JPS60169686A - Cryo-pump - Google Patents

Cryo-pump

Info

Publication number
JPS60169686A
JPS60169686A JP2279084A JP2279084A JPS60169686A JP S60169686 A JPS60169686 A JP S60169686A JP 2279084 A JP2279084 A JP 2279084A JP 2279084 A JP2279084 A JP 2279084A JP S60169686 A JPS60169686 A JP S60169686A
Authority
JP
Japan
Prior art keywords
gas
panels
recovery
cryopump
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2279084A
Other languages
Japanese (ja)
Inventor
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2279084A priority Critical patent/JPS60169686A/en
Publication of JPS60169686A publication Critical patent/JPS60169686A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To complete the selective recovery and discharge of gas in a short time by forming the gas recovery and regeneration side outlets of a cryo-pump in the number of rows of panels and buffles and carrying-out the recovery and regeneration of gas in parallel. CONSTITUTION:The gas recovery and regeneration side outlets of a cryo-pump 1 are formed in the number of rows of panels and buffles and connected to the individual gate valve 13 and outlet-side duct 14, respectively. When the gas accumulated into the pump 1 is selectively recovered and discharged, an inlet-side gate valve 11 is closed at first, and then the outlet-side gate valve 13 is opened, as shown in the figure. Shutters 15 and 16 are closed by an opening and closing mechanism not shown in the figure, and each temperature of panels 8, 9 and 10 is raised to separate the adsorbed gas (a), (b) and (c) from the panels 8, 9 and 10, and the gas is discharged into the outlet-side duct 14 through the outlet-side gate valve 13. In this case, the gas adsorbed onto the panels 8, 9 and 10 can be selectively recovered and discharged, simultaneously, the whole necessary time for the selective recovery and discharge of the cryo-pump can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はクライオポンプに係り、特にクライオポンプ内
に蓄積した排気ガスを選択回収出来るクライオポンプに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cryopump, and particularly to a cryopump that can selectively recover exhaust gas accumulated within the cryopump.

〔発明の背景〕[Background of the invention]

第1図は各2:(′気体の温度と蒸気圧との関係を示す
蒸気圧曲線であり、このグラフから判るようにクライオ
ポンプ内に設けられた複数段の冷却面の温度をそれぞれ
変えることにより、各段の冷却面に凝縮捕獲される気体
の種類を変えることができる。
Figure 1 is a vapor pressure curve showing the relationship between the temperature of the gas and the vapor pressure. This makes it possible to change the type of gas that is condensed and captured on the cooling surface of each stage.

第2図はこの原理を応用したクライオポンプの従来構造
の一例を示したものであり、クライオポンプケース1内
に冷却管2,3.4が配設されており、それぞれに冷媒
5,6.7が導入さハている。これらの冷却管2,3.
4にはそれぞれ吸着部材の一つであるシェブロンバッフ
ル8,9および多孔質吸着剤パネル10が固設さ九てい
る。
FIG. 2 shows an example of the conventional structure of a cryopump applying this principle, in which cooling pipes 2, 3, 4 are arranged inside the cryopump case 1, and coolant 5, 6, . 7 has been introduced. These cooling pipes 2, 3.
Chevron baffles 8, 9 and porous adsorbent panels 10, which are one of the adsorption members, are fixed to each of the adsorption members 4.

また、シェブロンバッフル8,9問およびシェブロンバ
ッフル9とパネル10間に、それぞれil+it度制御
され開閉可能なシャッタ1.5,1.6が配設されてい
る。
Furthermore, shutters 1.5 and 1.6, which can be opened and closed under il+it degree control, are arranged between the chevron baffles 8 and 9 and between the chevron baffle 9 and the panel 10, respectively.

クライオポンプケース1の入口側は入ロ側ゲー1〜バル
ブ11を介して入口側ダク1〜12に接続されでおり、
同じく出力側は出ロ側ゲー1−バルブ13を介して出口
側ダグ1〜14に接続されている。
The inlet side of the cryopump case 1 is connected to the inlet ducts 1 to 12 via the inlet gates 1 to valves 11,
Similarly, the output side is connected to the outlet side dugs 1 to 14 via the outlet side gate 1-valve 13.

このように構成された従来構造のクライオポンプでは、
例えは、冷媒5に液体窒素を用い、冷媒6.7に液体ヘ
リウムを用いると、シェブロンバッフル8は77kに、
シェブロンバッフル9および多孔質吸着剤パネル10は
42Kに冷却されるから、人口側ダグl−1,2からグ
ー1−バルブ11を介して導かれる排気ガスの組成を、
例えば水蒸気(l(20)a、水素ガス(1−12)b
、ヘリウムガス(N O)の3種類と仮定すれば、それ
ぞれのガスa、h、c、は図示のようにそれぞれ、冷却
面8゜9.10に凝縮捕獲される。この場合、クライオ
ポンプの出力側に接続された出ロ側ゲー1〜バルブ13
は閉じられている。
In a cryopump with a conventional structure configured in this way,
For example, if liquid nitrogen is used as the refrigerant 5 and liquid helium is used as the refrigerant 6.7, the chevron baffle 8 will be 77k.
Since the chevron baffle 9 and the porous adsorbent panel 10 are cooled to 42 K, the composition of the exhaust gas led from the artificial side Doug 1-1, 2 through the Goo 1-valve 11 is as follows.
For example, water vapor (l(20)a, hydrogen gas (1-12)b
, helium gas (N 2 O), the respective gases a, h, and c are condensed and captured on the cooling surface 8°9.10, respectively, as shown in the figure. In this case, the output side gate 1 to valve 13 connected to the output side of the cryopump
is closed.

クライオポンプはガスため込み式のポンプであるため、
冷却面での捕護ガス旦がある限度以上になると、捕獲性
能が落ぢるため、捕獲ガスを回収再生する作業を行なう
必要がある。このとき、捕獲ガス中に有害ガスが含まれ
る場合、あるいはその他の理由で各ガスを個別に回収排
気する必要が生じたときに、選択回収排気運転が行なわ
れる。
Since the cryopump is a gas storage pump,
When the amount of captured gas on the cooling surface exceeds a certain limit, the capture performance deteriorates, so it is necessary to recover and regenerate the captured gas. At this time, when the captured gas contains harmful gases or when it becomes necessary to collect and exhaust each gas individually for other reasons, the selective recovery and exhaust operation is performed.

この選択回収排気運転とは、例えば、ガスCのみを個別
に回収する場合、入1コ側ゲー1−バルブ11を閉じ、
出ロ側ゲー1−バルブ13を開き、シャッタ16を図示
しない開閉機構により閉じ、ついで、冷媒7の’1Ir
A度をガスCがパネル10の表面より遊離するまで昇渇
し、出口側ダグ1〜14およびその先に接続された排気
ポンプ(図示せず)によりガスCを回収4るものである
This selective recovery exhaust operation means, for example, when recovering only gas C individually, closing the input 1 side gate 1 valve 11,
The outlet side gate 1-valve 13 is opened, the shutter 16 is closed by an opening/closing mechanism (not shown), and then the refrigerant 7 is
A degree is raised until gas C is liberated from the surface of the panel 10, and gas C is recovered by an exhaust pump (not shown) connected to the outlet side dugs 1 to 14 and beyond.

第:(図はこの選択回収排気の状態を示したものである
が、従来のクライオポンプの構造によると、選択回収用
量lコが1個所のため、あるパネル又はシェブロンバッ
フルを回収再生中の場合、残りのパネル又はバッフルは
回収再生状態に入れず、待機している必要があり、全パ
ネル等の回収再生を完了するまでに長時間かかるという
欠点があった。
(The figure shows the state of this selective recovery exhaust.According to the structure of conventional cryopumps, the selective recovery volume is in one place, so if a certain panel or chevron baffle is being recovered and regenerated. However, the remaining panels or baffles must be on standby without entering the recovery and regeneration state, which has the disadvantage that it takes a long time to complete the recovery and regeneration of all panels.

〔発明の1−1的〕 本発明σ月、1的は、短時間の選択回収排気を行なうこ
とのできるクライオポンプを提供するにある。
[Object 1-1 of the Invention] The first object of the present invention is to provide a cryopump capable of performing selective recovery and evacuation for a short period of time.

〔発明の概要〕[Summary of the invention]

本発明はクライオポンプの回収再生用出口を複数個設け
て、各パネルおよびバッフル等の回収再生を並列に行な
うことにより、短時間で選択回収を完了するようにした
ものである。
In the present invention, a cryopump is provided with a plurality of recovery and regeneration outlets, and each panel, baffle, etc. is recovered and regenerated in parallel, thereby completing selective recovery in a short time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明のクライオポンプの一実施例を図面を参照
して説明する。
Hereinafter, one embodiment of the cryopump of the present invention will be described with reference to the drawings.

第4図および第5図に本発明の一実施例を示す。An embodiment of the present invention is shown in FIGS. 4 and 5.

第4図において、クライオポンプ1のガス回収再生側出
口をパネルおよびパンフルの列数だけ設け、夫々、個別
のゲートバルブ13および出口i側ダグ1へ14に接続
する。
In FIG. 4, the gas recovery and regeneration side outlets of the cryopump 1 are provided as many as the number of rows of panels and panfuls, and are connected to individual gate valves 13 and outlets 14 to the i-side dug 1, respectively.

動作を以下に説明する。クライオポンプの通常排気時に
は排気ガスは入力側ダグ1〜12がら開いているゲート
バルブ11を介してクライオポンプケース1内に導かれ
、排気ガスの成分であるガスa、b、cはそれぞれ冷却
面8,9.10に凝縮捕獲される。このとき、グー1−
バルブ13は閉じられる。
The operation will be explained below. During normal exhaustion of the cryopump, the exhaust gas is guided into the cryopump case 1 via the gate valve 11 that is open from the input side dugs 1 to 12, and gases a, b, and c, which are the components of the exhaust gas, are respectively directed to the cooling surface. Condensed and captured on 8,9.10. At this time, goo 1-
Valve 13 is closed.

クライオポンプ内に蓄積したガスを選択回収排気する場
合には、第5図に示すように、まず、入口側ゲートバル
ブJ】を閉じ、出ロ側ゲー1−バルブ13を開く。シャ
ッタ15および16を図示しない開閉機構により閉じ、
パネル829およびIOを昇温して吸着ガスa、bおよ
びCをパネル8.9および10よりM離し、夫々の出ロ
側ゲー1−バルブI3を通って夫々の出口側ダグ(−1
4に排気する。
When selectively collecting and exhausting the gas accumulated in the cryopump, first close the inlet side gate valve J and open the outlet side gate valve 13, as shown in FIG. The shutters 15 and 16 are closed by an opening/closing mechanism (not shown),
The temperature of panels 829 and IO is increased to move the adsorbed gases a, b and C away from panels 8.9 and 10 by M, and the gases a, b and C are separated from panels 8.9 and 10 by passing through the respective outlet side gates 1 and 13 and the respective outlet side gates (-1).
Exhaust to 4.

この場合、パネル8,9および10の吸着ガスa、bお
よびCを同時に選択回収排気できるので、クライオポン
プ全体の選択回収排気の時間短縮を可能にする。また第
6図は本発明の他の実施例を示すもので、シャッタの代
りにバルブ17.18を設けたものである。
In this case, the adsorbed gases a, b, and C of the panels 8, 9, and 10 can be selectively recovered and exhausted at the same time, so that the time required for selectively recovering and exhausting the entire cryopump can be shortened. FIG. 6 shows another embodiment of the invention, in which valves 17 and 18 are provided in place of the shutter.

この実施例では、更に回収再生時、各パネルとバッフル
間の密閉度が」二る。
In this embodiment, the degree of sealing between each panel and the baffle is further increased during recovery and regeneration.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、クライオポンプの再生時、各パネルお
よびバッフルの選択回収排気を同時にできるので、クラ
イオポンプ全体としての選択回収再生の時間短縮を行な
うことができる。
According to the present invention, when the cryopump is regenerated, each panel and baffle can be selectively recovered and exhausted at the same time, so that the time required for selective recovery and regeneration of the cryopump as a whole can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種気体の蒸気圧曲線、第2図は従来のクライ
オポンプの排気時の動作説明図、第3図は同じく再生時
の動作説明図、第4図は本発明のクライオポンプの一実
施例の排気時の動作説明図、第5図は同じく再生時の動
作説明図、第6図は本発明の他の実施例の動作説明図で
ある。 11・・・入口側ゲートバルブ、12・・・入口側ダク
ト、13・出ロ側ゲー1〜バルブ、14・・・出口側ダ
グ1〜、a、b、c・・排気ガス、1.5.16・・・
シャッタ、1度 (ok )
Fig. 1 is a vapor pressure curve of various gases, Fig. 2 is an explanatory diagram of the operation of a conventional cryopump during exhaust, Fig. 3 is an explanatory diagram of the operation during regeneration, and Fig. 4 is an illustration of the cryopump of the present invention. FIG. 5 is an explanatory diagram of the operation during exhaust of the embodiment, FIG. 5 is an explanatory diagram of the operation during regeneration, and FIG. 6 is an explanatory diagram of the operation of another embodiment of the present invention. 11... Inlet side gate valve, 12... Inlet side duct, 13... Outlet side gate 1~valve, 14... Outlet side duct 1~, a, b, c... Exhaust gas, 1.5 .16...
Shutter, 1 degree (ok)

Claims (1)

【特許請求の範囲】[Claims] 1、複数の成分からなるガスが導入されるケースと、こ
のケース内に設けられ、それぞれが異なるガスの成分を
凝縮・吸着する複数の吸着部材と、これら吸着部材を冷
却する冷却管と、前記各吸着部材間に開閉自在なシャツ
タヌはバルブを設け、前記シャッタ又はバルブは前記ケ
ース内に前記ガスを導入するときには前記各シャッタ又
はバルブが開放され、かつ、前記吸着部)jに吸着した
前記ガスを回収するときには、前記シャッタ又はバルブ
で前記吸着部材間を閉じる構造のクライオポンプにおい
て、ガス回収側の出口を複数個にすることを特徴とする
クライオポンプ。
1. A case into which a gas consisting of a plurality of components is introduced, a plurality of adsorption members provided within the case, each of which condenses and adsorbs a different gas component, and a cooling pipe that cools these adsorption members; A valve that can be freely opened and closed is provided between each suction member, and the shutter or valve is opened when introducing the gas into the case, and the gas adsorbed on the suction part) is opened. A cryopump having a structure in which the shutter or the valve closes the space between the adsorption members when recovering the gas, the cryopump having a plurality of outlets on the gas recovery side.
JP2279084A 1984-02-13 1984-02-13 Cryo-pump Pending JPS60169686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2279084A JPS60169686A (en) 1984-02-13 1984-02-13 Cryo-pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279084A JPS60169686A (en) 1984-02-13 1984-02-13 Cryo-pump

Publications (1)

Publication Number Publication Date
JPS60169686A true JPS60169686A (en) 1985-09-03

Family

ID=12092473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279084A Pending JPS60169686A (en) 1984-02-13 1984-02-13 Cryo-pump

Country Status (1)

Country Link
JP (1) JPS60169686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726395A1 (en) * 1995-02-07 1996-08-14 Hauzer Techno Coating Europe Bv Regeneration of cryocondensation pump panels in a vacuum chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726395A1 (en) * 1995-02-07 1996-08-14 Hauzer Techno Coating Europe Bv Regeneration of cryocondensation pump panels in a vacuum chamber
NL9500225A (en) * 1995-02-07 1996-09-02 Hauzer Techno Coating Europ B Method for regenerating cryocondensation pump panels in a vacuum chamber, vacuum chamber suitable for carrying out the method and an apparatus for coating products provided with such a vacuum chamber.

Similar Documents

Publication Publication Date Title
US5357760A (en) Hybrid cryogenic vacuum pump apparatus and method of operation
KR20010067088A (en) Method and apparatus for separating, removing, and recovering gas components
JPS60169686A (en) Cryo-pump
KR20180070918A (en) Device and method for removing moisture of compressed air
JPS6410252B2 (en)
JPS601388A (en) Cryopump
JP4796688B2 (en) Rare gas recovery method and rare gas recovery device
JPS6088881A (en) Cryo-pump
CN112546820A (en) Unpowered zero-gas-consumption compression heat drying device and method for regeneration system
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH01297120A (en) Regeneration of adsorption device for refining helium gas
JPS6138178A (en) Vacuum exhauster
JP7452495B2 (en) Adsorption heat pump system and cold generation method
JPH02241516A (en) Treatment apparatus for adsorption-desorption of gas
JPS6165083A (en) Combined cryopump
JPS6130608B2 (en)
JPS6214920A (en) Apparatus for removing hydrogen sulfide in geothermal power plant
JPS6190721A (en) Regenerating apparatus of adsorption tower
JPH09171095A (en) Treatment apparatus for radioactive gas waste and operating method for this apparatus
JPH05332288A (en) Exhausting method and device by turbo-molecular pump
JPH04349915A (en) Low temperature type oxygen generator
JPH0315135Y2 (en)
JPS61185690A (en) Cryopump
JPH01125573A (en) Continuous type cryopump
JP2005116851A (en) Load-lock chamber, exposure device, method of manufacturing device