JP2002081857A - Rear gas recovering method and device therefor - Google Patents

Rear gas recovering method and device therefor

Info

Publication number
JP2002081857A
JP2002081857A JP2000262751A JP2000262751A JP2002081857A JP 2002081857 A JP2002081857 A JP 2002081857A JP 2000262751 A JP2000262751 A JP 2000262751A JP 2000262751 A JP2000262751 A JP 2000262751A JP 2002081857 A JP2002081857 A JP 2002081857A
Authority
JP
Japan
Prior art keywords
gas
rare gas
cryopump
vacuum chamber
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000262751A
Other languages
Japanese (ja)
Other versions
JP4796688B2 (en
Inventor
Shinji Furuya
新治 降矢
Mitsushina Terajima
充級 寺島
Hidetoshi Morimoto
秀敏 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000262751A priority Critical patent/JP4796688B2/en
Publication of JP2002081857A publication Critical patent/JP2002081857A/en
Application granted granted Critical
Publication of JP4796688B2 publication Critical patent/JP4796688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for recovering rear gas in gas exhausted out of a vacuum chamber for a long period of time. SOLUTION: A part of gas containing rear gas in a gas discharged out of a vacuum pump 1 is condensed once in a cryopump 5 by controlling a pressure in the same. Then, the condensed gas is re-vaporized and is passed through a gas purifier 6 equipped with a getter member absorbing a gas except the rear gas to reserve the passed rear gas into a rear gas storage vessel 7. The cryopump 5 having a plurality of cooling surfaces with different temperatures, the gas purifier 6 employing the getter member not collecting the rear gas, and the rear gas storage vessel 7, are connected to the vacuum chamber, while a turbo molecular drag pump 26 which controls the internal pressure of the same, and a roughing vacuum pump 27, are connected sequentially to the cryopump. The cryopump 5 can be connected to the fore side of the turbo molecular drag pump 9 connected to the vacuum chamber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空成膜装置など
の希ガスを使用する真空室から希ガスを回収する方法と
装置に関する。
The present invention relates to a method and an apparatus for recovering a rare gas from a vacuum chamber using a rare gas, such as a vacuum film forming apparatus.

【0002】[0002]

【従来の技術】従来、真空成膜装置の真空室にKrガス
やXeガスなどの希ガスが混入したガスを使用して成膜
することが行われているが、その用済み後には希ガスは
真空成膜装置の排気系から大気に放出されるようになっ
ている。すなわち、真空成膜装置の排気系には、ターボ
分子ポンプやクライオポンプが使用されており、これら
のポンプは排気した気体はそのまま大気に放出する仕組
みになっている。
2. Description of the Related Art Conventionally, a film is formed in a vacuum chamber of a vacuum film forming apparatus using a gas containing a rare gas such as Kr gas or Xe gas. Is released from the exhaust system of the vacuum film forming apparatus to the atmosphere. That is, a turbo molecular pump or a cryopump is used in the exhaust system of the vacuum film forming apparatus, and these pumps are configured to directly discharge the exhausted gas to the atmosphere.

【0003】また、活性炭などの多孔質物質のターゲッ
ト材を使用したガス精製器で、ガス中からH2O、N2
2、CO、CO2、CH4、H2などの不純物を除去して
希ガスに精製することも行われている。
Further, a gas purifier using a target material of a porous substance such as activated carbon is used to remove H 2 O, N 2 ,
In some cases, impurities such as O 2 , CO, CO 2 , CH 4 , and H 2 are removed and purified into a rare gas.

【0004】[0004]

【発明が解決しようとする課題】真空成膜装置において
使用されるガス中からガス精製器により希ガスを回収す
る場合、ガス中の不純物濃度が高いとガス精製器が短時
間で吸着飽和状態になってゲッター材の交換が必要にな
り、真空成膜装置のランニングコストが高価になるのみ
ならず、ゲッター材交換の煩わしさを伴う。
When a rare gas is recovered from a gas used in a vacuum film forming apparatus by a gas purifier, if the impurity concentration in the gas is high, the gas purifier is brought into an adsorption saturated state in a short time. As a result, the getter material needs to be replaced, which not only increases the running cost of the vacuum film forming apparatus but also complicates the getter material replacement.

【0005】本発明は、長時間に亘り真空室から排気さ
れるガス中から希ガスを回収する方法と装置を提供する
ことをその目的とするものである。
An object of the present invention is to provide a method and an apparatus for recovering a rare gas from gas exhausted from a vacuum chamber for a long time.

【0006】[0006]

【課題を解決するための手段】本発明では、真空室内か
ら放出されるガス中の希ガスを含む一部のガスを、クラ
イオポンプ内の圧力を制御してその内部に一旦凝縮さ
せ、該凝縮したガスを再蒸発させて希ガス以外のガスを
吸着するゲッター材を備えたガス精製器を通過させ、通
過した希ガスを希ガス貯留容器に貯留することにより、
希ガスを長時間にわたり回収するようにした。本発明の
上記目的は、真空室に、機械式冷凍機を用いた複数の温
度の異なる冷却面を有するクライオポンプと希ガスを捕
捉しないゲッター材を用いたガス精製器及び希ガス貯留
容器を順次に接続し、該クライオポンプにその内圧を制
御するターボ分子ポンプと粗引きポンプを順次に接続し
た構成の装置により達成される。該クライオポンプを該
真空室に接続したターボ分子ポンプのフォア側に接続し
てもよい。該クライオポンプ、ガス精製器及び希ガス貯
留容器は、それぞれ複数台を並列に設けて交互に使用可
能とすることで、より一層長時間の回収を行える。該希
ガス貯留容器からこれに貯留した希ガスを該真空室へ循
環させる戻り管を設けることで、回収された希ガスを有
効利用してコストダウンが可能になる。
According to the present invention, a part of a gas including a rare gas in a gas discharged from a vacuum chamber is once condensed in a cryopump by controlling the pressure in the cryopump. By passing through a gas purifier equipped with a getter material that adsorbs gases other than the rare gas by re-evaporating the passed gas, and storing the passed rare gas in a rare gas storage container,
The rare gas was collected over a long period of time. The object of the present invention is to sequentially provide a vacuum chamber, a cryopump having a plurality of cooling surfaces having different temperatures using a mechanical refrigerator, a gas purifier using a getter material that does not capture a rare gas, and a rare gas storage container. And a turbo molecular pump for controlling the internal pressure of the cryopump and a roughing pump are sequentially connected to the cryopump. The cryopump may be connected to the fore side of a turbo-molecular pump connected to the vacuum chamber. The cryopump, the gas purifier, and the rare gas storage container are each provided in a plurality in parallel so that they can be used alternately, so that the collection can be performed for a longer time. By providing a return pipe for circulating the rare gas stored in the rare gas storage container to the vacuum chamber, the recovered rare gas can be effectively used to reduce the cost.

【0007】[0007]

【発明の実施の形態】図面に基づき本発明の実施の形態
を説明すると、図1において符号1は真空成膜装置を構
成する真空に排気された真空室を示し、該真空室1内に
はKrやXeなどの希ガスを含む成膜ガスがガス導入口
3から導入され、該真空室1内に用意した基板2にスパ
ッタリング法やプラズマCVD法などの成膜方法により
薄膜が形成される。該成膜ガスは、適当なガス源から供
給され、ターボ分子ポンプなどの適当なポンプにより排
気されて成膜に必要な流量が該真空室1内に確保され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a vacuum chamber which is evacuated to a vacuum and constitutes a vacuum film forming apparatus. A film forming gas containing a rare gas such as Kr or Xe is introduced from a gas inlet 3, and a thin film is formed on a substrate 2 prepared in the vacuum chamber 1 by a film forming method such as a sputtering method or a plasma CVD method. The film forming gas is supplied from a suitable gas source and exhausted by a suitable pump such as a turbo molecular pump, so that a flow rate required for film forming is secured in the vacuum chamber 1.

【0008】こうした構成は一般的な真空成膜装置が備
える構成であるが、本発明では成膜ガスに含まれる希ガ
スを回収するため、該真空室1に、直接若しくは間接に
クライオポンプ5とガス精製器6及び希ガス貯留容器7
を順次に接続した構成の希ガス回収系8を設けた。これ
らクライオポンプ5、ガス精製器6及び希ガス貯留容器
7は交代で作動できるように並列に複数台ずつ設けら
れ、これらの機器の交代使用により、長時間に亘る希ガ
ス回収作動を行うようにした。該回収系8は、図1のよ
うに該真空室1の作動中の排気をターボ分子ポンプ9で
排気する場合は、該ターボ分子ポンプ9のフォア側9a
に接続され、該真空室1の排気をクライオポンプで排気
する場合は、図2のように、該真空室1に直接接続され
る。符号10乃至19は、各機器の間に設けた開閉バル
ブである。
Although such a structure is provided in a general vacuum film forming apparatus, in the present invention, the cryopump 5 is directly or indirectly connected to the vacuum chamber 1 in order to recover a rare gas contained in the film forming gas. Gas purifier 6 and rare gas storage container 7
Are connected in sequence to provide a rare gas recovery system 8. The cryopump 5, the gas purifier 6 and the rare gas storage container 7 are provided in parallel so that they can be operated alternately, and a plurality of these units are used alternately so that the rare gas recovery operation is performed for a long time. did. When the exhaust during operation of the vacuum chamber 1 is evacuated by the turbo-molecular pump 9 as shown in FIG.
When the vacuum chamber 1 is evacuated by a cryopump, the vacuum chamber 1 is directly connected to the vacuum chamber 1 as shown in FIG. Reference numerals 10 to 19 denote on-off valves provided between the respective devices.

【0009】該クライオポンプ5には機械式冷凍機を用
いた冷却温度の異なる複数の冷却面を有する公知のクラ
イオポンプが使用され、130〜150Kの低温になる
バッフル20と、50〜60Kの低温が生成されるクラ
イオパネル21の2段を持つクライオポンプを使用し
た。その詳細は図3に示す如くであり、ポンプケース2
2の内部に機械式冷凍機23により作動されて冷却され
る2段のコールドヘッド24a、24bを備え、コール
ドヘッド24aにはシールド25を介して該バッフル2
0を取付け、コールドヘッド24bには該クライオパネ
ル21が取付けられる。該クライオポンプ5には、ポン
プケース22の内部がポンプ作動を開始できるような真
空に排気するため及びその内圧を制御するための小型の
ターボ分子ポンプ26および粗引きポンプ27が開閉バ
ルブ28を介して接続される。符号29はクライオポン
プ5の再生時に内部に溜まるH2Oを排出するドレンバ
ルブ、30は大気開放バルブである。
As the cryopump 5, a known cryopump using a mechanical refrigerator and having a plurality of cooling surfaces having different cooling temperatures is used, and a baffle 20 having a low temperature of 130 to 150K and a low temperature of 50 to 60K. A cryopump having two stages of a cryopanel 21 in which is generated was used. The details are as shown in FIG.
2 is provided with two-stage cold heads 24 a and 24 b which are operated and cooled by a mechanical refrigerator 23, and the baffle 2 is attached to the cold head 24 a via a shield 25.
0 is attached, and the cryopanel 21 is attached to the cold head 24b. The cryopump 5 is provided with a small turbo molecular pump 26 and a roughing pump 27 via an opening / closing valve 28 for evacuating the inside of the pump case 22 to a vacuum capable of starting the pump operation and controlling the internal pressure thereof. Connected. Reference numeral 29 denotes a drain valve for discharging H 2 O accumulated inside the cryopump 5 during regeneration, and reference numeral 30 denotes an atmosphere release valve.

【0010】また、該ガス精製器6も公知のもので、一
般ガスを吸着捕捉するが希ガスを捕捉しない活性炭素な
どのゲッター材を封入したガス流入口とガス流出口を有
する容器で構成され、クライオポンプ5からのガスがガ
ス流入口からガス流出口へ流れるとき、該ゲッター材に
よりガス中のH2O、N2、O2、CO、CO2、CH4
2などの一般ガスが不純物として捕捉されて除去さ
れ、ガスが精製される。
The gas purifier 6 is also a known gas purifier, and is composed of a vessel having a gas inlet and a gas outlet, in which a getter material such as activated carbon for adsorbing and capturing general gas but not capturing rare gas is sealed. When the gas from the cryopump 5 flows from the gas inlet to the gas outlet, the getter material causes H 2 O, N 2 , O 2 , CO, CO 2 , CH 4 ,
General gases such as H 2 are trapped and removed as impurities, and the gas is purified.

【0011】該ガス精製器6に続いて設けられた希ガス
貯留容器7は、ガス流入口とガス流出口を備えた公知の
ガス容器で構成され、該ガス精製器6を通過することで
不純物が除去され精製された希ガスが貯留される。該希
ガス貯留容器7のガス流出口は、希ガスの需要先に接続
され、図示の場合は真空室1へ戻り管31で接続して再
使用するようにした。
A rare gas storage container 7 provided following the gas purifier 6 is composed of a known gas container having a gas inlet and a gas outlet, and passes through the gas purifier 6 to remove impurities. Is removed and the purified rare gas is stored. The gas outlet of the rare gas storage container 7 is connected to a demand destination of the rare gas, and in the case shown in the figure, the gas is returned to the vacuum chamber 1 via a pipe 31 for reuse.

【0012】KrやXeの希ガスの蒸気圧は、図4に見
られるように、H2Oよりも高く、H2、N2、O2よりは
低い。本発明では、原則としてこの蒸気圧の差を利用し
て希ガスの精製を行うが、KrとCH4、XeとCO2
蒸気圧が近いので蒸気圧差による分離は困難であるか
ら、ガス精製器6のゲッター材によりCH4とCO2に対
する精製分離を行うようにした。この蒸気圧の差を利用
するために、クライオポンプ5の1段側のバッフル20
の温度を130〜150Kに制御してH2Oを吸着排気
する冷却面とし、その2段側のクライオパネル21の温
度を50〜60Kに制御してKrやXeを吸着排気する
冷却面とした。
As shown in FIG. 4, the vapor pressure of a rare gas such as Kr or Xe is higher than H 2 O and lower than H 2 , N 2 and O 2 . In the present invention, noble gas is purified using the difference in vapor pressure in principle. However, since Kr and CH 4 , and Xe and CO 2 have close vapor pressures, it is difficult to separate them by the difference in vapor pressure. Purification and separation of CH 4 and CO 2 were performed by the getter material of the vessel 6. In order to utilize this difference in vapor pressure, the baffle 20 on the first stage side of the cryopump 5 is used.
The temperature of the cryopanel 21 on the second stage is controlled to 50-60 K by controlling the temperature of the cryopanel 21 at a temperature of 130-150 K to adsorb and exhaust H 2 O, and the cooling surface is used to adsorb and exhaust Kr and Xe. .

【0013】該バッフル20を130Kに温度設定した
場合、H2Oの分圧は10-8Paで、Kr、Xeの分圧
は夫々105Paと6000Paである。この状態で
は、H2OとKr、Xeの間には大きな蒸気圧の差があ
るので、該バッフル20にはH2Oのみが凝縮する。そ
して2段側のクライオパネル21の温度を50Kに設定
すると、H2の分圧は105Pa以上、N2の分圧は3
00Pa以上、O2の分圧は20Paになり、Kr、X
eの各分圧は0.02Paと10-6Paになる。従っ
て、小型のターボ分子ポンプ26により該クライオポン
プ5の内圧を1〜0.1Paになるように制御すれば、
2、N2、O2はクライオポンプ5のクライオパネル2
1に凝縮せずに大気中へ排出することができる。一般的
に、真空成膜装置などの真空室から放出されるガスの大
部分は、H2OやH2であり、これらのガスが下記のよう
にガス精製器6のゲッター材に捕捉されないようにする
ことで、ゲッター材の寿命を延ばせ、希ガスの回収が可
能になる。
When the temperature of the baffle 20 is set to 130 K, the partial pressure of H 2 O is 10 −8 Pa, and the partial pressures of Kr and Xe are 10 5 Pa and 6000 Pa, respectively. In this state, since there is a large difference in vapor pressure between H 2 O and Kr, Xe, only H 2 O condenses on the baffle 20. When the temperature of the cryopanel 21 on the second stage is set to 50K, the partial pressure of H2 is 10 5 Pa or more, and the partial pressure of N2 is 3 Pa.
At least 00 Pa, the partial pressure of O 2 becomes 20 Pa, and Kr, X
Each partial pressure of e becomes 0.02 Pa and 10 -6 Pa. Therefore, if the internal pressure of the cryopump 5 is controlled to be 1 to 0.1 Pa by the small turbo molecular pump 26,
H 2 , N 2 and O 2 are the cryopanel 2 of the cryopump 5
It can be discharged to the atmosphere without being condensed to 1. Generally, most of the gas released from a vacuum chamber such as a vacuum film forming apparatus is H 2 O or H 2 , so that these gases are not trapped by the getter material of the gas purifier 6 as described below. By doing so, the life of the getter material can be extended and the rare gas can be recovered.

【0014】図1に示した装置により真空室1内から放
出される希ガスを回収する場合、高真空に排気した希ガ
ス貯留容器7をセットしてその両側の開閉バルブ16〜
19を閉じておく。更に開閉バルブ10、11、14、
15およびドレンバルブ29、大気開放バルブ30も閉
じておく。そしてクライオポンプ5の内部を小型のター
ボ分子ポンプ26または粗引きポンプ27を作動させて
排気し、該クライオポンプ5を運転可能な真空状態とし
たのち該クライオポンプ5の運転を開始する。バッフル
20およびクライオパネル21が130Kと50Kの設
定温度に達し、クライオポンプ内の圧力が10−3〜1
0−4Paに入ったところで開閉バルブ10aを開き、
真空室1内のガスをターボ分子ポンプ9のフォア側9a
からクライオポンプ5に導入する。このときバルブ10
bと28を開き、ターボ分子ポンプ26でクライオポン
プ5内の圧力が1〜0.1Paになるように調節する。
このガス中のH2Oは1段側のバッフル20に凝縮し、
Kr又はXeやCH4、CO2ガスが2段側のクライオ
パネル21に凝縮し、残りのガスは該ターボ分子ポンプ
26および粗引きポンプ27により大気中に放出され
る。
When the rare gas released from the vacuum chamber 1 is recovered by the apparatus shown in FIG. 1, the rare gas storage container 7 evacuated to a high vacuum is set, and the open / close valves 16 to 16 on both sides thereof are set.
19 is closed. Further, on-off valves 10, 11, 14,
15, the drain valve 29, and the atmosphere release valve 30 are also closed. Then, the inside of the cryopump 5 is evacuated by operating a small turbo molecular pump 26 or a roughing pump 27, and after the cryopump 5 is brought into a operable vacuum state, the operation of the cryopump 5 is started. When the baffle 20 and the cryopanel 21 reach the set temperatures of 130K and 50K, the pressure in the cryopump is 10-3 to 1
When it enters 0-4 Pa, the open / close valve 10a is opened,
The gas in the vacuum chamber 1 is transferred to the fore side 9a of the turbo molecular pump 9.
To the cryopump 5. At this time, the valve 10
b and 28 are opened, and the pressure inside the cryopump 5 is adjusted by the turbo molecular pump 26 to 1 to 0.1 Pa.
H 2 O in this gas is condensed in the first stage baffle 20,
Kr or Xe, CH4, or CO2 gas is condensed on the cryopanel 21 on the second stage, and the remaining gas is released into the atmosphere by the turbo molecular pump 26 and the roughing pump 27.

【0015】該クライオポンプ5に予定量のKr、Xe
が凝縮したら、開閉バルブ10a、10b、28を閉じ
て真空室1とターボ分子ポンプ26との接続関係を断
ち、開閉バルブ12、14、16を開く。そしてクライ
オポンプ5の温度を徐々に上げ、その2段側のクライオ
パネル21が例えば150Kになるまで昇温させる。こ
れにより、クライオパネル21からKr及び又はXe、
CH4、CO2が再蒸発し、ガス精製器6のゲッター材を
介して希ガス貯留容器7へ流れ込み、該ゲッター材にC
4、CO2が吸着されるので、希ガス貯留容器6にはK
r及び又はXeが貯留される。クライオポンプ5内の圧
力が下がって希ガス貯留容器7よりも圧力が下がった場
合は、バルブ11a、11bとバルブ12、13間にド
ライポンプを設けて加圧して希ガス貯留容器7に溜め込
むこともできる。クライオパネル21が150Kに達し
たら、開閉バルブ12、14、16を閉じ、大気開放バ
ルブ30を開いてクライオポンプ5の内部に大気を導入
し、その内部を室温に戻すことで1段側のバッフル20
に凝縮したH2Oを液体に戻し、ドレンバルブ29を介
して外部へ排出する。該ガス貯留容器7を真空室1に接
続した場合は、回収した希ガスを真空室1で再使用でき
る。
A predetermined amount of Kr, Xe is supplied to the cryopump 5.
Is condensed, the on-off valves 10a, 10b, 28 are closed to disconnect the vacuum chamber 1 from the turbo molecular pump 26, and the on-off valves 12, 14, 16 are opened. Then, the temperature of the cryopump 5 is gradually increased, and the temperature of the cryopanel 21 on the second stage is raised to, for example, 150K. Thereby, Kr and / or Xe,
CH 4 and CO 2 are re-evaporated and flow into the rare gas storage container 7 via the getter material of the gas purifier 6, and C is added to the getter material.
Since H 4 and CO 2 are adsorbed, the rare gas storage vessel 6 has K
r and / or Xe are stored. When the pressure in the cryopump 5 is reduced to be lower than that of the rare gas storage container 7, a dry pump is provided between the valves 11 a and 11 b and the valves 12 and 13, and pressurized and stored in the rare gas storage container 7. Can also. When the temperature of the cryopanel 21 reaches 150K, the open / close valves 12, 14, and 16 are closed, the atmosphere release valve 30 is opened, the atmosphere is introduced into the inside of the cryopump 5, and the inside of the cryopump 5 is returned to room temperature. 20
The H 2 O condensed into the liquid is returned to the liquid and discharged to the outside via the drain valve 29. When the gas storage container 7 is connected to the vacuum chamber 1, the collected rare gas can be reused in the vacuum chamber 1.

【0016】以上の回収作動を行う間に、もう一方のク
ライオポンプ5の内部をターボ分子ポンプ26及び粗引
きポンプ27を作動させて排気しておき、開閉バルブ1
0aを閉じると同時に開閉バルブ11を開き、該もう一
方のクライオポンプ5を運転することで、真空室1内を
連続して排気でき、該クライオポンプ5に或る量の希ガ
スが溜め込まれたら、上記した操作を行なうことで希ガ
スを長時間に亘り回収できる。尚、クライオポンプ5、
ガス精製器6、希ガス貯留容器7の数は、希ガス回収量
に応じて任意の台数が設置される。また、該クライオポ
ンプ5を図2のように真空室1に直接接続した場合も、
その回収作動は上記の場合と特に異ならない。
During the above-mentioned recovery operation, the inside of the other cryopump 5 is evacuated by operating the turbo-molecular pump 26 and the roughing pump 27, and the open / close valve 1 is opened.
By closing the valve 0a and opening the on-off valve 11 and operating the other cryopump 5, the inside of the vacuum chamber 1 can be continuously evacuated. When a certain amount of rare gas is accumulated in the cryopump 5, By performing the above operation, the rare gas can be recovered for a long time. In addition, cryopump 5,
Arbitrary numbers of the gas purifiers 6 and the rare gas storage containers 7 are provided according to the amount of the rare gas recovered. Also, when the cryopump 5 is directly connected to the vacuum chamber 1 as shown in FIG.
The collecting operation is not particularly different from the above case.

【0017】[0017]

【発明の効果】以上のように本発明によるときは、真空
室内から放出され希ガスを含む一部のガスを、クライオ
ポンプ内に一旦凝縮させ、これを再蒸発させて希ガス以
外のガスを吸着するゲッター材を備えたガス精製器を通
過させ、通過した希ガスを希ガス貯留容器に貯留するの
で、ゲッター材の能力を増大させて長時間に亘る希ガス
の回収を行える効果があり、この方法は、真空室に、複
数の温度の異なる冷却面を有するクライオポンプと希ガ
スを捕捉しないゲッター材を用いたガス精製器及び希ガ
ス貯留容器を接続し、該クライオポンプにその内圧を制
御するターボ分子ポンプと粗引きポンプを接続すること
で、更には請求項3乃至5の構成とすることで、適切に
実施できる。
As described above, according to the present invention, a part of the gas including the rare gas discharged from the vacuum chamber is once condensed in the cryopump and re-evaporated to remove gases other than the rare gas. Since the gas passes through a gas purifier equipped with a getter material to be adsorbed and the passed rare gas is stored in a rare gas storage container, there is an effect that the capacity of the getter material is increased and the rare gas can be collected for a long time, In this method, a vacuum chamber is connected to a cryopump having a plurality of cooling surfaces having different temperatures, a gas purifier using a getter material that does not capture a rare gas, and a rare gas storage container, and the internal pressure is controlled by the cryopump. By appropriately connecting the turbo molecular pump and the roughing pump, and by adopting the configuration of claims 3 to 5, the present invention can be appropriately implemented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す線図FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の他の実施の形態を示す線図FIG. 2 is a diagram showing another embodiment of the present invention.

【図3】図1、図2のクライオポンプの具体的説明図FIG. 3 is a specific explanatory view of the cryopump of FIGS. 1 and 2;

【図4】各種ガスの平衡蒸気圧曲線図FIG. 4 is a diagram showing equilibrium vapor pressure curves of various gases.

【符号の説明】[Explanation of symbols]

1 真空室、5 クライオポンプ、6 ガス精製器、7
希ガス貯留容器、9ターボ分子ポンプ、9a フォア
側、26 小型のターボ分子ポンプ、27 粗引きポン
プ、
1 vacuum chamber, 5 cryopump, 6 gas purifier, 7
Noble gas storage container, 9 turbo molecular pump, 9a fore side, 26 small turbo molecular pump, 27 roughing pump,

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D047 AA07 AB03 BA06 BB03 CA02 CA17 CA20 DA01 DB05 4K029 CA05 DA02 4K030 AA16 EA12 EA13 KA28  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D047 AA07 AB03 BA06 BB03 CA02 CA17 CA20 DA01 DB05 4K029 CA05 DA02 4K030 AA16 EA12 EA13 KA28

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】真空室内から放出されるガス中の希ガスを
含む一部のガスを、クライオポンプ内の圧力を制御して
その内部に一旦凝縮させ、該凝縮したガスを再蒸発させ
て希ガス以外のガスを吸着するゲッター材を備えたガス
精製器を通過させ、通過した希ガスを希ガス貯留容器に
貯留することを特徴とする希ガス回収方法。
1. A method of controlling a pressure inside a cryopump to condense a part of a gas including a rare gas in a gas discharged from a vacuum chamber into a gas, and re-evaporate the condensed gas to dilute the gas. A rare gas recovery method comprising passing a rare gas through a gas purifier provided with a getter material for adsorbing a gas other than a gas, and storing the passed rare gas in a rare gas storage container.
【請求項2】真空室に、機械式冷凍機を用いた複数の温
度の異なる冷却面を有するクライオポンプと希ガスを捕
捉しないゲッター材を用いたガス精製器及び希ガス貯留
容器を順次に接続し、該クライオポンプにその内圧を制
御するターボ分子ポンプと粗引きポンプを順次に接続し
たことを特徴とする希ガス回収装置。
2. A vacuum chamber, in which a cryopump having a plurality of cooling surfaces having different temperatures using a mechanical refrigerator, a gas purifier using a getter material that does not capture a rare gas, and a rare gas storage container are sequentially connected. A rare gas recovery apparatus characterized in that a turbo-molecular pump for controlling the internal pressure and a roughing pump are sequentially connected to the cryopump.
【請求項3】上記クライオポンプを上記真空室に接続し
たターボ分子ポンプのフォア側に接続したことを特徴と
する請求項2に記載の希ガス回収装置。
3. The rare gas recovery device according to claim 2, wherein the cryopump is connected to a fore side of a turbo molecular pump connected to the vacuum chamber.
【請求項4】上記クライオポンプ、ガス精製器及び希ガ
ス貯留容器は、それぞれ複数台を並列に設けて交互に使
用可能としたことを特徴とする請求項2に記載の希ガス
回収装置。
4. The rare gas recovery apparatus according to claim 2, wherein a plurality of said cryopumps, gas purifiers, and rare gas storage containers are provided in parallel and used alternately.
【請求項5】上記希ガス貯留容器からこれに貯留した希
ガスを上記真空室へ循環させる戻り管を設けたことを特
徴とする請求項2に記載の希ガス回収装置。
5. The rare gas recovery device according to claim 2, further comprising a return pipe for circulating the rare gas stored in the rare gas storage container to the vacuum chamber.
JP2000262751A 2000-08-31 2000-08-31 Rare gas recovery method and rare gas recovery device Expired - Fee Related JP4796688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000262751A JP4796688B2 (en) 2000-08-31 2000-08-31 Rare gas recovery method and rare gas recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000262751A JP4796688B2 (en) 2000-08-31 2000-08-31 Rare gas recovery method and rare gas recovery device

Publications (2)

Publication Number Publication Date
JP2002081857A true JP2002081857A (en) 2002-03-22
JP4796688B2 JP4796688B2 (en) 2011-10-19

Family

ID=18750388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000262751A Expired - Fee Related JP4796688B2 (en) 2000-08-31 2000-08-31 Rare gas recovery method and rare gas recovery device

Country Status (1)

Country Link
JP (1) JP4796688B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173544A (en) * 2007-01-17 2008-07-31 Anest Iwata Corp Device for forming negative pressure and method for discharging drain
WO2016023533A3 (en) * 2014-08-11 2016-04-07 Grenzebach Maschinenbau Gmbh Method and apparatus for saving energy while increasing the conveying speed in vacuum coating plants
JP2018076194A (en) * 2016-11-08 2018-05-17 株式会社アルバック Vacuum treatment apparatus and rare-gas collection apparatus
DE102017221346A1 (en) * 2017-11-28 2019-05-29 Thyssenkrupp Ag Gas circuit filter for vacuum systems
DE102018102693A1 (en) * 2018-02-07 2019-08-08 VON ARDENNE Asset GmbH & Co. KG Dehydration network, vacuum arrangement and method
WO2022264926A1 (en) * 2021-06-17 2022-12-22 エドワーズ株式会社 Rare gas recovery system and rare gas recovery method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311403A (en) * 1992-05-11 1993-11-22 Shin Meiwa Ind Co Ltd Gas regenerating device for film forming device
JPH0861232A (en) * 1994-08-24 1996-03-08 Ebara Corp Regeneration method for cryopump and device for the same
JPH10266962A (en) * 1997-03-24 1998-10-06 Ebara Corp Evacuation system
JPH11324918A (en) * 1998-05-20 1999-11-26 Shin Meiwa Ind Co Ltd Vacuum device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311403A (en) * 1992-05-11 1993-11-22 Shin Meiwa Ind Co Ltd Gas regenerating device for film forming device
JPH0861232A (en) * 1994-08-24 1996-03-08 Ebara Corp Regeneration method for cryopump and device for the same
JPH10266962A (en) * 1997-03-24 1998-10-06 Ebara Corp Evacuation system
JPH11324918A (en) * 1998-05-20 1999-11-26 Shin Meiwa Ind Co Ltd Vacuum device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173544A (en) * 2007-01-17 2008-07-31 Anest Iwata Corp Device for forming negative pressure and method for discharging drain
CN106574364B (en) * 2014-08-11 2019-08-02 格林策巴赫机械制造有限公司 Power-economizing method and device in the case where increasing vacuum coating factory conveying speed
KR20170024035A (en) * 2014-08-11 2017-03-06 그렌체바흐 마쉬넨바우 게엠베하 Method and apparatus for saving energy while increasing the conveying speed in vacuum coating plants
CN106574364A (en) * 2014-08-11 2017-04-19 格林策巴赫机械制造有限公司 Method and apparatus for saving energy while increasing the conveying speed in vacuum coating plants
JP2017524071A (en) * 2014-08-11 2017-08-24 グレンツェバッハ・マシーネンバウ・ゲーエムベーハー Method and apparatus for saving energy while increasing transport speed in a vacuum coating plant
US9960020B2 (en) 2014-08-11 2018-05-01 Grenzebach Maschinenbau Gmbh Method and apparatus for saving energy while increasing the conveying speed in vacuum coating plants
KR101924739B1 (en) 2014-08-11 2019-02-27 그렌체바흐 마쉬넨바우 게엠베하 Method and apparatus for saving energy while increasing the conveying speed in vacuum coating plants
WO2016023533A3 (en) * 2014-08-11 2016-04-07 Grenzebach Maschinenbau Gmbh Method and apparatus for saving energy while increasing the conveying speed in vacuum coating plants
EA035334B1 (en) * 2014-08-11 2020-05-28 Гренцебах Машиненбау Гмбх Vacuum coating installation and coating method
JP2018076194A (en) * 2016-11-08 2018-05-17 株式会社アルバック Vacuum treatment apparatus and rare-gas collection apparatus
JP7011384B2 (en) 2016-11-08 2022-02-10 株式会社アルバック Vacuum processing equipment and rare gas recovery equipment
DE102017221346A1 (en) * 2017-11-28 2019-05-29 Thyssenkrupp Ag Gas circuit filter for vacuum systems
DE102018102693A1 (en) * 2018-02-07 2019-08-08 VON ARDENNE Asset GmbH & Co. KG Dehydration network, vacuum arrangement and method
WO2022264926A1 (en) * 2021-06-17 2022-12-22 エドワーズ株式会社 Rare gas recovery system and rare gas recovery method

Also Published As

Publication number Publication date
JP4796688B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4769350B2 (en) Noble gas recovery method and apparatus
FI95662C (en) Pre-cleaning of air for separation
JP3891773B2 (en) Gas separation and purification method and apparatus therefor
WO2003047731A1 (en) Gas supplying method and system
US5357760A (en) Hybrid cryogenic vacuum pump apparatus and method of operation
JP2002081857A (en) Rear gas recovering method and device therefor
WO2005052369A1 (en) Method and apparatus for regenerating water
JPH0861232A (en) Regeneration method for cryopump and device for the same
JP3553310B2 (en) Evacuation system
TW439101B (en) Method and apparatus for recovering PFC gas
JP4430913B2 (en) Gas supply method and apparatus
JP2003062419A (en) Method for separating gas mixture and apparatus for the same
JP2001269532A (en) Pressure fluctuation adsorption air separation method
JPH05311403A (en) Gas regenerating device for film forming device
JP4301532B2 (en) Cryopump regeneration method
US20040187683A1 (en) Gas recovery system to improve the efficiency of abatementand/or implement reuse/reclamation
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JP2003002621A (en) Sulfur hexafluoride gas recovery apparatus
JPH04174268A (en) Vacuum freezing drier
JP2002070737A (en) Regenerating method of cryopump
JP3156409B2 (en) Evacuation system
JPH0312218A (en) Method and apparatus for solvent recovery
JP2856892B2 (en) Vacuum evacuation system for fusion reactor and its cryopump
JP2009275938A (en) Adsorption type heat pump
Perry J-1 300-scfm HELIUM REPURIFIER SYSTEM JL Perry, JA O'Neil, and PR Doherty Cryogenic Technology, Inc. Cambridge, Massachusetts

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4796688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees