JPS61104289A - Vacuum exhaust system for fusion reactor - Google Patents

Vacuum exhaust system for fusion reactor

Info

Publication number
JPS61104289A
JPS61104289A JP59224025A JP22402584A JPS61104289A JP S61104289 A JPS61104289 A JP S61104289A JP 59224025 A JP59224025 A JP 59224025A JP 22402584 A JP22402584 A JP 22402584A JP S61104289 A JPS61104289 A JP S61104289A
Authority
JP
Japan
Prior art keywords
helium
vacuum
fusion reactor
exhaust
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59224025A
Other languages
Japanese (ja)
Inventor
淳 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59224025A priority Critical patent/JPS61104289A/en
Publication of JPS61104289A publication Critical patent/JPS61104289A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は核融合炉の真空排気装置に係り、特に、核融合
炉内から真空排気される燃料、及び生成物を回収する核
融合炉の真空排気装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a vacuum evacuation system for a fusion reactor, and in particular to a vacuum evacuation system for a fusion reactor for recovering fuel and products evacuated from inside the fusion reactor. Regarding exhaust equipment.

〔発明の背景〕[Background of the invention]

従来の装置は、特開昭57−128881号公報に示さ
れるように、主として水素同位元素を排気する真空排気
装置と、主としてヘリウムを排気する真空排気装置とを
設けて構成することが知られている。この方法は排気中
に含まれる水素同位元素とヘリウムを、それぞれの排気
装置で凝縮および吸着作用によって排気するので両者を
容易に分離回収できるが、核融合炉近傍に大きな据付ス
ペースを必要とするため真空排気装置の大容量化に制約
があった。
It is known that a conventional device is constructed by providing a vacuum exhaust device that mainly exhausts hydrogen isotopes and a vacuum exhaust device that mainly exhausts helium, as shown in Japanese Patent Application Laid-Open No. 57-128881. There is. This method uses separate exhaust devices to exhaust hydrogen isotopes and helium contained in the exhaust gas through condensation and adsorption, making it easy to separate and recover both, but it requires a large installation space near the fusion reactor. There were restrictions on increasing the capacity of vacuum pumping equipment.

従来の真空排気装置を第2図に示す。A conventional vacuum evacuation device is shown in FIG.

核融合炉心プラズマ1を囲んで真空容器2と連通して真
空容器2内部の水素同位元素、及びヘリウムを含むガス
を排気する真空排気ポート3が設けられる。
A vacuum exhaust port 3 is provided surrounding the fusion reactor core plasma 1 and communicating with the vacuum vessel 2 to exhaust gas containing hydrogen isotopes and helium inside the vacuum vessel 2.

この真空排気ポート3は仕切弁15を介して、水蒸気等
を除去するトラップ4に接続され、更に、仕切弁16を
介して複合型タライオポンプ19に逼じ、凝縮パネル5
で水素同位元素を凝縮排気し、吸着パネル6でヘリウム
を成層排気する。真空排気運転をしない時は、仕切弁1
6及びゲートバルブ18を閉じ、それぞれ別々に凝縮、
及び吸着した水素同位元素、及びヘリウムを加熱解放さ
せ、それぞれを別々に水素同位元素は水素同位元素回収
タンク11に、ヘリウムはヘリウム回収夕/り14に回
収する。これらの排気回収系統から、排気ガスが大気に
放出するのを防止するためのグローブボックス26で全
体を覆う。グローブボックス26は、水素同位元素回収
タンク11、及びヘリウム回収タンク14等を覆ってい
るため、大きな設置スペースを要し、核融合炉装置の各
機器レイアウト上の制約から真空排気装置の能率を低下
させ、または、真空排気装置の排気容量を小さくする等
の方法がとられている。
This vacuum exhaust port 3 is connected via a gate valve 15 to a trap 4 for removing water vapor, etc., and is further connected to a compound type Talio pump 19 via a gate valve 16, and is connected to a condensation panel 5.
The hydrogen isotope is condensed and exhausted, and the helium is stratified and exhausted by the adsorption panel 6. When not performing vacuum exhaust operation, use gate valve 1.
6 and gate valve 18 are closed, and each condenses separately.
The adsorbed hydrogen isotope and helium are heated and released, and the hydrogen isotope and helium are collected separately into a hydrogen isotope recovery tank 11 and a helium recovery tank 14, respectively. The entire system is covered with a glove box 26 for preventing exhaust gases from being released into the atmosphere from these exhaust gas recovery systems. Since the glove box 26 covers the hydrogen isotope recovery tank 11, helium recovery tank 14, etc., it requires a large installation space and reduces the efficiency of the vacuum exhaust system due to constraints on the layout of each device of the fusion reactor device. Methods such as reducing the exhaust capacity of the vacuum evacuation device or reducing the evacuation capacity of the evacuation device are being taken.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、核融合炉真空排気装置の大容量化を可
能とし、かつ、燃料である水素同位元素と生成物である
ヘリウムを分離回収できる核融合炉の真空排気装置を提
供することにある。
An object of the present invention is to provide a vacuum evacuation device for a fusion reactor that can increase the capacity of the fusion reactor vacuum evacuation device and can separate and recover hydrogen isotopes as a fuel and helium as a product. be.

〔発明の概要〕[Summary of the invention]

本発明の要点は、核融合炉装置の近傍にクライオ吸着ポ
ンプを設置し、核融合炉装置から離れた位置に複合型タ
ライオポンプを設ける。核融合炉からの真空排気は、単
一機能のクライオ吸着ポンプに吸着貯め込む。単一機能
であるのでポンプは小型となり、核融合炉装置の小型化
が図れる。さらに、クライオ吸着ポンプの再生時に、放
出される水素同位元素及びヘリウムを複合型クライオポ
ンプで分離して回収する。
The gist of the present invention is to install a cryo-adsorption pump in the vicinity of a fusion reactor device, and to provide a combined type thalaio pump at a position away from the fusion reactor device. The vacuum exhaust from the fusion reactor is adsorbed and stored in a single-function cryo-adsorption pump. Since it has a single function, the pump can be made smaller and the size of the fusion reactor equipment can be reduced. Furthermore, when the cryo-adsorption pump is regenerated, hydrogen isotopes and helium released are separated and recovered using a combined cryo-pump.

〔発明の実施例〕[Embodiments of the invention]

一般に核融合炉では、その燃料である水素同位元素の超
高温プラズマが核融合反応を起こして、その生成物とし
てヘリウムを生じると考えられている。       
                    dまた、よ
り清浄な高温プラズマを発生させるために、生成物のヘ
リウム、その他の不純物を排気する大容量真空排気設備
を設けるのが普通である。
It is generally believed that in a nuclear fusion reactor, the ultra-high temperature plasma of hydrogen isotopes used as fuel causes a nuclear fusion reaction, producing helium as a product.
Furthermore, in order to generate cleaner high-temperature plasma, it is common to provide large-capacity vacuum exhaust equipment to exhaust helium products and other impurities.

そして、この真空排気設備は、排気能率を高めるため、
核融合炉の近傍に設置される。この燃料として用いる水
素同位元素には、放射性核種が含まれ残融合炉への燃料
供給系統、および、排気系統では、これらの物質が絶対
に系外に放出しないよう、全体をグローブボックスで覆
う等の万全の方策が実施されている。
In order to increase the pumping efficiency, this vacuum pumping equipment
It will be installed near the fusion reactor. The hydrogen isotopes used as fuel contain radionuclides, and the entire fuel supply system to the remaining fusion reactor and exhaust system must be covered with glove boxes to ensure that these substances are never released outside the system. All possible measures are in place.

以下、本発明の一実施例を、第1図により説明する。An embodiment of the present invention will be described below with reference to FIG.

核融合炉心プラズマ1を囲んで真空容器2があムこの真
空容器2と連通して真空容器2の内部の水素同位元素、
及びヘリウムを含むガスを排気する真空排気ポート3が
設けられる。
A vacuum vessel 2 surrounds the fusion reactor core plasma 1 and communicates with the vacuum vessel 2 to contain hydrogen isotopes inside the vacuum vessel 2.
and a vacuum exhaust port 3 for exhausting gas containing helium.

この真空排気ポート3は、仕切弁15を介して液体窒素
温度で水蒸気等を凝縮除去するトラップ4に接続され、
更に1.仕切弁16を介して、液体ヘリウム温度付近で
表面吸着性の高い活性炭等の表面をもち、水素同位元素
、及びヘリウムを同時に吸着するクライオ吸着ポンプ7
に通じ、ここから真空排気時は閉じている仕切弁8、タ
ーボ分子ポンプ9、及びロータリポンプ10に接続され
ている。
This vacuum exhaust port 3 is connected via a gate valve 15 to a trap 4 that condenses and removes water vapor and the like at liquid nitrogen temperature.
Furthermore 1. Through the gate valve 16, a cryo-adsorption pump 7 which has a surface such as activated carbon that has high surface adsorption near the liquid helium temperature and adsorbs hydrogen isotopes and helium at the same time.
It is connected to a gate valve 8, a turbo molecular pump 9, and a rotary pump 10, which are closed during evacuation.

真空排気ポート3、仕切弁15、トラップ4、仕切弁1
6、クライオ吸着ポンプ7、仕切弁8、ターボ分子ポン
プ9、及び、ロータリポンプ10は、グローブボックス
17に覆われている。
Vacuum exhaust port 3, gate valve 15, trap 4, gate valve 1
6, the cryo-adsorption pump 7, the gate valve 8, the turbomolecular pump 9, and the rotary pump 10 are covered by a glove box 17.

さらに、核融合炉から離れた位置にある排気ガス処理室
には、液体ヘリウム温度付近で主として   ゛水素同
位元素を凝縮させる凝縮パネル5と、液体ヘリウム温度
付近の温度で表面吸着性の高い活性炭等の表面をもつ吸
着パネル6と、凝縮パネル5と、吸着パネル6との間に
、排気ガス移送時には開放し、一方、水素同位元素、及
びヘリウムを回収する際には、凝縮パネル5と吸着パネ
ル6の両者間を分離するゲートバルブ18から構成され
る複合型クライオポンプ19を設置し、仕切弁20、二
重排気管21を介してロータリポンプ1oに連通させる
Furthermore, in the exhaust gas treatment chamber located away from the fusion reactor, there is a condensation panel 5 that mainly condenses hydrogen isotopes near the liquid helium temperature, and activated carbon, which has high surface adsorption properties at a temperature near the liquid helium temperature. Between the adsorption panel 6, the condensation panel 5, and the adsorption panel 6, which have a surface of A compound cryopump 19 consisting of a gate valve 18 is installed which separates both of the pumps 6 and 6, and communicates with the rotary pump 1o via a gate valve 20 and a double exhaust pipe 21.

更に、複合型タライオボンプ19は、仕切弁12、及び
排気ポンプ13を介して水素同位元累回収タンク11に
接続され、ヘリウム回収タンク14は、排気ポンプ22
、仕切弁23を介して複合タライオボンプ19に接続さ
れる。複合タライオボンプ19、仕切弁12,20,2
3、排気ポンプ13,22、水素同位元素回収タンク1
1およびヘリウム回収タンク14はグローブボックス2
4に覆われる。
Furthermore, the combined Talaiobump 19 is connected to the hydrogen isotope accumulation tank 11 via the gate valve 12 and the exhaust pump 13, and the helium recovery tank 14 is connected to the exhaust pump 22.
, are connected to the composite talion pump 19 via the gate valve 23. Composite Taraio Bonpu 19, gate valve 12, 20, 2
3. Exhaust pump 13, 22, hydrogen isotope recovery tank 1
1 and the helium recovery tank 14 are in the glove box 2.
Covered by 4.

次に、本実施例の真空排気装置の作用を説明する。Next, the operation of the evacuation device of this embodiment will be explained.

まず、核融合反応によって生成する水素同位元素、ヘリ
ウム及びその他の不純物は、真空容器2の内部より真空
排気ダクト3を介してトラップ4に導かれる。このトラ
ップ4では液体窒素温度でガス中に含まれる水蒸気等が
凝縮除去され、この状態でクライオ吸着ポンプ7に導入
される。クライオ吸着ポンプ7の表面は、液体ヘリウム
温度付近で表面吸着性の高い活性炭等が施こされている
ため、水素同位元素とヘリウムは同時に吸着され、しか
も、この状態では仕切弁8が閉じているため、水素同位
元素とヘリウムは混合されてクライオ吸着ポンプ7に、
一旦、貯め込まれる。これらの貯め込まれた排気ガスは
真空排気運転をしない時に仕切弁16を閉じ、一方、他
の仕切弁8、および20を關放し吸着した排気ガスを加
熱解放させ、ターボ分子ポンプ9、ロータリポン110
%二重排気管21を通じて複合型タライオボンプ19に
移送される。この後、凝縮パネル5で液体ヘリウム温度
付許で主として水素同位元素が凝縮され、この状態では
ゲートパルプ18が開放しており、吸着パネル6では、
その表面に施こされている液体ヘリウム温度で表面吸着
性の高い活性炭等でヘリウムが吸着される。
First, hydrogen isotopes, helium, and other impurities produced by a nuclear fusion reaction are guided from the inside of the vacuum vessel 2 through the vacuum exhaust duct 3 to the trap 4 . In this trap 4, water vapor and the like contained in the gas are condensed and removed at liquid nitrogen temperature, and in this state is introduced into the cryo-adsorption pump 7. Since the surface of the cryo-adsorption pump 7 is coated with activated carbon, etc., which has high surface adsorption properties near the temperature of liquid helium, hydrogen isotopes and helium are adsorbed at the same time, and in this state, the gate valve 8 is closed. Therefore, the hydrogen isotope and helium are mixed and sent to the cryo-adsorption pump 7.
Once stored. These stored exhaust gases close the gate valve 16 when the vacuum pumping operation is not performed, while leaving the other gate valves 8 and 20 open to heat and release the adsorbed exhaust gases. 110
% is transferred to the composite type Talio pump 19 through the double exhaust pipe 21. After this, mainly hydrogen isotopes are condensed in the condensation panel 5 under the temperature of liquid helium. In this state, the gate pulp 18 is open, and in the adsorption panel 6,
At the temperature of the liquid helium applied to the surface, helium is adsorbed by activated carbon, etc., which has high surface adsorption properties.

勿論、この状態では仕切弁12、及び23は閉じている
ためヘリウム、及び水素同位元素は吸着パネル6、及び
凝縮ポンプ5に吸着、及び凝縮して貯め込まれる。
Of course, in this state, the gate valves 12 and 23 are closed, so helium and hydrogen isotopes are adsorbed and condensed on the adsorption panel 6 and the condensation pump 5 and stored.

クライオ吸着ポンプ7に吸着した排気ガスの加    
  。
Addition of exhaust gas adsorbed to the cryo-adsorption pump 7
.

熱解放は、吸着排気ガスの、はぼ、全量が複合型クライ
オポンプ19に移送されるまで続けられ、移送が完了し
た時点で、クライオ吸着ポンプ7の加熱は停止し液体ヘ
リウム温度に再び冷却される。
Thermal release continues until almost all of the adsorbed exhaust gas is transferred to the composite cryopump 19, and when the transfer is completed, the heating of the cryoadsorption pump 7 is stopped and the adsorbed exhaust gas is cooled again to the liquid helium temperature. Ru.

加熱が停止した時点で仕切弁8、及び、20は閉じ他の
仕切弁12、及び23を開放し、更にゲートパルプ18
を閉じることによシ凝縮パネル5と吸着パネル6を分離
し、それぞれ別々に凝縮、及び吸着した水素同位元素、
及びヘリウムを加熱解放させ、それぞれを別々に水素同
位元素は水素同位元素回収タンク11に、ヘリウムはヘ
リウム回収タンク14に回収される。
When the heating stops, the gate valves 8 and 20 are closed, the other gate valves 12 and 23 are opened, and the gate pulp 18 is opened.
By closing the condensation panel 5 and adsorption panel 6, the condensation panel 5 and the adsorption panel 6 are separately condensed and adsorbed hydrogen isotopes,
and helium are heated and released, and the hydrogen isotope and helium are recovered separately into the hydrogen isotope recovery tank 11 and the helium recovery tank 14, respectively.

このように、排気ガスが移送回収される段階で、万一、
何らかの原因によシ排気回収系統慎器25から、排気ガ
ヌが大気中に放出された場合に備え、グローブボックス
17、及び、24の内部は大気圧よりも負圧となるよう
に保たr1排気ガスがグローブボックス内に放出された
時は、排気ガス検知器及び放出排気ガス回収系(図示な
しンにょシ、検知及び回収し、放射性核種の系外放出の
皆無を図る。
In this way, at the stage where exhaust gas is transferred and collected, in the unlikely event that
In preparation for the case where exhaust gas is released into the atmosphere from the exhaust gas collection system protector 25 for some reason, the interiors of the glove boxes 17 and 24 are maintained at a pressure lower than atmospheric pressure. When exhaust gas is released into the glove box, an exhaust gas detector and a released exhaust gas collection system (not shown) are used to detect and collect the exhaust gas to ensure that no radionuclides are released outside the system.

本実施例によれば、核融合炉近傍に設置される真空排気
装置のグローブボックスは小型化され設置レイアウト上
の制約も緩和され、かつ、真空排気装置の排気容量を大
きくすることもできる。
According to this embodiment, the glove box of the evacuation device installed near the fusion reactor is miniaturized, restrictions on the installation layout are relaxed, and the exhaust capacity of the evacuation device can be increased.

さらに燃料である水素同位元素と、生成物であるヘリウ
ムは別の真空排気装置で一旦別々に貯め込み、かつ、両
者を分離して回収できるため、燃料としての水素同位元
素をヘリウムと同時に廃却しなくてよいので、水素同位
元素を燃料として再利用でき、燃料利用率が向上し、経
済的となる。
Furthermore, the hydrogen isotope used as a fuel and the helium product used as a fuel are stored separately in separate vacuum pumping equipment and can be recovered separately, so the hydrogen isotope used as a fuel can be disposed of at the same time as the helium. Since there is no need to do so, hydrogen isotopes can be reused as fuel, improving the fuel utilization rate and making it economical.

゛〔発明の効果〕 本発明によれば、核融合炉近傍の真空排気装置の小型化
が図れることにより、真空排気容量の大容量化が可能と
なり、かつ、水素同位元素とヘリウムを同時に廃却しな
いですみ、燃料の再オリ用ができて、経済的となる。
[Effects of the Invention] According to the present invention, it is possible to downsize the vacuum evacuation equipment near the fusion reactor, thereby increasing the vacuum evacuation capacity, and simultaneously disposing of hydrogen isotopes and helium. There is no need to do this, and the fuel can be reused, making it more economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は核融合炉に採用される本発明の真空排気装置の
一実施例を示す系統図、第2図は核融合炉に採用される
従来の真空排気装置の系統図である。 1・・・炉心プラズマ、2・・・真空容器、3・・・真
空排気ボート、4・・・トラップ、5・・・凝縮ノくネ
ル、6・・・成層ハネル、7・・・クライオ吸着ポンプ
、8,12゜15.16,20.23・・・仕切弁、1
7,24゜26・・・グローブボックス、19・・・複
合型クライオポンプ。
FIG. 1 is a system diagram showing an embodiment of the vacuum evacuation device of the present invention employed in a nuclear fusion reactor, and FIG. 2 is a system diagram of a conventional vacuum evacuation device employed in a nuclear fusion reactor. 1... Core plasma, 2... Vacuum vessel, 3... Vacuum exhaust boat, 4... Trap, 5... Condensation channel, 6... Stratified channel, 7... Cryo adsorption Pump, 8, 12° 15.16, 20.23...Gate valve, 1
7,24゜26...Glove box, 19...Combined cryopump.

Claims (1)

【特許請求の範囲】 1、真空容器内部で水素同位元素を燃料として核融合反
応を起こさせエネルギ、及びヘリウムを発生せしめる核
融合炉の真空排気装置において、前記真空容器の内部か
ら前記水素同位元素、及び前記ヘリウムを含むガスを排
気する真空排気ポートを介して、前記ガスを混合状態で
排気する一次のクライオポンプと、前記ガスを主として
前記水素同位元素を排気する二次の排気装置とからなる
ことを特徴とする核融合炉の真空排気装置。 2、前記二次の排気装置が主として前記水素同位元素を
排気する凝縮パネルと主としてヘリウムを排気する吸着
パネルから構成する複合型クライオポンプであることを
特徴とする特許請求の範囲第1項記載の核融合炉の真空
排気装置。
[Scope of Claims] 1. In a vacuum evacuation device for a nuclear fusion reactor that generates energy and helium by causing a nuclear fusion reaction inside a vacuum vessel using a hydrogen isotope as fuel, the hydrogen isotope is extracted from inside the vacuum vessel. , and a primary cryopump that exhausts the gas in a mixed state through a vacuum exhaust port that exhausts the helium-containing gas, and a secondary exhaust device that exhausts the gas mainly the hydrogen isotope. A vacuum exhaust system for a nuclear fusion reactor characterized by the following. 2. The secondary exhaust device is a composite cryopump comprising a condensation panel that mainly exhausts the hydrogen isotope and an adsorption panel that mainly exhausts helium. Vacuum exhaust system for a fusion reactor.
JP59224025A 1984-10-26 1984-10-26 Vacuum exhaust system for fusion reactor Pending JPS61104289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59224025A JPS61104289A (en) 1984-10-26 1984-10-26 Vacuum exhaust system for fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224025A JPS61104289A (en) 1984-10-26 1984-10-26 Vacuum exhaust system for fusion reactor

Publications (1)

Publication Number Publication Date
JPS61104289A true JPS61104289A (en) 1986-05-22

Family

ID=16807406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224025A Pending JPS61104289A (en) 1984-10-26 1984-10-26 Vacuum exhaust system for fusion reactor

Country Status (1)

Country Link
JP (1) JPS61104289A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626155B1 (en) 1991-10-07 2003-09-30 Yamaha Hatsudoki Kabushiki Kaisha Fuel pump, fuel tank arrangement for engine
JP2007224831A (en) * 2006-02-23 2007-09-06 Honda Motor Co Ltd Fuel supply device for motorcycle
WO2024041868A1 (en) * 2022-08-22 2024-02-29 Uk Atomic Energy Authority Improvements in and relating to fusion reactor fuel recovery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626155B1 (en) 1991-10-07 2003-09-30 Yamaha Hatsudoki Kabushiki Kaisha Fuel pump, fuel tank arrangement for engine
JP2007224831A (en) * 2006-02-23 2007-09-06 Honda Motor Co Ltd Fuel supply device for motorcycle
WO2024041868A1 (en) * 2022-08-22 2024-02-29 Uk Atomic Energy Authority Improvements in and relating to fusion reactor fuel recovery

Similar Documents

Publication Publication Date Title
JPS61104289A (en) Vacuum exhaust system for fusion reactor
US4038060A (en) Apparatus for treating an exhaust gas from nuclear plant
CN105006264A (en) High temperature gas-cooled reactor helium purification regeneration system and regeneration method
US3859807A (en) Cold trap system for recovering condensable gas from a vessel to be evacuated
US20070157804A1 (en) Method and apparatus for decommissioning and recycling retired adsorbent-based fluid storage and dispensing vessels
JPS6411158B2 (en)
JPH0298688A (en) Reduced pressure vent system for container
JPH02104988A (en) Cryopump and reclaiming process thereof
JP2002081857A (en) Rear gas recovering method and device therefor
JPS6138178A (en) Vacuum exhauster
Anderson et al. Vacuum applications for the tritium systems test assembly
CN215233161U (en) Cumene oxidation tail gas treatment device
JP2856892B2 (en) Vacuum evacuation system for fusion reactor and its cryopump
CN205122213U (en) High temperature gas cooled piles and optimizes helium purification regeneration system
JP2509951B2 (en) Cryopump for fusion device
CN212076407U (en) Novel oil gas recovery processing device
Mack et al. Conceptual study of the cryocascade for pumping, separation and recycling of ITER torus exhaust
JPS6324734B2 (en)
CN212076405U (en) Oil gas recovery device for oil tank
JPH0774635B2 (en) Vacuum exhaust device
JPS63131499A (en) Method of exhaust and restart of cryogenic pump
JPS61185690A (en) Cryopump
SU1031476A1 (en) Method of recuperation of solvents from gaseous mixture
JPH10318135A (en) Reproducing unit and vacuum driving device for recycling solvent
JPS601388A (en) Cryopump