力鋼の抵抗溶接では、溶接品質の変動が大きいためにより一層溶接品質がバラツクことになる。
【0008】
そこで、本発明では、被溶接材の材質及び板厚の種々の組合せに対応して、最適な温度変化目標パターンを自動生成することができる抵抗溶接制御方法を提供する。
【0009】
【課題を解決するための手段】
上述した課題を解決するために、請求項1の発明は、抵抗溶接中の溶接部の温度を熱伝導計算によって推定し、この溶接部温度推定値が予め定めた温度変化目標パターンと略等しくなるように溶接電流値を増減させる温度パターン追従電流制御を行って溶接する抵抗溶接制御方法において、
被溶接材の材質によって最高温度を設定し、前記被溶接材の材質及び板厚を入力として予め定めた関係式によって溶接終了時間を算出し、前記最高温度を入力として前記温度パターン追従電流制御系が安定になるように予め定めた関係式によって溶接終了時温度を算出し、前記溶接終了時間を入力として前記温度パターン追従電流制御系が安定になるように予め定めた関係式によって最高温度到達時間を算出し、
前記温度変化目標パターンが溶接開始時点の周温に相当する予め定めた初期温度から前記最高温度到達時間に前記最高温度まで上昇しその後前記溶接終了時間に前記溶接終了時温度まで下降するように自動生成されることを特徴とする抵抗溶接制御方法である。
【0010】
さらに、請求項2の発明は、前記最高温度Tpmを入力として前記溶接終了時温度Tpeを算出する関係式がTpe=Tpm−Eであり、Eは前記温度パターン追従電流制御系の安定性から定まる定数であり、
前記溶接終了時間Teを入力として前記最高温度到達時間Tmを算出する関係式がTm=Te×Dであり、Dは0.5以上1.0以下の範囲で前記温度パターン追従電流制御系の安定性から定まる定数である、
ことを特徴とする請求項1記載の抵抗溶接制御方法である。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0012】
[実施の形態1]
図1は、本発明の実施の形態1に係る温度変化目標パターン生成方法を示す図である。同図の横軸は溶接開始時点からの経過時間t[cyc]を示し、縦軸は目標温度[℃]を示す。以下、同図を参照して説明する。
【0013】
まず、溶接開始時点t=0のときの目標温度Tp=Tpsとする。初期温度Tpsは、周温に相当する予め定めた値(例えば、20℃)に設定する。次に、最高温度Tpmは、被溶接材の材質によって定まる定数である。例えば、鉄鋼の場合にはTpm=1500℃とする。溶接終了時間Teは、下式で算出される。
Te=A×B+C
ここで、Aは重ねた被溶接材の板厚の合計値[mm]であり、Bは被溶接材の材質によって定まる係数であり、Cは被溶接材がメッキ処理されているときの補正値である。例えば、鉄鋼の場合B=5とし、亜鉛メッキ処理の場合C=2とする。したがって、例えば、板厚1.2mmの亜鉛メッキ処理なしの軟鋼の2枚重ねの場合、溶接終了時間Te=(1.2+1.2)×5+0=12[cyc]となる。同様に、板厚1.2mmの亜鉛メッキ鋼板の2枚重ねの場合、溶接終了時間Te=(1.2+1.2)×5+2=14[cyc]となる。
【0014】
上記の最高温度Tpmに到達する時間Tmは、下式で算出する。
Tm=Te×D
ここで、Dは温度パターン追従電流制御系における制御安定性から定まる定数であり、0.5〜1.0程度の範囲で設定する。また、溶接終了時温度Tpeは、下式で算出される。
Tpe=Tpm−E
ここで、Eも上記の制御安定性から定まる定数であり、例えば、E=100[℃]とする。
【0015】
したがって、被溶接材の材質及び板厚が入力されると、最高温度Tpm及び溶接終了時間Teがまず算出される。続いて、これらから最高温度到達時間Tm及び溶接終了時温度Tpeが算出される。そして、温度変化目標パターンTpは、溶接開始時点t=0の上記の初期温度Tpsから上記の最高温度到達時間Tmに上記の最高温度Tpeまで上昇し、その後上記の溶接終了時間Teに上記の溶接終了時温度Tpeまで下降するように近似式によって自動生成される。この場合に、1〜4次程度の近似式を使用する。上昇カーブ及び下降カーブの軌跡は、上記の制御安定性に影響を与えるので、近似式の次数は制御安定性との関係で設定される。溶接品質は、あまりこれらのカーブには影響を受けず、最高温度Tpmとその到達時間Tmが重要である。
【0016】
図2は、上述した温度変化目標パターン生成方法によって生成された特性の例を示す図である。特性L1は、板厚1.2mmの亜鉛メッキ処理なしの軟鋼を2枚重ねた場合である。特性L2は、板厚1.0mmの亜鉛メッキ処理なしの軟鋼を2枚重ねた場合である。また、特性L3は、板厚1.0mm、1.0mm及び1.6mmの亜鉛メッキ鋼板を3枚重ねた場合である。このように、実施の形態1の温度変化目標パターン生成方法によって種々の溶接条件に応じて最適な特性を自動生成することができる。
【0017】
[実施の形態2]
図3は、本発明の実施の形態2に係る温度変化目標パターン生成方法を示す図である。同図の横軸は溶接開始時点からの経過時間t[cyc]を示し、縦軸は目標温度[℃]を示す。以下、同図を参照して説明する。
【0018】
同図において、最高温度Tpm及び溶接終了時間Teの算出方法は、上述した実施の形態1と同様である。したがって、被溶接材の材質及び板厚が入力されると、最高温度Tpm及び溶接終了時間Teが算出される。そして、温度変化目標パターンTpは、溶接開始時点t=0の初期温度Tpsから上記の溶接終了時間Teに上記の最高温度Tpmまで上昇するように近似式によって自動生成される。この場合に、1〜4次程度の近似式を使用する。上昇カーブの軌跡は、制御安定性に影響を与えるので、近似式の次数は制御安定性との関係で設定される。溶接品質は、あまりこのカーブには影響を受けず、最高温度Tpmとその到達時間である溶接終了時間Teが重要である。
【0019】
図4は、上述した温度変化目標パターン生成方法によって生成された特性の例を示す図である。特性L4は、板厚1.2mmの亜鉛メッキ処理なしの軟鋼を2枚重ねた場合である。特性L5は、板厚1.0mmの亜鉛メッキ処理なしの軟鋼を2枚重ねた場合である。また、特性L6は、板厚1.0mm、1.0mm及び1.6mmの亜鉛メッキ鋼板を3枚重ねた場合である。このように、実施の形態2の温度変化目標パターン生成方法によって種々の溶接条件に応じて最適な特性を自動生成することができる。
【0020】
実施の形態2は、実施の形態1において、D=1.0及びE=0℃とした場合に相当する。この実施の形態1と実施の形態2との使い分けは、上述したように、制御安定性との関係で選択されることになる。抵抗溶接装置全体としての制御安定性を考慮して選択することになる。
【0021】
図5は、実施の形態1及び2を実施するための溶接電源装置のブロック図である。以下、同図を参照して各回路について説明する。
【0022】
サイリスタSCRは、商用交流電源ACを入力として、後述する駆動信号Dvに従って溶接電流Iwの実効値Irmが所定値になるように位相制御する。変圧器TRは、抵抗溶接に適した電圧値に降圧する。1対の電極1a、1bは、複数枚の被溶接材2を加圧し、電極を介して溶接電流Iwが通電し溶接電圧Vwが印加する。
【0023】
電流検出回路IDは、溶接電流Iwを検出して電流検出信号Idを出力する。電圧検出回路VDは、溶接電圧Vwを検出して電圧検出信号Vdを出力する。溶接部温度推定値演算回路TCは、上記の電流検出信号Id及び電圧検出信号Vdを入力として、予め定めた被溶接材及び電極の物理定数を使用して熱伝導計算によって演算して、溶接部温度推定信号Tcを出力する。
【0024】
溶接条件設定回路WCは、重ねる各被溶接材の材質及び板厚を設定して溶接条件設定信号Wcを出力する。温度変化目標パターン生成回路TPは、この溶接条件設定信号Wc(材質及び板厚)を入力として、上述した温度変化目標パターン生成方法によって温度変化目標パターンを生成し、溶接開始時点からの経過時間に対応した目標温度信号Tpを出力する。温度誤差増幅回路ETは、上記の目標温度信号Tpと上記の溶接部温度推定信号Tcとの誤差を増幅して、温度誤差増幅信号ΔT=Gain・(Tp−Tc)を出力する。
【0025】
温度誤差積分回路SDTは、上記の温度誤差増幅信号ΔTを積分して電流設定修正信号ΔIsを出力する。初期電流設定回路ISは、予め定めた初期電流設定信号Isを出力する。加算回路ADは、上記の初期電流設定信号Isと上記の電流設定修正信号ΔIsとを加算して、電流制御設定信号Isc=Is+ΔIs=Is+ΣΔTを出力する。したがって、この電流制御設定信号Iscは、フィードバック制御によって増減する。
【0026】
電流実効値演算回路IRMは、上記の電流検出信号Idを入力としてその実効値を演算して、電流実効値信号Irmを出力する。電流誤差増幅回路EIは、上記の電流制御設定信号Iscと上記の電流実効値信号Irmとの誤差を増幅して、電流誤差増幅信号Eiを出力する。駆動回路DVは、上記の電流誤差増幅信号Eiに従って上記のサイリスタSCRを位相制御するための駆動信号Dvを出力する。
【0027】
【発明の効果】
本発明の抵抗溶接制御方法によれば、被溶接材の材質及び板厚の種々の組合せに応じて最適な温度変化目標パターンを自動生成することができるので、温度変化目標パターンの設定が容易となり、かつ、常に良好な溶接品質を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る温度変化目標パターン生成方法を示す図である。
【図2】本発明の実施の形態1によって生成された温度変化目標パターンの例を示す図である。
【図3】本発明の実施の形態2に係る温度変化目標パターン生成方法を示す図である。
【図4】本発明の実施の形態2によって生成された温度変化目標パターンの例を示す図である。
【図5】本発明に係る溶接電源装置のブロック図である。
【図6】従来技術の温度パターン追従制御を行ったときの溶接部温度推定値Tc、温度変化目標パターンTp及び溶接電流実効値Irmの時間変化を示す図である。
【符号の説明】
1a、1b 電極
2 被溶接材
AC 商用交流電源
AD 加算回路
DV 駆動回路
Dv 駆動信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
ET 温度誤差増幅回路
ID 電流検出回路
Id 電流検出信号
IRM 電流実効値演算回路
Irm 溶接電流実効値、電流実効値信号
IS 初期電流設定回路
Is 初期電流設定信号
Isc 電流制御設定信号
Iw 溶接電流
L1〜L6 特性
SCR サイリスタ
SDT 温度誤差積分回路
t 経過時間
TC 溶接部温度推定値演算回路
Tc 溶接部温度推定(値/信号)
Te 溶接終了時間
Tm 最高温度到達時間
TP 温度変化目標パターン生成回路
Tp 温度変化目標パターン、目標温度(信号)
Tpe 溶接終了時温度
Tpm 最高温度
Tps 初期温度
TR 変圧器
VD 電圧検出回路
Vd 電圧検出信号
Vw 溶接電圧
WC 溶接条件設定回路
Wc 溶接条件設定信号
ΔIs 電流設定修正信号
ΔT 温度偏差、温度誤差増幅信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to resistance welding used for spot welding, and in particular, estimates the temperature of a welded part during resistance welding by heat conduction calculation, and this welded part temperature estimated value becomes substantially equal to a predetermined temperature change target pattern. The present invention relates to an improvement in resistance welding control method for increasing and decreasing the welding current value.
[0002]
[Prior art]
In resistance spot welding, in which a plurality of stacked materials to be welded are pressed and energized by a pair of electrodes, in order to obtain good quality of the welded portion, the nugget diameter must be formed within an appropriate range; It is important that no scatter occurs during welding. In particular, in resistance welding of galvanized steel plates and high-tensile steel plates, which are frequently used recently, the nugget diameter is likely to fluctuate and the scattering tends to occur. Therefore, various control methods for suppressing these occurrences have been proposed.
[0003]
In order to optimize the nugget diameter and prevent the occurrence of scattering, it is necessary to optimize the temperature change of the welded part during resistance welding according to the material and thickness of the material to be welded. That is, by controlling the welding current so that the temperature change of the welded portion from the welding start time to the welding end time follows a predetermined temperature change target pattern according to the above welding conditions, an appropriate scattering of the nugget diameter is achieved. Good welding quality can also be obtained. In such temperature pattern tracking current control, it is necessary to measure the temperature change of the weld during resistance welding, but it is difficult to directly measure the temperature change because the weld is not visible from the outside. For this reason, many methods have been proposed in which the temperature change of the weld is calculated in real time by heat conduction calculation to obtain the estimated temperature of the weld.
[0004]
The heat conduction calculation method includes a method using a differential equation and a finite element analysis method, a method of calculating an average temperature estimated value based on an energy balance model of a welded part, and the like. In these heat conduction calculation methods, the welding current temperature estimated value is calculated by inputting the welding current value, the welding voltage value, and the physical constants of the electrode and the workpiece to be welded.
[0005]
FIG. 6 is a time change diagram of the weld temperature estimated value Tc showing an example of the temperature pattern following current control described above. In the figure, the horizontal axis represents the elapsed time t from the start of welding as one cycle of commercial power supply (reciprocal of 50 Hz or 60 Hz) = 1 cycle (cyc). The left vertical axis represents the weld temperature estimated value Tc [° C.] and the temperature change target pattern Tp [° C.], and the right vertical axis represents the effective value Irm [A] of the welding current as the control operation amount. Is. In the temperature pattern tracking current control, the weld temperature estimated value Tc at each elapsed time is calculated, a temperature deviation ΔT = Gain · (Tp−Tc) from the temperature change target pattern Tp is calculated, and welding is performed according to this output value. The effective value Irm of the current is increased or decreased so that the weld temperature estimated value Tc follows the temperature change target pattern Tp. As a result, the temperature change of the welded portion is optimized, and good welding quality can be obtained in which proper scattering of the nugget diameter does not occur (see, for example, Patent Document 1).
[0006]
[Patent Document 1]
Japanese Patent No. 3212296
[Problems to be solved by the invention]
In the above-described temperature pattern tracking current control, it is necessary to set a temperature change target pattern in advance according to the combination of the material and thickness of the plurality of workpieces. For this purpose, the temperature change target pattern must be created by repeating the experiment for each welding condition. However, there are many materials such as mild steel, galvanized steel, high-tensile steel, stainless steel, aluminum alloy etc. as the material of the material to be welded, and the plate thickness is 0.8mm, 1.0mm, 1.2mm, 1.6mm etc. There are many. Furthermore, there are two, three, etc. sheets to be welded. For this reason, the welding conditions which combined these become a huge number. It is practically difficult to create a temperature change target pattern by performing experiments for each of the enormous number of welding conditions. For this purpose, several types of standard welding conditions are selected, and temperature change target patterns under these standard welding conditions are created by experiments. When the actual welding conditions deviate from the standard welding conditions, the temperature change target pattern of the near standard welding conditions is used as it is or is used after fine adjustment on site. Therefore, the temperature change target pattern is not optimal for the actual welding conditions, and there is a problem that the welding quality varies. As described above, particularly in resistance welding of galvanized steel or high-strength steel, the welding quality varies further due to large fluctuations in welding quality.
[0008]
Therefore, the present invention provides a resistance welding control method capable of automatically generating an optimum temperature change target pattern corresponding to various combinations of the material and plate thickness of the material to be welded.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problem, the invention of claim 1 estimates the temperature of the weld during resistance welding by heat conduction calculation, and this weld temperature estimate is substantially equal to a predetermined temperature change target pattern. In the resistance welding control method of performing welding by performing temperature pattern tracking current control to increase or decrease the welding current value,
The maximum temperature is set according to the material of the material to be welded, the welding end time is calculated by a predetermined relational expression with the material and thickness of the material to be welded as input, and the temperature pattern following current control system with the maximum temperature as input The temperature at the end of welding is calculated according to a predetermined relational expression so that the temperature is stable, and the maximum temperature arrival time is calculated according to a predetermined relational expression so that the temperature pattern tracking current control system is stabilized with the welding end time as an input. To calculate
The temperature change target pattern automatically increases from a predetermined initial temperature corresponding to the peripheral temperature at the start of welding to the maximum temperature at the maximum temperature arrival time and then decreases to the welding end temperature at the welding end time. It is the resistance welding control method characterized by being produced | generated.
[0010]
Further, in the invention of claim 2, the relational expression for calculating the welding end temperature Tpe with the maximum temperature Tpm as an input is Tpe = Tpm-E, and E is determined from the stability of the temperature pattern following current control system. Constant,
The relational expression for calculating the maximum temperature arrival time Tm using the welding end time Te as an input is Tm = Te × D, and D is within the range of 0.5 to 1.0, and the temperature pattern tracking current control system is stable. It is a constant determined from sex.
The resistance welding control method according to claim 1, wherein:
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
[Embodiment 1]
FIG. 1 is a diagram showing a temperature change target pattern generation method according to Embodiment 1 of the present invention. In the figure, the horizontal axis indicates the elapsed time t [cyc] from the welding start time, and the vertical axis indicates the target temperature [° C.]. Hereinafter, a description will be given with reference to FIG.
[0013]
First, the target temperature Tp = Tps when the welding start time t = 0 is set. The initial temperature Tps is set to a predetermined value (for example, 20 ° C.) corresponding to the peripheral temperature. Next, the maximum temperature Tpm is a constant determined by the material of the material to be welded. For example, in the case of steel, Tpm = 1500 ° C. The welding end time Te is calculated by the following equation.
Te = A × B + C
Here, A is a total value [mm] of the thicknesses of the stacked welded materials, B is a coefficient determined by the material of the welded materials, and C is a correction value when the welded material is plated. It is. For example, B = 5 for steel and C = 2 for galvanizing. Therefore, for example, when two sheets of mild steel with a plate thickness of 1.2 mm and not galvanized are stacked, the welding end time Te = (1.2 + 1.2) × 5 + 0 = 12 [cyc]. Similarly, in the case where two galvanized steel sheets having a thickness of 1.2 mm are stacked, the welding end time Te = (1.2 + 1.2) × 5 + 2 = 14 [cyc].
[0014]
The time Tm to reach the maximum temperature Tpm is calculated by the following equation.
Tm = Te × D
Here, D is a constant determined from the control stability in the temperature pattern tracking current control system, and is set in the range of about 0.5 to 1.0. Further, the welding end temperature Tpe is calculated by the following equation.
Tpe = Tpm-E
Here, E is also a constant determined from the above control stability, for example, E = 100 [° C.].
[0015]
Therefore, when the material and thickness of the material to be welded are input, the maximum temperature Tpm and the welding end time Te are first calculated. Subsequently, the maximum temperature arrival time Tm and the welding end temperature Tpe are calculated from these. The temperature change target pattern Tp rises from the initial temperature Tps at the welding start time t = 0 to the maximum temperature Tpe at the maximum temperature arrival time Tm, and then at the welding end time Te. It is automatically generated by the approximate expression so as to decrease to the end temperature Tpe. In this case, an approximate expression of about 1st to 4th order is used. Since the trajectory of the ascending curve and the descending curve affects the above control stability, the order of the approximate expression is set in relation to the control stability. The welding quality is not significantly affected by these curves, and the maximum temperature Tpm and its arrival time Tm are important.
[0016]
FIG. 2 is a diagram illustrating an example of characteristics generated by the above-described temperature change target pattern generation method. The characteristic L1 is a case where two sheets of 1.2 mm thick non-galvanized mild steel are stacked. Characteristic L2 is a case where two sheets of 1.0 mm thick non-galvanized mild steel are stacked. Characteristic L3 is obtained when three galvanized steel sheets having a thickness of 1.0 mm, 1.0 mm, and 1.6 mm are stacked. Thus, the optimum characteristics can be automatically generated according to various welding conditions by the temperature change target pattern generation method of the first embodiment.
[0017]
[Embodiment 2]
FIG. 3 is a diagram showing a temperature change target pattern generation method according to Embodiment 2 of the present invention. In the figure, the horizontal axis indicates the elapsed time t [cyc] from the welding start time, and the vertical axis indicates the target temperature [° C.]. Hereinafter, a description will be given with reference to FIG.
[0018]
In the figure, the calculation method of the maximum temperature Tpm and the welding end time Te is the same as that in the first embodiment. Therefore, when the material and thickness of the material to be welded are input, the maximum temperature Tpm and the welding end time Te are calculated. The temperature change target pattern Tp is automatically generated by an approximate expression so as to rise from the initial temperature Tps at the welding start time t = 0 to the maximum temperature Tpm at the welding end time Te. In this case, an approximate expression of about 1st to 4th order is used. Since the trajectory of the ascending curve affects the control stability, the order of the approximate expression is set in relation to the control stability. The welding quality is not significantly affected by this curve, and the maximum temperature Tpm and the welding end time Te that is the arrival time are important.
[0019]
FIG. 4 is a diagram illustrating an example of characteristics generated by the above-described temperature change target pattern generation method. Characteristic L4 is a case where two sheets of 1.2 mm thick non-galvanized mild steel are stacked. Characteristic L5 is a case where two sheets of 1.0 mm thick non-galvanized mild steel are stacked. Characteristic L6 is a case where three galvanized steel sheets having thicknesses of 1.0 mm, 1.0 mm and 1.6 mm are stacked. Thus, the optimum characteristics can be automatically generated according to various welding conditions by the temperature change target pattern generation method of the second embodiment.
[0020]
The second embodiment corresponds to the case where D = 1.0 and E = 0 ° C. in the first embodiment. The proper use of the first embodiment and the second embodiment is selected in relation to the control stability as described above. The selection is made in consideration of the control stability of the entire resistance welding apparatus.
[0021]
FIG. 5 is a block diagram of a welding power source device for carrying out the first and second embodiments. Hereinafter, each circuit will be described with reference to FIG.
[0022]
The thyristor SCR receives the commercial AC power supply AC as an input and performs phase control so that the effective value Irm of the welding current Iw becomes a predetermined value according to a drive signal Dv described later. The transformer TR steps down to a voltage value suitable for resistance welding. The pair of electrodes 1a and 1b pressurize a plurality of materials to be welded 2, and a welding current Iw is passed through the electrodes and a welding voltage Vw is applied.
[0023]
The current detection circuit ID detects the welding current Iw and outputs a current detection signal Id. The voltage detection circuit VD detects the welding voltage Vw and outputs a voltage detection signal Vd. The weld temperature estimated value calculation circuit TC receives the current detection signal Id and the voltage detection signal Vd as input, calculates the heat constant using the predetermined physical constants of the welding material and the electrode, The temperature estimation signal Tc is output.
[0024]
The welding condition setting circuit WC sets the material and thickness of each material to be welded and outputs a welding condition setting signal Wc. The temperature change target pattern generation circuit TP receives the welding condition setting signal Wc (material and plate thickness) as an input, generates a temperature change target pattern by the above-described temperature change target pattern generation method, and at an elapsed time from the welding start time. A corresponding target temperature signal Tp is output. The temperature error amplification circuit ET amplifies an error between the target temperature signal Tp and the weld temperature estimation signal Tc, and outputs a temperature error amplification signal ΔT = Gain · (Tp−Tc).
[0025]
The temperature error integration circuit SDT integrates the temperature error amplification signal ΔT and outputs a current setting correction signal ΔIs. The initial current setting circuit IS outputs a predetermined initial current setting signal Is. The adder circuit AD adds the initial current setting signal Is and the current setting correction signal ΔIs, and outputs a current control setting signal Isc = Is + ΔIs = Is + ΣΔT. Therefore, the current control setting signal Isc is increased or decreased by feedback control.
[0026]
The current effective value calculation circuit IRM calculates the effective value of the current detection signal Id as an input, and outputs the current effective value signal Irm. The current error amplification circuit EI amplifies an error between the current control setting signal Isc and the current effective value signal Irm and outputs a current error amplification signal Ei. The drive circuit DV outputs a drive signal Dv for controlling the phase of the thyristor SCR in accordance with the current error amplification signal Ei.
[0027]
【The invention's effect】
According to the resistance welding control method of the present invention, the optimum temperature change target pattern can be automatically generated according to various combinations of the material and thickness of the material to be welded, so that the temperature change target pattern can be easily set. And always good welding quality can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a temperature change target pattern generation method according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing an example of a temperature change target pattern generated by the first embodiment of the present invention.
FIG. 3 is a diagram showing a temperature change target pattern generation method according to Embodiment 2 of the present invention.
FIG. 4 is a diagram showing an example of a temperature change target pattern generated by the second embodiment of the present invention.
FIG. 5 is a block diagram of a welding power source apparatus according to the present invention.
FIG. 6 is a diagram showing temporal changes in the weld temperature estimation value Tc, the temperature change target pattern Tp, and the welding current effective value Irm when the temperature pattern tracking control of the prior art is performed.
[Explanation of symbols]
1a, 1b Electrode 2 Material to be welded AC Commercial AC power supply AD Adder circuit DV Drive circuit Dv Drive signal EI Current error amplifier circuit Ei Current error amplifier signal ET Temperature error amplifier circuit ID Current detection circuit Id Current detection signal IRM Current effective value calculation circuit Irm welding current effective value, current effective value signal IS initial current setting circuit Is initial current setting signal Isc current control setting signal Iw welding currents L1 to L6 characteristics SCR thyristor SDT temperature error integration circuit t elapsed time TC welding temperature estimation value calculation circuit Tc Weld temperature estimation (value / signal)
Te welding end time Tm maximum temperature arrival time TP temperature change target pattern generation circuit Tp temperature change target pattern, target temperature (signal)
Tpe welding end temperature Tpm maximum temperature Tps initial temperature TR transformer VD voltage detection circuit Vd voltage detection signal Vw welding voltage WC welding condition setting circuit Wc welding condition setting signal ΔIs current setting correction signal ΔT temperature deviation, temperature error amplification signal

Claims (2)

抵抗溶接中の溶接部の温度を熱伝導計算によって推定し、この溶接部温度推定値が予め定めた温度変化目標パターンと略等しくなるように溶接電流値を増減させる温度パターン追従電流制御を行って溶接する抵抗溶接制御方法において、
被溶接材の材質によって最高温度を設定し、前記被溶接材の材質及び板厚を入力として予め定めた関係式によって溶接終了時間を算出し、前記最高温度を入力として前記温度パターン追従電流制御系が安定になるように予め定めた関係式によって溶接終了時温度を算出し、前記溶接終了時間を入力として前記温度パターン追従電流制御系が安定になるように予め定めた関係式によって最高温度到達時間を算出し、
前記温度変化目標パターンが溶接開始時点の周温に相当する予め定めた初期温度から前記最高温度到達時間に前記最高温度まで上昇しその後前記溶接終了時間に前記溶接終了時温度まで下降するように自動生成されることを特徴とする抵抗溶接制御方法。
The temperature of the weld zone during resistance welding is estimated by heat conduction calculation, and temperature pattern follow-up current control is performed to increase or decrease the weld current value so that the weld temperature estimate is approximately equal to the predetermined temperature change target pattern. In the resistance welding control method for welding,
The maximum temperature is set according to the material of the material to be welded, the welding end time is calculated by a predetermined relational expression with the material and thickness of the material to be welded as input, and the temperature pattern following current control system with the maximum temperature as input The temperature at the end of welding is calculated according to a predetermined relational expression so that the temperature is stable, and the maximum temperature arrival time is calculated according to a predetermined relational expression so that the temperature pattern tracking current control system is stabilized with the welding end time as input. To calculate
The temperature change target pattern automatically increases from a predetermined initial temperature corresponding to the peripheral temperature at the start of welding to the maximum temperature at the maximum temperature arrival time and then decreases to the welding end temperature at the welding end time. A resistance welding control method generated.
前記最高温度Tpmを入力として前記溶接終了時温度Tpeを算出する関係式がTpe=Tpm−Eであり、Eは前記温度パターン追従電流制御系の安定性から定まる定数であり、
前記溶接終了時間Teを入力として前記最高温度到達時間Tmを算出する関係式がTm=Te×Dであり、Dは0.5以上1.0以下の範囲で前記温度パターン追従電流制御系の安定性から定まる定数である、
ことを特徴とする請求項1記載の抵抗溶接制御方法。
The relational expression for calculating the welding end temperature Tpe with the maximum temperature Tpm as an input is Tpe = Tpm−E, where E is a constant determined from the stability of the temperature pattern following current control system,
The relational expression for calculating the maximum temperature arrival time Tm using the welding end time Te as an input is Tm = Te × D, and D is within the range of 0.5 to 1.0, and the temperature pattern tracking current control system is stable. It is a constant determined from sex.
The resistance welding control method according to claim 1.
JP2003078296A 2003-03-20 2003-03-20 Resistance welding control method Expired - Fee Related JP4290448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003078296A JP4290448B2 (en) 2003-03-20 2003-03-20 Resistance welding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078296A JP4290448B2 (en) 2003-03-20 2003-03-20 Resistance welding control method

Publications (2)

Publication Number Publication Date
JP2004283860A JP2004283860A (en) 2004-10-14
JP4290448B2 true JP4290448B2 (en) 2009-07-08

Family

ID=33292818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078296A Expired - Fee Related JP4290448B2 (en) 2003-03-20 2003-03-20 Resistance welding control method

Country Status (1)

Country Link
JP (1) JP4290448B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116107367B (en) * 2023-04-13 2023-06-16 成都瀚辰光翼生物工程有限公司 Temperature regulation control method and device, temperature regulation device and readable storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286688A (en) * 1985-10-11 1987-04-21 株式会社 河合電器製作所 Manufacture of sheathed heater
JPS62286688A (en) * 1986-06-06 1987-12-12 Toshiba Corp Control device for resistance welding machine
JP2542830B2 (en) * 1986-09-18 1996-10-09 大阪電気株式会社 Automatic controller for resistance welding
JPH0716791B2 (en) * 1990-11-08 1995-03-01 欽一 松山 Resistance spot welding method
JP3221296B2 (en) * 1995-09-29 2001-10-22 松下電器産業株式会社 Control device and control method for resistance welding
JP3886603B2 (en) * 1997-07-14 2007-02-28 株式会社ナ・デックス Resistance welding system using cumulative heat generation per unit volume as an index
JP2001276980A (en) * 2000-03-30 2001-10-09 Matsushita Electric Ind Co Ltd Connecting apparatus
JP2002172469A (en) * 2000-12-01 2002-06-18 Nippon Steel Corp Spot welding method for high strength steel plate

Also Published As

Publication number Publication date
JP2004283860A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP3886603B2 (en) Resistance welding system using cumulative heat generation per unit volume as an index
US6512200B2 (en) Welding control system
KR100493124B1 (en) Method of controlling arc welding processes and welder using same
US6995338B2 (en) Method and apparatus for short circuit welding
KR101714293B1 (en) Resistance spot welding method
US6730875B2 (en) System and method for estimating true heats of welding processes
JP4418892B2 (en) Electric arc welding machine and method for controlling welding process of welding machine
JP5907317B1 (en) Resistance spot welding apparatus and resistance spot welding method
EP1044753A2 (en) Control apparatus for resistance welding machine
US20190076954A1 (en) Resistance welding method and resistance welding apparatus
JP4290448B2 (en) Resistance welding control method
CN105537726A (en) Welding power source and control method thereof
JP4850447B2 (en) Output control method of thyristor phase control arc welding power supply
JP2012030274A (en) Resistance welding control method for plated steel plate
JP4486407B2 (en) Resistance welding control method
JP4262050B2 (en) Resistance welding control method
JP5988015B1 (en) Resistance spot welding method
JP2006095572A (en) Resistance welding control method
JP2005334903A (en) Resistance welding control method
JP5511462B2 (en) Plasma MIG welding method
JP4663309B2 (en) Arc length control method for pulse arc welding
JP2006061962A (en) Resistance welding control method
US9421634B2 (en) System and method for performing resistance spot welding
JP2006088180A (en) Welding current control method in alternating current pulse arc welding
KR100928533B1 (en) Power control method for resistance welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Ref document number: 4290448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees