JP3223065B2 - Pre-energization control device for resistance welding and method for determining pre-energization conditions - Google Patents

Pre-energization control device for resistance welding and method for determining pre-energization conditions

Info

Publication number
JP3223065B2
JP3223065B2 JP04333095A JP4333095A JP3223065B2 JP 3223065 B2 JP3223065 B2 JP 3223065B2 JP 04333095 A JP04333095 A JP 04333095A JP 4333095 A JP4333095 A JP 4333095A JP 3223065 B2 JP3223065 B2 JP 3223065B2
Authority
JP
Japan
Prior art keywords
energization
welding
temperature
conditions
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04333095A
Other languages
Japanese (ja)
Other versions
JPH08238574A (en
Inventor
誠 龍堂
孝治 藤井
康宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04333095A priority Critical patent/JP3223065B2/en
Publication of JPH08238574A publication Critical patent/JPH08238574A/en
Application granted granted Critical
Publication of JP3223065B2 publication Critical patent/JP3223065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、抵抗溶接、特にスポッ
ト溶接の予備通電制御装置および予備通電条件決定方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pre-energization control device and a pre-energization condition determining method for resistance welding, particularly spot welding.

【0002】[0002]

【従来の技術】抵抗溶接、特にスポット溶接は、鋼板を
使用する種々の製品の溶接に用いられているが、近年そ
の溶接不良が増大する傾向にある。すなわち、複雑な形
状をしたプレス部品や溶接位置のバラツキなど、合いの
悪い被溶接材の溶接は、電極の加圧のみでは見かけ上の
一部しか板間が接触せず、電流密度の集中に伴う初期チ
リ、電極溶着等を引き起こす。
2. Description of the Related Art Resistance welding, particularly spot welding, has been used for welding various products using steel sheets, and in recent years, defective welding tends to increase. In other words, welding of unsuitable materials to be welded, such as pressed parts having complicated shapes and variations in welding positions, causes only a part of the apparent contact between the plates only by pressing the electrodes, resulting in a concentration of current density. This causes initial dust and electrode welding.

【0003】さらに、高張力鋼や各種表面処理鋼板な
ど、変形、密着しにくい材料が用いられるようになり、
ますます上記の問題が増長されるようになった。そこで
被溶接材を充分軟化させたり、電極および被溶接材間を
密着させ、本通電を円滑にする目的で、前記本通電の前
に予備通電することが採用されてきた。
Further, materials that are difficult to deform and adhere to, such as high-strength steel and various surface-treated steel sheets, have been used.
Increasingly, the above problems were exacerbated. Therefore, for the purpose of sufficiently softening the material to be welded or bringing the electrode and the material to be welded into close contact with each other and smoothing the actual energization, pre-energization before the main energization has been adopted.

【0004】しかしながら、溶接状況に応じた効果的な
予備通電電流あるいは予備通電時間をもとめる手段はな
く、溶接現場では経験・感覚的に予備通電条件が決めら
れているというのが実状である。
[0004] However, there is no means for determining an effective pre-energization current or pre-energization time according to the welding situation, and the actual situation is that the pre-energization conditions are determined at the welding site by experience and intuition.

【0005】予備通電を含んだ電流制御方法として、下
記(I)(II)の方法があった。 (I)プレヒートスロープ制御を行うことによって溶接
品質を高めるもので、その1例として特開昭62−23
4676号公報に開示された制御方法。 (II)被溶接物の溶接条件に適合した電流パターンを選
択して溶接品質を高めるもので、特開昭63−2786
80号公報に開示された制御方法。
As a current control method including pre-energization, there are the following methods (I) and (II). (I) Welding quality is improved by performing preheat slope control.
A control method disclosed in Japanese Patent No. 4676. (II) To improve the welding quality by selecting a current pattern suitable for the welding conditions of the work to be welded.
A control method disclosed in Japanese Patent Publication No. 80.

【0006】[0006]

【発明が解決しようとする課題】これらの方法のうち、
上記(I)の従来方法は、予熱としての予備通電の観点
から見ると、従来から行われてきたアップスロープ制御
(順次電流を1サイクルずつ上昇するような電流勾配を
実現するように点呼角を制御する方法)にあたる。そし
て最適な予備通電条件を求める手段については示されて
いない。さらにアップスロープ制御は予備通電時間中に
被溶接材の発熱、軟化には寄与しない時間が含まれる。
すなわち、予備通電として効果のない時間が含まれる。
堅い材料あるいは合いの悪い材料の溶接時には予備通電
時間を大きくしなければならず、無駄時間、タクトタイ
ムの増加などの問題がある。
SUMMARY OF THE INVENTION Among these methods,
In the conventional method (I), from the viewpoint of pre-energization as preheating, the up slope control (conventionally increasing the call angle so as to realize a current gradient such that the current is sequentially increased one cycle at a time) is conventionally performed. Control method). No means for determining the optimal pre-energization condition is shown. Further, the up-slope control includes a time during the pre-energization time that does not contribute to heat generation and softening of the material to be welded.
In other words, a time period during which there is no effect as the preliminary energization is included.
When welding hard or poorly matched materials, the pre-energization time must be increased, causing problems such as increased dead time and tact time.

【0007】上記(II)の従来方法は溶接条件に適合し
た電流パターンそのものについて具体的に言及されてい
ない。上記のように従来からの予備通電方法、装置では
その最適化について示されておらず、作業者が経験的、
感覚的に予備通電条件を決定しなければならなかった。
The above-mentioned conventional method (II) does not specifically mention a current pattern itself suitable for welding conditions. As described above, the conventional pre-energization method and apparatus do not show the optimization, and the operator is empirical,
The pre-energization conditions had to be intuitively determined.

【0008】本発明は上記従来の問題に留意し抵抗溶接
において、最も効果的、かつ効率的な予備通電条件を決
定する方法およびその装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus for determining the most effective and efficient pre-energization conditions in resistance welding in consideration of the above conventional problems.

【0009】[0009]

【課題を解決するための手段】本発明は前記目的を達成
するため、被溶接材を挟む電極間の溶接電流、電極間電
圧を直接または間接に測定する手段を備えた電流検出部
および電圧検出部と、両検出部より検出された物理量か
ら熱伝導モデルを用いて被溶接材中の温度分布を算出
し、予備通電条件変更に必要なパラメータ温度を出力す
る演算部と、パラメータ温度に応じた予備溶接条件が記
憶された記憶部と、演算部から出力されるパラメータ温
度を観測し、記憶部の温度パラメータに応じたナゲット
を生じない最適な予備溶接条件を出力する比較出力部
と、比較出力部から出力される予備溶接条件で予備通電
を制御する制御部を備えた抵抗溶接の予備通電制御装置
の構成とする。
In order to achieve the above object, the present invention provides a welding current between electrodes sandwiching a material to be welded, and a current between electrodes.
Current detector with means for measuring pressure directly or indirectly
And voltage detectors, and physical quantities detected by both detectors
Temperature distribution in the material to be welded using a heat conduction model
Output the parameter temperature required for changing the pre-energization conditions.
Calculation unit and preliminary welding conditions according to the parameter temperature are recorded.
The stored storage unit and the parameter temperature output from the calculation unit
Observe the temperature and nugget according to the temperature parameter in the storage unit
Output section that outputs the optimal pre-welding conditions that do not cause cracking
And a control unit for controlling the pre-energization based on the pre-welding conditions output from the comparison output unit .

【0010】[0010]

【作用】上記構成において、被溶接材の温度分布からパ
ラメータ温度を抽出し、そのパラメータ温度のばらつき
に応じて最適な予備通電を行なわせ、予熱によって被溶
接材を密着させ円滑に溶接ができることとなる。
In the above configuration, the temperature distribution of the material to be welded is
Extracts parameter temperature and its parameter temperature variation
In this way, the optimum pre-energization is performed in accordance with the condition, and the material to be welded is brought into close contact with the preheating so that welding can be performed smoothly.

【0011】[0011]

【実施例】以下、本発明の実施例を添付図面に基づき詳
細な説明する。 (実施例1)図1は実施例1の抵抗溶接の予備通電制御
装置の構成を示したものである。図示のように検出部1
は溶接機2の溶接部3における溶接開始から溶接終了を
1打点として検出し、検出部1からの出力信号を打点カ
ウントとして第1の記憶部4は総打点数として記憶す
る。第2の記憶部5は、打点毎の最適な予備通電条件、
すなわち、電極の消耗状態に応じた最適な予備通電条件
を記憶している。第1の記憶部4から出力される溶接部
3の総打点数を条件変更部6は第2の記憶部5に出力
し、第2の記憶部5から出力される打点数に応じた最適
な予備溶接条件を制御部7に出力する。制御部7は変更
された予備溶接条件で溶接を行うように制御信号を出力
し、溶接機2はその溶接部3が打点数に応じた、つまり
電極の消耗状態に見合った最適な予備溶接条件で溶接を
行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. (Embodiment 1) FIG. 1 shows the configuration of a pre-energization control device for resistance welding according to Embodiment 1. As shown in FIG.
Detects the end of welding from the start of welding at the welding portion 3 of the welding machine 2 as one hit point, and stores the output signal from the detecting portion 1 as a hit point count and the first storage section 4 as the total number of hit points. The second storage unit 5 stores optimum pre-energization conditions for each hit point,
That is, the optimum pre-energization conditions according to the electrode wear state are stored. The condition changing unit 6 outputs the total number of spots of the welded portion 3 output from the first storage unit 4 to the second storage unit 5, and the optimum number according to the number of spots output from the second storage unit 5. The preliminary welding conditions are output to the control unit 7. The control unit 7 outputs a control signal so as to perform welding under the changed pre-welding conditions, and the welding machine 2 determines the optimum pre-welding conditions according to the number of spots in the welding part 3, that is, in accordance with the wear condition of the electrode. Perform welding.

【0012】(実施例2)図2は実施例2の抵抗溶接の
予備通電制御装置の構成を示したものである。図2にお
いて、溶接部8で最適の予備溶接条件のための数値解析
に必要な溶接電流は電流検出部9によって、また溶接部
8における電極間電圧は電圧検出部10によって検出さ
れ、演算部11に出力される。演算部11では熱伝導モ
デルを用いたシミュレーションにより被溶接材中の温度
分布が計算される。
(Embodiment 2) FIG. 2 shows the configuration of a pre-energization control device for resistance welding according to Embodiment 2. In FIG. 2, a welding current necessary for numerical analysis for optimum pre-welding conditions in the welding portion 8 is detected by a current detecting portion 9, a voltage between electrodes in the welding portion 8 is detected by a voltage detecting portion 10, and a calculating portion 11 Is output to The calculation unit 11 calculates the temperature distribution in the material to be welded by simulation using a heat conduction model.

【0013】具体的に説明すると図3に示す流れ図に従
い、板厚と重ね枚数および材質を入力して溶接を開始す
る。つぎに電極間電圧と溶接電流を検出し、検出された
電極間電圧と溶接電流から通電路を示す通電径を求め、
電位分布を推定し、被溶接材中の抵抗発熱と熱伝導方程
式を差分化した熱伝導モデルから被溶接材中の温度分布
が算出される。そしてこの過程を通電中繰り返すことに
よって通電開始から任意の時間まで被溶接材中の温度分
布が時々刻々算出されるというものである。
More specifically, according to the flow chart shown in FIG. 3, welding is started by inputting the sheet thickness, the number of sheets to be overlapped, and the material. Next, the inter-electrode voltage and the welding current are detected, and the energizing diameter indicating the energizing path is determined from the detected inter-electrode voltage and the welding current,
The potential distribution is estimated, and the temperature distribution in the material to be welded is calculated from a heat conduction model obtained by differentiating the resistance heat generation in the material to be welded and the heat conduction equation. By repeating this process during energization, the temperature distribution in the material to be welded is calculated every moment from the start of energization to an arbitrary time.

【0014】この熱伝導モデルを用いたシミュレーショ
ンを用いて予備通電終了直後の被溶接材中の温度分布を
算出し、さらに必要な部分をパラメータ温度として抽出
して、図2で示す演算部11から比較出力部12へ出力
される。記憶部13にはあらかじめ求めておいた予備通
電条件とパラメータ温度の許容範囲が記憶されており、
比較出力部12は演算部11から出力されたパラメータ
温度と許容範囲を比較し、許容範囲を超えた場合は記憶
部13から最適な予備溶接条件を選択し、制御部14に
出力する。制御部14は変更された予備通電条件で溶接
を行うように制御信号を出力して溶接機の電源15を制
御し、状況に応じた最適な予備通電条件で溶接を行う。
The temperature distribution in the material to be welded immediately after the completion of the pre-energization is calculated by using the simulation using the heat conduction model, and a necessary portion is extracted as a parameter temperature. It is output to the comparison output unit 12. The pre-energization condition and the allowable range of the parameter temperature, which are obtained in advance, are stored in the storage unit 13.
The comparison output unit 12 compares the parameter temperature output from the calculation unit 11 with the allowable range, and when the parameter temperature exceeds the allowable range, selects an optimal preliminary welding condition from the storage unit 13 and outputs it to the control unit 14. The control unit 14 outputs a control signal so as to perform welding under the changed pre-energization condition, controls the power source 15 of the welding machine, and performs welding under the optimal pre-energization condition according to the situation.

【0015】(実施例3)つぎに予備通電条件決定方法
の実施例を図4、図5、図7および表1を用いて説明す
る。
(Embodiment 3) Next, an embodiment of a method for determining a pre-energization condition will be described with reference to FIGS. 4, 5 and 7 and Table 1.

【0016】図4は予備通電条件決定方法の流れ図を示
すものである。以下にこの流れ図に従い実現される予備
通電条件決定方法を詳細に説明する。まず被溶接材温度
分布の算出を行ない、パラメータ温度の抽出を行う。そ
してデータ数を確認したのち、パラメータ温度のばらつ
き演算を行ない、溶接条件数を満しておればパラメータ
温度のばらつきを比較し、予備通電条件の決定を行な
う。
FIG. 4 shows a flowchart of a method for determining the pre-energization condition. Hereinafter, a method for determining the pre-energization condition realized according to this flowchart will be described in detail. First, the temperature distribution of the material to be welded is calculated, and the parameter temperature is extracted. After confirming the number of data, the parameter temperature variation calculation is performed. If the number of welding conditions is satisfied, the parameter temperature variation is compared to determine the pre-energization condition.

【0017】さらに詳しく説明すると、図5は検出され
た溶接電流および電極間抵抗から熱伝導モデルを用いた
シミュレーションによって被溶接材中の温度分布を算出
しパラメータ温度を算出する過程を説明するものであ
る。
More specifically, FIG. 5 illustrates a process of calculating a temperature distribution in a material to be welded by a simulation using a heat conduction model from the detected welding current and resistance between electrodes, and calculating a parameter temperature. is there.

【0018】1例として予備通電はアップスロープを選
び、溶接条件は亜鉛メッキ鋼板1.2mmt×2、本通
電電流値10kA、加圧320kgf、溶接時間20サ
イクルを選んだ。検出された被溶接材を挟む電極間電圧
から求めたチップ間抵抗および溶接電流はそれぞれa1
およびa2として示され、溶接電流a2のうちa5の区
間がアップスロープ部である予備通電区間、残るa6の
区間が本通電区間として示されている。これら測定され
たチップ間電圧a1と溶接電流a2から、(実施例2)
で示した熱伝導モデルを用いたシミュレーションで算出
される温度分布から被溶接材間の中心温度a3と溶融温
度以上の範囲から半径方向の最大径である溶融部直径
(以下、ナゲット径a4と称す)の時間変化を図中に示
した。中心温度a3が時間とともに上昇、やがて溶融温
度に達すると溶融部が出現し、その直径変化がナゲット
径a4の曲線であることが説明される。
As an example, the up-slope was selected for the pre-energization, and the welding conditions were 1.2 mmt × 2 galvanized steel sheet, 10 kA of main energizing current, 320 kgf of pressurization, and 20 cycles of welding time. The resistance between the chips and the welding current obtained from the detected voltage between the electrodes sandwiching the material to be welded are respectively a1
In the welding current a2, the section of a5 is shown as a preliminary energizing section which is an up slope portion, and the remaining section of a6 is shown as a main energizing section. From the measured chip voltage a1 and welding current a2, (Example 2)
From the temperature distribution calculated by the simulation using the heat conduction model shown in the above, the central temperature a3 between the materials to be welded and the melting portion diameter which is the maximum diameter in the radial direction from the range of the melting temperature or higher (hereinafter referred to as the nugget diameter a4) ) Is shown in the figure. It is explained that when the center temperature a3 rises with time and eventually reaches the melting temperature, a melted portion appears, and the change in diameter is a curve of the nugget diameter a4.

【0019】本実施例を説明するパラメータ温度とし
て、予備通電区間a5直後の中心温度a7を選び、以降
の各実施例の説明も中心温度a7を用いて行う。通電初
期には被溶接材間の合いあるいは電極の消耗状態などに
よって、各打点毎にチップ間抵抗a1は異なる変化とな
って測定され、シミュレーションによって計算される中
心温度a3もそれらの状態を反映し異なる変化を示す。
予熱により被溶接材間を密着させ溶接電流を円滑に通電
することを目的として用いられる予備通電においては、
本通電区間a6の中心温度a3の変化が打点毎に安定し
ていること、すなわち予備通電区間a5直後には中心温
度a7のばらつきが小さいほど上記目的を満たしている
ことになる。
The center temperature a7 immediately after the pre-energization section a5 is selected as a parameter temperature for explaining this embodiment, and the description of each embodiment will be made using the center temperature a7. In the initial stage of energization, the resistance a1 between the tips is measured as a different change for each hitting point due to the contact between the materials to be welded or the state of wear of the electrodes, and the center temperature a3 calculated by the simulation also reflects those states. Show different changes.
In the pre-energization, which is used for the purpose of pre-heating the materials to be welded and bringing the welding current smoothly through,
The change in the central temperature a3 of the main energizing section a6 is stable for each hit point, that is, the smaller the variation of the central temperature a7 immediately after the preliminary energizing section a5, the more the above purpose is satisfied.

【0020】本実施例において、ばらつき度合いを示す
ものとして中心温度a7の標準偏差を選ぶと、各打点毎
に熱伝導モデルを用いたシミュレーションによってパラ
メータ温度である予備通電直後の中心温度a7を算出
し、統計処理可能な程度の打点データから中心温度a7
の標準偏差を求めることによってばらつきを求めること
ができる。任意の予備溶接条件に対して同様に中心温度
a7の標準偏差を求め、予備通電中のチリ発生の有無あ
るいはタクトタイムなど外的因子を考慮して、各々を比
較したときにより小さな標準偏差である予備通電条件が
より最適な予備通電条件、すなわち上述した予備通電の
目的を達成する条件である。
In this embodiment, when the standard deviation of the center temperature a7 is selected as an indicator of the degree of variation, the center temperature a7 immediately after the pre-energization, which is the parameter temperature, is calculated for each dot by simulation using a heat conduction model. From the point data that can be statistically processed to the center temperature a7
By obtaining the standard deviation of, the variation can be obtained. Similarly, the standard deviation of the center temperature a7 is obtained for any pre-welding conditions, and the standard deviation is smaller when each is compared in consideration of external factors such as occurrence of dust during pre-energization or tact time. The pre-energization condition is a more optimal pre-energization condition, that is, a condition for achieving the purpose of the pre-energization described above.

【0021】[0021]

【表1】 [Table 1]

【0022】表1は本発明を説明する実施例である。亜
鉛メッキ鋼板1.2mmt、2枚重ねの溶接において本
通電電流値を10kAとし、予備通電条件としては、予
備通電中にチリが発生しない範囲で表1A,B,C,D
を選んだ。上記した中心温度a7のバラツキは、各予備
通電条件で50打点分のデータの平均中心温度からの標
準偏差で代表した。表1の結果から明らかに予備溶接条
件Dがもっとも標準偏差が小さく、本例で示される予備
溶接条件の中ではもっとも効果的である。さらに、予備
溶接条件A,B,C、つまり従来から行われてきたアッ
プスロープによる予備通電では、図8(b)に示すよう
にその効果が無い区間が存在するため、十分な予熱の効
果が得られないばかりか無駄な通電時間を費やすことと
なる。自動車業界などスポット溶接が多量に用いられる
現場では、この時間的ロス、たとえ低電流と言えども電
力ロスは多大なものとなる。本発明によれば任意の予備
溶接条件においてもっとも効果的かつ合理的な予備溶接
条件を選択することができる。
Table 1 is an example illustrating the present invention. The main energizing current value was set to 10 kA in the welding of two galvanized steel sheets of 1.2 mmt.
I chose. The above-mentioned variation of the center temperature a7 is represented by the standard deviation from the average center temperature of data for 50 dots under each pre-energization condition. The results of Table 1 clearly show that the preliminary welding condition D has the smallest standard deviation, and is the most effective among the preliminary welding conditions shown in this example. Further, in the preliminary welding conditions A, B, and C, that is, in the conventional pre-energization using the upslope, there is a section where the effect is not present as shown in FIG. Not only is it impossible to obtain, but also wasteful energizing time is wasted. At sites where a large amount of spot welding is used, such as in the automobile industry, this time loss, even if the current is low, causes a large power loss. According to the present invention, the most effective and rational pre-welding conditions can be selected for any pre-welding conditions.

【0023】(実施例4)また、他の予備通電条件決定
方法について図6、図8に基づき詳細に説明する。図6
の場合は亜鉛メッキ鋼板1.2mmt、2枚重ねの溶接
において、予備通電時間(図8のtp)を一定として予
備通電電流値(図8のIp)を変化させたときのパラメ
ータ温度の標準偏差を比較するものである。本実施例で
は前記と同じくパラメータ温度として被溶接材中心の温
度を選択した。横軸には予備通電の電流値、縦軸には前
記した方法で得られた予備通電後中心温度の標準偏差を
とり、図中には本通電を6、8、10kAとした場合も
載せている。なお、本実施例では予備通電時間tpは1
サイクル一定とし、予備通電電流値Ipも図中横軸に示
す値で一定とした。実施例では約8kA以下で予備通電
電流値が小さくなるほど中心温度の標準偏差は大きくな
り、11kAでは中心温度の標準偏差も大きく、予備通
電中にチリが発生する場合が確認された。実施例の予備
通電条件では電流値7〜8kAがもっとも効果的な予備
通電条件であることがわかる。すなわち、本発明によれ
ば前記した予備通電判定方法を用いることによって、予
備通電時間が一定である場合もっとも効果的な予備通電
電流値を求め得ることができるものであり、特に溶接現
場においてタクトタイムから溶接時間が制限される場合
において効果を奏するものである。
(Embodiment 4) Another method of determining the pre-energization condition will be described in detail with reference to FIGS. FIG.
In the case of, the standard deviation of the parameter temperature when the pre-energization current value (Ip in FIG. 8) is changed while the pre-energization time (tp in FIG. 8) is kept constant in the welding of 1.2 mmt galvanized steel sheet and two laps Is to compare. In this embodiment, the temperature at the center of the material to be welded was selected as the parameter temperature as described above. The abscissa indicates the current value of the pre-energization, and the ordinate indicates the standard deviation of the center temperature after the pre-energization obtained by the above-described method. I have. In this embodiment, the pre-energization time tp is 1
The cycle was constant, and the pre-energization current value Ip was also constant at the value shown on the horizontal axis in the figure. In the example, the standard deviation of the central temperature increases as the preliminary energizing current value decreases at about 8 kA or less, and the standard deviation of the central temperature increases at 11 kA, and it is confirmed that dust occurs during the preliminary energizing. It can be seen that the current value of 7 to 8 kA is the most effective pre-energizing condition in the pre-energizing condition of the embodiment. That is, according to the present invention, by using the above-described pre-energization determination method, the most effective pre-energization current value can be obtained when the pre-energization time is constant. This is effective when the welding time is limited.

【0024】また、他の予備通電決定方法について図
7、図8に基づき詳細に説明する。図7の場合は亜鉛メ
ッキ鋼板1.2mmt、2枚重ねの溶接において、予備
通電電流値(図8のIp)を8kA一定として予備通電
時間(図8のtp)を変化させたときの標準偏差を比較
するものである。本実施例も前記と同様にパラメータ温
度として予備通電後の被溶接材中心温度を選んだ。本実
施例から予備通電時間が長くなるほど標準偏差が小さく
なり、3サイクルと4サイクルとではほぼ標準偏差が一
定で予熱による密着の効果はほぼ同じである。本実施例
の範囲においては予備通電時間3サイクルがもっとも効
果的かつ合理的な予備通電時間の条件であることがわか
る。すなわち、本発明によれば前記した(実施例3)の
予備通電条件決定方法を用いることによって、予備通電
電流値が一定である場合もっとも効果的かつ合理的な予
備通電時間を求め得ることができるものであり、特に、
溶接現場において被溶接材の合いが悪い場合、堅い材料
を溶接する場合など通電初期にチリが発生しやすい時に
効果を奏するものである。
Further, another method of determining the pre-energization will be described in detail with reference to FIGS. In the case of FIG. 7, the standard deviation when the pre-energization time (tp in FIG. 8) is changed while the pre-energization current value (Ip in FIG. 8) is constant at 8 kA in the welding of 1.2 mmt galvanized steel sheet and two laps. Is to compare. In this embodiment, the center temperature of the material to be welded after the pre-energization was selected as the parameter temperature in the same manner as described above. From this embodiment, the standard deviation decreases as the pre-energization time increases, and the standard deviation is substantially constant between the third cycle and the fourth cycle, and the effect of the close contact by preheating is substantially the same. It can be seen that three cycles of the pre-energization time are the most effective and rational conditions for the pre-energization time within the range of the present embodiment. That is, according to the present invention, the most effective and rational pre-energization time can be obtained when the pre-energization current value is constant by using the pre-energization condition determination method of the above-described (Example 3). And, in particular,
This is effective when dust is likely to occur at the beginning of energization, such as when the materials to be welded are bad at the welding site or when a hard material is welded.

【0025】このように本実施例の抵抗溶接の予備通電
制御装置および予備通電条件決定方法は、予熱によって
被溶接材を密着させるためにもっとも効果的かつ効率的
な予備通電条件を、経験あるいは感覚によらず合理的に
決定することができる。また、連続打点時の電極消耗な
どの経時変化に対しても、その溶接状態に対応した予備
通電条件を選ぶことで常に安定した予熱効果を得ること
ができる。
As described above, the pre-energization control device and the pre-energization condition determining method for resistance welding according to the present embodiment determine the most effective and efficient pre-energization conditions for bringing the workpieces into close contact by preheating. Can be determined rationally regardless of Also, with respect to a change with time such as electrode wear during continuous hitting, a stable preheating effect can always be obtained by selecting a pre-energization condition corresponding to the welding state.

【0026】なお、本発明は上記実施例になんら限定さ
れるものではなく、予備通電条件決定に必要なパラメー
タ温度、予備通電電流パターンなどその他本発明の要旨
を変えない範囲内で種々の変形実施が可能であることは
言うまでもない。
It should be noted that the present invention is not limited to the above embodiment, and various modifications may be made without departing from the scope of the present invention, such as the parameter temperature and the pre-energization current pattern required for determining the pre-energization conditions. Needless to say, this is possible.

【0027】[0027]

【発明の効果】以上の実施例の説明より明らかなよう
に、本発明の抵抗溶接の予備通電制御装置および予備通
電条件決定方法は、予備通電の主たる目的である予熱に
よる被溶接材の密着させるためもっとも効果的かつ効率
的な、使用される環境、状況に応じた予備通電条件を観
測パラメータの標準偏差を比較することによって合理的
に求めることができ、また電極消耗状態に応じた最適な
予備通電条件を適宜設定することで常に安定した被溶接
材の密着が得られ、溶接の品質および信頼性を高めるこ
とができる優れた効果を奏するものである。
As is apparent from the above description of the embodiment, the resistance welding pre-energization control device and the pre-energization condition determination method of the present invention bring the workpieces into close contact by preheating, which is the main purpose of pre-energization. For this reason, the most effective and efficient pre-energization conditions can be rationally determined by comparing the standard deviation of the observed parameters with the environment and conditions used. By appropriately setting the energizing conditions, a stable adherence of the material to be welded can always be obtained, and an excellent effect of improving the quality and reliability of welding can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の抵抗溶接の予備通電制御装
置の構成図
FIG. 1 is a configuration diagram of a pre-energization control device for resistance welding according to an embodiment of the present invention.

【図2】本発明の他の実施例の抵抗溶接の予備通電制御
装置の構成図
FIG. 2 is a configuration diagram of a pre-energization control device for resistance welding according to another embodiment of the present invention.

【図3】本発明の抵抗溶接の予備通電条件決定方法のう
ち、熱伝導モデルを用いたシミュレーションを説明する
流れ図
FIG. 3 is a flowchart for explaining a simulation using a heat conduction model in the method for determining a pre-energization condition for resistance welding according to the present invention.

【図4】本発明の抵抗溶接の予備通電条件決定方法を説
明する流れ図
FIG. 4 is a flowchart illustrating a method for determining a pre-energization condition for resistance welding according to the present invention.

【図5】本発明の抵抗溶接の予備通電条件決定方法の説
明図
FIG. 5 is an explanatory diagram of a method for determining pre-energization conditions for resistance welding according to the present invention.

【図6】本発明の抵抗溶接の他の予備通電条件決定方法
の説明図
FIG. 6 is an explanatory diagram of another method for determining a pre-energization condition of resistance welding according to the present invention.

【図7】本発明の抵抗溶接の他の予備通電条件決定方法
の説明図
FIG. 7 is an explanatory diagram of another method for determining a pre-energization condition of resistance welding according to the present invention.

【図8】本発明の抵抗溶接の他の予備通電条件決定方法
の説明図
FIG. 8 is an explanatory diagram of another method for determining a pre-energization condition of the resistance welding according to the present invention.

【符号の説明】[Explanation of symbols]

1 検出部 2 溶接機 3 溶接部 4 第1の記憶部 5 第2の記憶部 6 条件変更部 7 制御部 a1 電極間抵抗変化を示す曲線 a2 溶接電流変化を示す曲線 a3 被溶接材間の中心部分の温度 a4 ナゲット径変化を示す曲線 a5 予備通電区間 a6 本通電区間 a7 パラメータ温度 DESCRIPTION OF SYMBOLS 1 Detecting part 2 Welding machine 3 Welding part 4 First storage part 5 Second storage part 6 Condition changing part 7 Control part a1 Curve indicating resistance change between electrodes a2 Curve indicating change in welding current a3 Center between materials to be welded Part temperature a4 Curve indicating change in nugget diameter a5 Preliminary energizing section a6 Main energizing section a7 Parameter temperature

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−75633(JP,A) 特開 昭63−154276(JP,A) 特開 昭62−240180(JP,A) 特開 平6−47563(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 11/24 394 B23K 11/24 398 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-52-75633 (JP, A) JP-A-63-154276 (JP, A) JP-A-62-240180 (JP, A) JP-A-6-240180 47563 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B23K 11/24 394 B23K 11/24 398

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被溶接材を挟む電極間の溶接電流、電極
間電圧を直接または間接に測定する手段を備えた電流検
出部および電圧検出部と、両検出部より検出された物理
量から熱伝導モデルを用いて被溶接材中の温度分布を算
出し、予備通電条件変更に必要なパラメータ温度を出力
する演算部と、パラメータ温度に応じた予備溶接条件が
記憶された記憶部と、演算部から出力されるパラメータ
温度を観測し、記憶部の温度パラメータに応じたナゲッ
トを生じない最適な予備溶接条件を出力する比較出力部
と、比較出力部から出力される予備溶接条件で予備通電
を制御する制御部を具備した抵抗溶接の予備通電制御装
置。
1. A welding current between electrodes sandwiching a material to be welded,
Current detection with means for measuring the voltage directly or indirectly
Output part and voltage detection part, and physical parts detected by both detection parts
Temperature distribution in the material to be welded using the heat conduction model
Output the parameter temperature required for changing the pre-energization conditions
And the preliminary welding conditions according to the parameter temperature
Stored storage unit and parameters output from operation unit
Observe the temperature and adjust the nugget according to the temperature parameter in the storage unit.
Output section that outputs the optimal pre-welding conditions that do not cause heat
And a control unit for controlling the pre-energization based on the pre-welding conditions output from the comparison output unit .
【請求項2】 被溶接材を挟む電極間の溶接電流、電極
間電圧を検出し、検出された物理量から熱伝導モデルに
基づいたシミュレーションを用いて予備通電後の被溶接
材中の温度分布を数値解析するステップと、温度分布か
ら予備通電直後の必要な温度あるいは温度分布をパラメ
ータ温度として抽出するステップと、さらに、上記ステ
ップを繰り返して統計処理可能な程度の打点数の各デー
タについてパラメータ温度を抽出し、統計処理からパラ
メータ温度のばらつきを求めるステップと、2つ以上の
任意の予備通電条件において、予備通電後のパラメータ
温度のばらつきを比較するステップから、許容される予
備通電条件のうちもっとも温度パラメータのばらつきの
小さなものを最適な予備通電条件とする抵抗溶接の予備
通電条件決定方法
2. A welding current between electrodes sandwiching a material to be welded and a voltage between the electrodes are detected, and the detected physical quantity is converted into a heat conduction model.
After pre-energization using simulation based on
Numerical analysis of the temperature distribution in the material
The required temperature or temperature distribution immediately after
Extraction as a data temperature, and
Repeatedly repeat the data
Parameter temperature for the parameter
Determining the temperature variation of the meter;
Under any pre-energization conditions, parameters after pre-energization
From the step of comparing temperature variations, an acceptable
Among the power supply conditions,
A method for determining the pre-energization conditions for resistance welding with the small ones being the optimal pre-energization conditions .
【請求項3】 予備通電時間を一定とした場合におい
て、最適な予備通電電流値を請求項2記載の予備通電条
件決定方法を用いて決定し、予備通電条件とすることを
特徴とする抵抗溶接の予備通電条件決定方法。
3. When the pre-energization time is fixed,
3. The pre-energizing condition according to claim 2,
It is necessary to determine using the
Characteristic method for determining pre-energization conditions for resistance welding.
【請求項4】 予備通電電流を一定とした場合におい
て、最適な予備通電時間を請求項記載の予備通電条件
決定方法を用いて決定し、予備通電条件とすることを特
徴とする抵抗溶接の予備通電条件決定方法。
4. The resistance welding method according to claim 2 , wherein when the pre-energization current is constant, an optimum pre-energization time is determined by using the pre-energization condition determination method according to claim 2 , and the pre-energization condition is set. How to determine pre-energization conditions.
JP04333095A 1995-03-03 1995-03-03 Pre-energization control device for resistance welding and method for determining pre-energization conditions Expired - Fee Related JP3223065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04333095A JP3223065B2 (en) 1995-03-03 1995-03-03 Pre-energization control device for resistance welding and method for determining pre-energization conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04333095A JP3223065B2 (en) 1995-03-03 1995-03-03 Pre-energization control device for resistance welding and method for determining pre-energization conditions

Publications (2)

Publication Number Publication Date
JPH08238574A JPH08238574A (en) 1996-09-17
JP3223065B2 true JP3223065B2 (en) 2001-10-29

Family

ID=12660830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04333095A Expired - Fee Related JP3223065B2 (en) 1995-03-03 1995-03-03 Pre-energization control device for resistance welding and method for determining pre-energization conditions

Country Status (1)

Country Link
JP (1) JP3223065B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005220B2 (en) * 2006-01-10 2012-08-22 三桜工業株式会社 Method for welding connection plate in battery pack
KR102010073B1 (en) * 2017-12-22 2019-08-12 주식회사 포스코 Spot welding method

Also Published As

Publication number Publication date
JPH08238574A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
JP5424303B2 (en) Equipment for evaluating the condition of welding caps
US7432466B2 (en) Method of electrical resistance spot welding
CN101566546B (en) Online weld inspection and repair method for resistance welding and weld-bonding
JP5052586B2 (en) Resistance welding method, resistance welding member, resistance welding machine and control device thereof, resistance welding machine control method and control program thereof, resistance welding evaluation method and evaluation program, and detection method at the start of resistance welding melting
US7718918B2 (en) Production or assembly line method of spot welding
JP3379323B2 (en) Control device of resistance welding machine
JP2012076146A (en) Device and method for determining quality of welding in real time
US5852273A (en) Resistance welding controller and method including thermal conduction simulation of weld nugget condition
CN108788416A (en) A kind of adaptive welding system and method based on aluminum material
US20080237303A1 (en) Decision method for dressing of welding electrodes
JP2000126872A (en) Control method of resistance welding machine
JP3223065B2 (en) Pre-energization control device for resistance welding and method for determining pre-energization conditions
JP3087478B2 (en) Welding quality monitoring device for resistance welding
JP3651301B2 (en) Spot welding control device and control method thereof
JP4642267B2 (en) Pulse arc welding welding stability assessment device
JPH09216072A (en) Control device of resistance welding equipment
JP2584300B2 (en) Automatic setting device for spot welding conditions
JP2002316270A (en) Method for deciding weld condition and device for the same
JP7192566B2 (en) Method and apparatus for detecting expulsion in electric resistance welding
JP3489760B2 (en) Joining method
JP2002239743A (en) Resistance welding machine control device and quality monitoring device
JPH09168867A (en) Controller of resistance welding machine
JPH1190642A (en) Method and device for electrically pressurizing and controlling resistance welding machine
JPH0788659A (en) Method and device for controlling welding current of dc resistance welding machine
JP2010221252A (en) Method and device for determining acceptance/rejection of welding by capacitor discharge type stud welding machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees