JPS601388A - Cryopump - Google Patents

Cryopump

Info

Publication number
JPS601388A
JPS601388A JP10914483A JP10914483A JPS601388A JP S601388 A JPS601388 A JP S601388A JP 10914483 A JP10914483 A JP 10914483A JP 10914483 A JP10914483 A JP 10914483A JP S601388 A JPS601388 A JP S601388A
Authority
JP
Japan
Prior art keywords
panel
gas
cryopump
baffle
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10914483A
Other languages
Japanese (ja)
Inventor
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10914483A priority Critical patent/JPS601388A/en
Publication of JPS601388A publication Critical patent/JPS601388A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Abstract

PURPOSE:To prevent the temperature of an adjacent baffle from rising due to the radiant heat of a cooling panel or a baffle being regenerated, by providing an openable/closable shutter between the panel and the buffie or between baffles. CONSTITUTION:To selectively take out gas accumulated in a cryopump, an inlet gate valve 11 is closed and an outlet gate valve 13 are opened first. For example, to selectively take out gas (c) condensed on a panel 10, a shutter 16 is closed and the temperature of the panel is heightened so that the adsorbed gas (c) is separated from the panel and discharged to an outlet duct 14 through the outlet gate valve 13. In that case, since the shutter 16 is kept closed, the radiant heat from the panel 10 during its temperature rise is blocked to prevent the temperature rise of a chevron baffle 9, so that gas (b) condensed on the baffle 9 is kept from being separated therefrom.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はクライオポンプに係り、特に該クライオポンプ
内に蓄積した排気ガスを選択回収出来るクライオポンプ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cryopump, and particularly to a cryopump that can selectively recover exhaust gas accumulated within the cryopump.

〔発明の背景〕[Background of the invention]

第1図は各種気体の温度と蒸気圧との関係を示す蒸気圧
曲線であり、このグラフから判るようにクライオポンプ
内に設けられた複数段の冷却面の温度をそれぞれ変える
ことにより、各段の冷却面に凝縮捕獲される気体の種類
を変えることができる。
Figure 1 is a vapor pressure curve showing the relationship between the temperature and vapor pressure of various gases.As can be seen from this graph, by changing the temperature of the multiple stages of cooling surfaces provided in the cryopump, each stage can be The type of gas that is condensed and captured on the cooling surface can be changed.

第2図はこの原理を応用したクライオポンプの従来構造
の一例を示したものであシ、クライオポンプケース1内
に冷却管2,3.4が配設されてお9、それぞれに冷媒
5,6.7が導入されている。これらの冷却管2,3.
4にはそれぞれ吸着部材の一つであるシェブロンバッフ
ル8,9および多孔質吸着剤パネル10が固設されてい
る。また前記クライオポンプケースlの入口側には入口
側ゲートバルブ11を介して入口側ダクト12が接続さ
れており、同じく出口側には出口側ゲートバルブ13を
設けたクライオポンプ(図示せず)を介して出口側ダク
ト14に接続されている。
Fig. 2 shows an example of the conventional structure of a cryopump applying this principle. Cooling pipes 2, 3, and 4 are disposed inside a cryopump case 1, and each coolant 5, 6.7 has been introduced. These cooling pipes 2, 3.
Chevron baffles 8 and 9 and a porous adsorbent panel 10, which are one of the adsorption members, are fixed to each of the adsorption members 4. Further, an inlet duct 12 is connected to the inlet side of the cryopump case l via an inlet gate valve 11, and a cryopump (not shown) provided with an outlet gate valve 13 is connected to the outlet side. It is connected to the outlet duct 14 through the outlet.

このように構成された従来構造のクライオポンプにおい
ては、例えば冷媒5に液体窒素を用い、冷媒6,7に液
体ヘリウムを用いると、シェフロンバッフル8は77″
Kに、シェブロンバッフル9および多孔質吸着剤パネル
10は4.2 ’Kに冷却されるから、入口側ダクト1
2からゲートパルプ11を介して導かれる排気ガスの組
成を、例えば水蒸気(H2O)a1水素ガス(I−12
) b s ヘリウムガス(He)Cの3種類と仮定す
れば、それぞれのガスa、b、 clr!図示の如くそ
れぞれ冷却面8,9゜lOに凝縮捕獲される。この場合
クライオポンプの出口側に接続された出口側ゲートパル
プ13は閉じられている。
In a cryopump with a conventional structure configured in this way, for example, if liquid nitrogen is used as the refrigerant 5 and liquid helium is used as the refrigerants 6 and 7, the Scheffron baffle 8 is 77"
Since the chevron baffle 9 and the porous adsorbent panel 10 are cooled to 4.2' K, the inlet duct 1
2 through the gate pulp 11, for example, water vapor (H2O) a1 hydrogen gas (I-12
) b s Assuming three types of helium gas (He) C, each gas a, b, clr! As shown in the figure, they are condensed and captured on cooling surfaces 8 and 9°lO, respectively. In this case, the outlet side gate pulp 13 connected to the outlet side of the cryopump is closed.

このクライオポンプはガスため込み式のポンプであるた
めに、冷却面における捕獲ガス量がある限度以上になる
と捕獲性能が落ちるため、捕獲ガスを回収再生する作業
を行う必要がある。このときに捕獲ガス中に有害ガスが
含まれる場合、あるいはその他の理由で各ガスを個別に
回収排気する必要が生じたときに、選択回収排気運転が
行われる。この選択回収排気運転とは、例えばガスCの
みを個別に回収する場合、入口側ゲートパルプ11を閉
じ、出口側ゲートパルプ13を開き、ついで冷媒7の温
度をガスCがパネル10の表面よシ遊離するまで昇温し
、出口側ダクト14およびその先に接続された排気ポン
プ(図示せず)によりガスCを回収するものである。
Since this cryopump is a gas storage type pump, the capture performance decreases when the amount of captured gas on the cooling surface exceeds a certain limit, so it is necessary to recover and regenerate the captured gas. At this time, if the captured gas contains harmful gases, or if it becomes necessary to collect and exhaust each gas individually for other reasons, the selective recovery and exhaust operation is performed. This selective recovery exhaust operation means, for example, when recovering only gas C individually, the inlet side gate pulp 11 is closed, the outlet side gate pulp 13 is opened, and then the temperature of the refrigerant 7 is lowered so that the gas C is pumped up from the surface of the panel 10. The temperature is raised until the gas C is liberated, and the gas C is recovered by an exhaust pump (not shown) connected to the outlet duct 14 and beyond.

第3図は上記の選択回収排気の状態を示したものである
が、従来のクライオポンプの構造によると、まだ再生状
態に入っていないシェブロンバッフル9が、再生中の昇
温されたパネル10の副剤熱によシある程度昇温してし
′まい、このシェブロンバッフル9に凝縮されたガスb
もある程度遊離してしまうという欠点があった。
FIG. 3 shows the state of the above-mentioned selective recovery exhaust gas. According to the conventional cryopump structure, the chevron baffle 9, which has not yet entered the regeneration state, is exposed to the heated panel 10 during regeneration. The temperature rises to some extent due to the heat of the auxiliary agent, and the gas b condensed on this chevron baffle 9
However, there was a drawback that some amount of water was released.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に匹みてなされたもので、その目的と
するところは、良好な選択回収排気を行うことのできる
クライオポンプを提供するにある。
The present invention has been made in view of the above-mentioned points, and its object is to provide a cryopump that can perform good selective recovery and exhaust.

〔発明の概要〕[Summary of the invention]

本発明はクライオポンプの吸着部材である冷却用パネル
とバッフル、あるいはバックル間に開閉可能なシャッタ
を設けて、再生状態に入ったパネルまたはバッフルから
の副剤熱による隣接バックルの昇温を防止することによ
シ、所期の目的を達成するように力したものである。
The present invention provides a shutter that can be opened and closed between the cooling panel, which is an adsorption member of the cryopump, and the baffle, or between the buckle, and prevents the temperature of the adjacent buckle from rising due to heat from the secondary agent from the panel or baffle that has entered the regeneration state. Most of all, it was an effort to achieve the intended purpose.

〔発明の実施例〕[Embodiments of the invention]

以下本発明に係るクライオポンプの一実施例を図面を参
照して説明する。
An embodiment of the cryopump according to the present invention will be described below with reference to the drawings.

第4図および第5図に本発明の一実施例を示す。An embodiment of the present invention is shown in FIGS. 4 and 5.

第2.3図と同一部分は同一番号または同一記号で示し
である。第4図においてシェブロンバッフル8,9fa
’lおよびシェブロンバッフル9とパネル10間に、そ
れぞれ温度制御され開閉可能なシャッタ15.16が配
設されている。他の部分の構造は第2,3図に示す従来
例と同じである。
The same parts as in FIG. 2.3 are indicated by the same numbers or symbols. In Fig. 4, chevron baffles 8, 9fa
Temperature-controlled shutters 15 and 16, which can be opened and closed, are provided between the chevron baffle 9 and the panel 10, respectively. The structure of other parts is the same as the conventional example shown in FIGS. 2 and 3.

上記のように構成された本発明の一実施例による動作を
以下に説明する。クライオポンプの通常排気時には排気
ガスは入口側ダクト12から開いているゲートパルプ1
1r介してクライオポンプケース1内に導かれ、排気ガ
スの成分であるガス”I bl Cはそれぞれ冷却面8
,9.10に凝縮捕獲される。このときにはゲートパル
プ13は閉じられている。
The operation of one embodiment of the present invention configured as described above will be described below. During normal exhaustion of the cryopump, exhaust gas flows through the gate pulp 1 which is opened from the inlet side duct 12.
The gas "I bl C" which is a component of the exhaust gas is introduced into the cryopump case 1 through the cooling surface 8.
, condensed and captured on 9.10. At this time, the gate pulp 13 is closed.

クライオポンプ内に蓄積したガスを選択回収排気する場
合には、第5図に示す如くまず入口側ゲートパルプ11
を閉じ出口側ゲートパルプ13を開く。−例としてパネ
ル10に凝縮しているガスCを選択回収排気する場合は
、シャッタ16を図示しない開閉機構によル閉じ、パネ
ル10を昇温して吸着ガスCをパネル10より遊離し、
出口側ゲートパルプ13を通って出口側ダクト14に排
気する。この場合にシャッタ16が閉じているのでパネ
ル10の昇温による副剤熱が遮断され、シェブロンバッ
フル9の昇温ヲ防止シテハツフル9に凝縮しているガス
bの遊離を防止することができ、良好な選択回収排気を
可能にする。
When selectively collecting and exhausting the gas accumulated in the cryopump, first, as shown in FIG.
is closed and the exit side gate pulp 13 is opened. - For example, when selectively collecting and exhausting the gas C condensed on the panel 10, the shutter 16 is closed by an opening/closing mechanism (not shown), the temperature of the panel 10 is increased, and the adsorbed gas C is released from the panel 10,
It passes through the outlet side gate pulp 13 and is exhausted to the outlet side duct 14. In this case, since the shutter 16 is closed, the auxiliary heat caused by the temperature rise of the panel 10 is blocked, preventing the temperature rise of the chevron baffle 9. It is possible to prevent the release of the gas b condensed in the full body 9, resulting in a good condition. Enables selective recovery exhaust.

シャロンバッフル8tたは9に凝縮しているガスaまた
はbを選択回収排気する場合も同様である。
The same applies when selectively collecting and exhausting gas a or b condensed on the Sharon baffle 8t or 9.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によれば、再生状態に入ったクライ
オポンプのパネルまたはバッフルからの副射熱を、シャ
ッタによって隣接バッフルに伝わるのを防止するように
したので、排気ガスの良好な選択回収排気を行うことが
でき、その効果は大である。
As described above, according to the present invention, the shutter prevents the side radiation heat from the panel or baffle of the cryopump that has entered the regeneration state from being transmitted to the adjacent baffle, so that the exhaust gas can be recovered selectively. Exhaust can be carried out, and the effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種気体の蒸気圧曲線、第2図は従来構造例の
クライオポンプの排気時の動作説明図、第3図は同じく
再生時の動作説明図、第4図は本発明に係るクライオポ
ンプの一実施例による排気時の動作説明図、第5図は同
じく再生時の動作説明図でおる。 l・・・クライオポンプケース、5,6.7・・・冷媒
、8.9“・°シェブロンバッフル、10・・・多孔f
=111i 着剤パネル、11・・・入口側ゲートパル
プ、12・・・入口側ダクト、13・・・出口側ゲート
パルプ、14・・・出口側ダクト、a、b、C・・・排
気ガス、15゜16・・・シャッタ。 代理人 弁理士 高橋明夫 箔 1 の シ薔 曳 でoK) 鵠 2 囚 活 3の 端40 . Y S目
Fig. 1 is a vapor pressure curve of various gases, Fig. 2 is an explanatory diagram of the operation of a conventional cryopump during pumping, Fig. 3 is an explanatory diagram of the operation during regeneration, and Fig. 4 is an explanatory diagram of the operation of the cryopump according to the present invention. FIG. 5 is an explanatory diagram of the operation during evacuation by one embodiment of the pump, and FIG. 5 is also an explanatory diagram of the operation during regeneration. l... Cryopump case, 5, 6.7... Refrigerant, 8.9"/° chevron baffle, 10... Porous f
=111i Adhesive panel, 11... Inlet side gate pulp, 12... Inlet side duct, 13... Outlet side gate pulp, 14... Outlet side duct, a, b, C... Exhaust gas , 15°16...Shutter. Agent Patent Attorney Akio Takahashi Haku 1 No Shibara Hiki OK) Goe 2 Prisoner 3 No End 40. YS eye

Claims (1)

【特許請求の範囲】[Claims] 1、複数の成分からなるガスが導入されるケースと、こ
のケース内に設けられ、それぞれが異なるガスの成分を
凝縮・吸着する複数の吸着部材と、これら吸着部拐を冷
却する冷却管とを有するクライオポンプにおいて、前記
各吸着部月間に開閉自在なシャッタを設け、該シャッタ
は前記ケース内にガスを導入するときには各シャッタが
開放され、かつ、任意の前記吸着部月に吸着したガスを
回収するときには、この任意の吸着部材と隣接した吸着
部材間を閉じることを特徴とするクライオポンプ。
1. A case into which a gas consisting of a plurality of components is introduced, a plurality of adsorption members provided within this case that each condense and adsorb a different gas component, and a cooling pipe that cools these adsorption members. In the cryopump, a shutter that can be freely opened and closed is provided in each of the adsorption parts, and each shutter is opened when gas is introduced into the case, and the gas adsorbed in any of the adsorption parts is collected. A cryopump characterized in that, when the adsorption member is closed, the adsorption member and the adjoining adsorption member are closed.
JP10914483A 1983-06-20 1983-06-20 Cryopump Pending JPS601388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10914483A JPS601388A (en) 1983-06-20 1983-06-20 Cryopump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10914483A JPS601388A (en) 1983-06-20 1983-06-20 Cryopump

Publications (1)

Publication Number Publication Date
JPS601388A true JPS601388A (en) 1985-01-07

Family

ID=14502716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10914483A Pending JPS601388A (en) 1983-06-20 1983-06-20 Cryopump

Country Status (1)

Country Link
JP (1) JPS601388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377030A1 (en) * 1988-06-02 1990-07-11 Grumman Aerospace Corporation Regenerable cryosorption pump with movable physical barrier and physical barrier thereof
JP2014153196A (en) * 2013-02-08 2014-08-25 Natl Inst Of Radiological Sciences Methods and devices for generating gaseous compound comprising 11c or 10c

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377030A1 (en) * 1988-06-02 1990-07-11 Grumman Aerospace Corporation Regenerable cryosorption pump with movable physical barrier and physical barrier thereof
EP0377030A4 (en) * 1988-06-02 1991-03-13 Grumman Aerospace Corporation Regenerable cryosorption pump with movable physical barrier and physical barrier thereof
JP2014153196A (en) * 2013-02-08 2014-08-25 Natl Inst Of Radiological Sciences Methods and devices for generating gaseous compound comprising 11c or 10c

Similar Documents

Publication Publication Date Title
JPS5827480B2 (en) Dehumidification tower regeneration method for rare gas hold-up equipment
US5245839A (en) Adsorption-type refrigerant recovery apparatus
JPS601388A (en) Cryopump
JP3553310B2 (en) Evacuation system
US3859807A (en) Cold trap system for recovering condensable gas from a vessel to be evacuated
JPS6211886B2 (en)
US6055821A (en) Purge system for an absorption air conditioner
JP4270574B2 (en) Solvent recovery device
JPS6088881A (en) Cryo-pump
JPH02104988A (en) Cryopump and reclaiming process thereof
JPS6410252B2 (en)
JPS60169686A (en) Cryo-pump
JPS6165083A (en) Combined cryopump
US4440549A (en) Method for reducing peak vapor emissions in solvent recovery systems
JPS6138178A (en) Vacuum exhauster
JP2515329Y2 (en) Solvent recovery device
JPS6359331A (en) System recovering vapor of solvent
JPS62258176A (en) Cryopump
JPH02309296A (en) Burst slug detector
JPS6190721A (en) Regenerating apparatus of adsorption tower
JPH0315135Y2 (en)
JPS63154870A (en) Vacuum exhauster
EP0437038B1 (en) Method of controlling solvent vapor concentrations in the cleaning of articles and apparatus useful therefore
JPS59202092A (en) Cryopump
JPS61104289A (en) Vacuum exhaust system for fusion reactor