JPS6359331A - System recovering vapor of solvent - Google Patents

System recovering vapor of solvent

Info

Publication number
JPS6359331A
JPS6359331A JP61203434A JP20343486A JPS6359331A JP S6359331 A JPS6359331 A JP S6359331A JP 61203434 A JP61203434 A JP 61203434A JP 20343486 A JP20343486 A JP 20343486A JP S6359331 A JPS6359331 A JP S6359331A
Authority
JP
Japan
Prior art keywords
activated carbon
adsorption tower
gas
refrigerant
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61203434A
Other languages
Japanese (ja)
Other versions
JPH0624606B2 (en
Inventor
Nobuo Yomo
四方 信夫
Tsutomu Onuma
大沼 務
Shigeo Higuchi
樋口 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP61203434A priority Critical patent/JPH0624606B2/en
Publication of JPS6359331A publication Critical patent/JPS6359331A/en
Publication of JPH0624606B2 publication Critical patent/JPH0624606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To regenerate activated carbon without using steam and cooling water by providing a pipeline directly feeding refrigerant which is discharged from a compressor and left intact as hot gas to a heat transfer pipe of an activated carbon adsorption tower and joining an outflow pipeline of the activated carbon adsorption tower to an inflow pipeline of a regenerator. CONSTITUTION:In case valves 11, 12 are closed and a valve 17 is opened and a fan 20 is started, gas is slowly circulated through a system. A regenerating material 10 is kept at low temp. In an activated carbon adsorption tower 1, refrigerant discharged from a compressor 3 and left intact as hot gas is fed to a heat transfer pipe 7 for activated carbon as heated gas via a valve 16 and activated carbon 8 is slowly heated and adsorbed freon is desorbed. When desorption has been finished, the valve 16 is closed and the supply of hot gas for the activated carbon adsorption tower 1 is stopped and cooled refrigerant is fed instead and the temp. of activated carbon is reduced. As a result, remaining freon vapor in the circulating gas is adsorbed again to activated carbon 8 and the concn. of gas is reduced and reaches a concn. capable of discharging to the outside of the system and thereafter desorbing operation is finished.

Description

【発明の詳細な説明】 皮粟上m1里分黙 本発明は、溶剤蒸気回収装置に係り、特に、蓄冷器と活
性炭吸着塔を組み合わせた溶剤蒸気回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solvent vapor recovery device, and more particularly to a solvent vapor recovery device that combines a regenerator and an activated carbon adsorption tower.

従来少及火 従来、この種の装置では、前段に蓄冷器、後段に活性炭
吸着塔を配し、それぞれを別個の装置として運転してい
る。即ち、前段の蓄冷器では、ガス中の溶剤蒸気が蓄冷
器内の蓄冷材表面温度まで冷却され、溶剤蒸気は、その
温度での平衡濃度まで凝縮する。しかし、その平衡濃度
の分は、ガス中に残存したまま活性炭吸着塔に送られる
。残存する溶剤蒸気は、活性炭に吸着され、はとんど除
去される。蓄冷器を出たガスの温度は低いが、吸着時の
発熱のため、活性炭吸着塔の温度は、はとんど変化しな
い。従って、活性炭による溶剤の吸着特性は、常温での
吸着等混線に支配される。溶剤の吸着が進むと、活性炭
は飽和に達し、活性炭の吸着能力は低下し、再生が必要
となる。
Conventionally, this kind of equipment has a regenerator in the front stage and an activated carbon adsorption tower in the latter stage, and each is operated as a separate device. That is, in the pre-stage regenerator, the solvent vapor in the gas is cooled to the surface temperature of the regenerator material in the regenerator, and the solvent vapor is condensed to the equilibrium concentration at that temperature. However, the equilibrium concentration remains in the gas and is sent to the activated carbon adsorption tower. The remaining solvent vapor is adsorbed onto the activated carbon and is mostly removed. Although the temperature of the gas leaving the regenerator is low, the temperature of the activated carbon adsorption tower hardly changes due to heat generation during adsorption. Therefore, the adsorption characteristics of a solvent by activated carbon are dominated by adsorption and crosstalk at room temperature. As the adsorption of solvent progresses, the activated carbon reaches saturation, the adsorption capacity of the activated carbon decreases, and regeneration is required.

従来技術による活性炭の再生は、スチームを用いる加熱
脱着操作によって行われる。即ち、活性炭が加熱される
と、吸着されていた溶剤は、ガス中の溶剤蒸気の濃度と
活性炭の吸着量がその温度における平衡関係を保ちなが
ら脱着される。充分に脱着が行われると、活性炭は再生
される。脱着された溶剤蒸気は、スチームとの混合ガス
となっているが、コンデンサで冷却水により冷却され、
凝縮して溶剤となる。溶剤とスチームが凝縮して生じた
水は、重力分離器で分離され、溶剤は回収される。一方
、水はドレン水として排出される。
Regeneration of activated carbon according to the prior art is carried out by thermal desorption operations using steam. That is, when the activated carbon is heated, the adsorbed solvent is desorbed while maintaining an equilibrium relationship between the concentration of solvent vapor in the gas and the amount of adsorption on the activated carbon at that temperature. When sufficient desorption occurs, the activated carbon is regenerated. The desorbed solvent vapor becomes a mixed gas with steam, but it is cooled by cooling water in a condenser.
It condenses to become a solvent. The water resulting from condensation of the solvent and steam is separated in a gravity separator and the solvent is recovered. On the other hand, water is discharged as drain water.

■が”°しよ゛と るう 占 しかし、前記の従来技術では、洗浄等で用いるフロン1
13等のような溶剤の場合、活性炭の脱着時に120℃
程度まで加熱する必要があり、スチームを大量に使用す
ること及び脱着ガスの凝縮において含まれるスチームの
潜熱が大きく冷却水を大量に使用すること等の欠点が有
ある。
However, in the above-mentioned conventional technology, the Freon 1 used for cleaning etc.
In the case of a solvent such as No. 13, the temperature is 120°C during desorption of activated carbon.
However, there are drawbacks such as the need to heat the desorbed gas to a certain extent, the use of a large amount of steam, and the large latent heat of the steam contained in the condensation of the desorbed gas, which requires the use of a large amount of cooling water.

従って、本発明は、前記の従来技術の欠点を解消し、多
量のスチーム及び冷却水を使用しない、蓄冷器及び活性
炭吸着塔を組み合わせた溶剤蒸気回収装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to overcome the drawbacks of the prior art described above and to provide a solvent vapor recovery apparatus that combines a regenerator and an activated carbon adsorption tower without using a large amount of steam or cooling water.

。 占 ”° るための − 本発明は、溶剤蒸気を活性炭に吸着させて回収する場合
、吸着時の温度を低くすれば、加熱による脱着温度を相
対的に低くしても、脱着性能は大きくは低下しないこと
に着目してなされたものである。そして、吸着温度を低
くする手段として、蓄冷器による対象ガスの冷却及び活
性炭吸着塔内に設置した伝熱管による冷却を用い、コン
プレッサで加圧した冷媒をコンデンサで凝縮して蓄冷器
及び活性炭吸着塔に供給し、コンプレッサで加圧した冷
媒のホットガスを活性炭吸着塔に直接供給して加熱でき
るようにすることによって前記の問題点を解決したもの
である。これらの配管は、吸着時、脱着時及び蓄冷時の
操作別にバルブ操作により連結するようにした。
. The present invention provides that when solvent vapor is adsorbed onto activated carbon and recovered, if the adsorption temperature is lowered, even if the desorption temperature by heating is relatively lowered, the desorption performance will not be significantly improved. This was done with the aim of lowering the adsorption temperature by cooling the target gas with a regenerator and cooling with a heat exchanger tube installed in an activated carbon adsorption tower, and by pressurizing it with a compressor. The above problem is solved by condensing the refrigerant in a condenser and supplying it to the regenerator and activated carbon adsorption tower, and then supplying the hot gas of the refrigerant pressurized by the compressor directly to the activated carbon adsorption tower for heating. These pipes were connected by valve operations for each operation during adsorption, desorption, and cold storage.

すなわち、本発明による溶剤蒸気回収装置は、伝熱管を
有する蓄冷器と内部に伝熱管を設けた活性炭吸着塔が配
管により連結され、蓄冷器及び活性炭吸着塔の伝熱管に
は、冷媒コンプレッサからバルブを介して膨張弁及びコ
ンデンサを経て冷媒が供給され、活性炭吸着塔の伝熱管
には、更に前記コンプレッサから直接、高温の冷媒ホン
トガスを供給する配管が付設されており、更に、活性炭
吸着塔からの流出配管と蓄冷器への流入配管とが、脱着
ガス循環配管によって連結されていることを特徴とする
That is, in the solvent vapor recovery apparatus according to the present invention, a regenerator having a heat transfer tube and an activated carbon adsorption tower provided with a heat transfer tube inside are connected by piping, and a valve is connected to the heat transfer tube of the regenerator and the activated carbon adsorption tower from a refrigerant compressor. The refrigerant is supplied through the expansion valve and the condenser, and the heat transfer tube of the activated carbon adsorption tower is further equipped with piping that supplies high-temperature refrigerant real gas directly from the compressor. The outflow pipe and the inflow pipe to the regenerator are connected by a desorption gas circulation pipe.

詐l− 活性炭吸着塔内に設けた活性炭用伝熱管は、吸着時には
、活性炭を冷媒によって冷却して吸着温度を低下する。
False - During adsorption, the activated carbon heat transfer tube provided in the activated carbon adsorption tower cools the activated carbon with a refrigerant to lower the adsorption temperature.

吸着が低い温度で行われることにより、加熱による脱着
も低い温度で可能になる。
Since adsorption is performed at low temperatures, thermal desorption is also possible at low temperatures.

コンプレッサで加圧した冷媒をコンデンサで凝縮して蓄
冷器及び活性炭吸着塔内の伝熱管に供給することによっ
て蓄冷材及び活性炭の冷却を行い、その冷媒のホットガ
スによって活性炭の加熱脱着を行う。
The refrigerant pressurized by the compressor is condensed by the condenser and supplied to the heat transfer tubes in the regenerator and activated carbon adsorption tower to cool the regenerator material and activated carbon, and the activated carbon is thermally desorbed by the hot gas of the refrigerant.

実施貫 次に、図面に基づいて本発明の詳細な説明する。implementation Next, the present invention will be explained in detail based on the drawings.

第1図は、本発明による溶剤蒸気回収装置の1実施例を
示すフローシートである。
FIG. 1 is a flow sheet showing one embodiment of the solvent vapor recovery apparatus according to the present invention.

第1図に示した装置は、フロン113を溶剤として用い
た洗浄装置から排出される排ガス中の溶剤蒸気を回収す
るため設置されたものであり、活性炭吸着塔1、蓄冷器
2、コンプレフサ3、コンデンサ4、ファン5、溶剤回
収槽6及びこれらを連結する配管系から構成されている
The device shown in FIG. 1 was installed to recover solvent vapor in exhaust gas discharged from a cleaning device using Freon 113 as a solvent, and includes an activated carbon adsorption tower 1, a regenerator 2, a compressor 3, It consists of a condenser 4, a fan 5, a solvent recovery tank 6, and a piping system connecting these.

洗浄装置21は、バルブ11、ファン5及び流入配管2
2を介して蓄冷器2と連結され、この蓄冷器2は配管2
3により活性炭吸着塔1と連結され、バルブ12を経て
外気と連通されている。更に、活性炭吸着塔1とバルブ
12との間で脱着ガス循環配管24が分岐し、ファン2
0及びバルブ17を介して蓄冷器2への流入配管22と
連結されている。
The cleaning device 21 includes a valve 11, a fan 5, and an inflow pipe 2.
The regenerator 2 is connected to the regenerator 2 via the pipe 2.
3 is connected to the activated carbon adsorption tower 1, and communicated with the outside air via a valve 12. Further, a desorption gas circulation pipe 24 branches between the activated carbon adsorption tower 1 and the valve 12, and a fan 2
0 and an inflow pipe 22 to the regenerator 2 via a valve 17.

活性炭吸着塔1の内部には、活性炭用伝熱管7が設置さ
れており、その伝熱管7の間に活性炭8が充填されてい
る。また、蓄冷器2の内部にも、蓄冷材用伝熱管9が設
置されており、その伝熱管9の間に蓄冷材10が充填さ
れている。
Heat exchanger tubes 7 for activated carbon are installed inside the activated carbon adsorption tower 1, and activated carbon 8 is filled between the heat exchanger tubes 7. Moreover, heat exchanger tubes 9 for regenerator material are also installed inside the regenerator 2, and a regenerator material 10 is filled between the heat exchanger tubes 9.

活性炭用伝熱管7に対しては、コンプレッサ3からバル
ブ13、コンデンサ4、バルブ19及びバルブ14を経
て冷媒が供給されるようになっており、また、活性炭吸
着塔の再生サイクルでは、コンプレッサ3からバルブ1
6を経てホットガスを供給できるようになっている。
Refrigerant is supplied from the compressor 3 to the activated carbon heat exchanger tube 7 via a valve 13, a condenser 4, a valve 19, and a valve 14. In addition, in the regeneration cycle of the activated carbon adsorption tower, refrigerant is supplied from the compressor 3 through a valve 13, a condenser 4, a valve 19, and a valve 14. Valve 1
6, hot gas can be supplied.

一方、蓄冷材用伝熱管9に対しては、バルブ14と19
との間で、冷媒用配管を分岐させた分岐配管からバルブ
15を経て冷媒が供給される。
On the other hand, for the heat exchanger tube 9 for cold storage material, the valves 14 and 19
A refrigerant is supplied through a valve 15 from a branch pipe that is a branched refrigerant pipe.

活性炭用伝熱管7及び蓄冷材用伝熱管9中の冷媒及び/
又はホー/ トガスは、コンプレッサ3の吸引側に戻さ
れる。
The refrigerant in the heat exchanger tube 7 for activated carbon and the heat exchanger tube 9 for cold storage material and/or
Alternatively, the hot/gas is returned to the suction side of the compressor 3.

次に、第1図に示した装置の動作について述べる。洗浄
装置21では、被洗物の洗浄は、投入、スプレー、乾燥
及び取り出しの工程で行われるが、スプレーの工程では
、溶剤のフロン113が気化するため、洗浄装置21の
内圧が上昇する。この際、内圧の上界を抑えるため、圧
力制御装置18が作動し、バルブ11が開くと共にファ
ン5が起動し、洗浄装置21内のフロン113の蒸気を
20〜30容量%含むガスは、流入配管22からまず蓄
冷器2に送られる。
Next, the operation of the apparatus shown in FIG. 1 will be described. In the cleaning device 21, cleaning of the object to be washed is performed in the steps of loading, spraying, drying, and taking out. In the spraying step, the solvent Freon 113 is vaporized, so that the internal pressure of the cleaning device 21 increases. At this time, in order to suppress the upper limit of the internal pressure, the pressure control device 18 is activated, the valve 11 is opened, and the fan 5 is activated, and the gas containing 20 to 30% by volume of Freon 113 vapor in the cleaning device 21 is inflowed. It is first sent to the regenerator 2 from the pipe 22.

蓄冷器2内の蓄冷材10は、コンプレッサ3からバルブ
13、コンデンサ4、膨張弁19及びバルブ15を経て
蓄冷材用伝熱管9に供給された低温の冷媒によって一2
0℃に冷却される。従って、蓄冷器2内でガスは冷却さ
れ、ガス中に含まれるフロンは、そのガス濃度が約5容
量%となるまで凝縮される。凝縮されたフロンは、溶剤
回収槽6へ導入され、貯蔵される。
The cold storage material 10 in the cold storage device 2 is cooled by the low-temperature refrigerant supplied from the compressor 3 to the cold storage material heat transfer tube 9 via the valve 13, the condenser 4, the expansion valve 19, and the valve 15.
Cooled to 0°C. Therefore, the gas is cooled in the regenerator 2, and the fluorocarbon contained in the gas is condensed until the gas concentration becomes about 5% by volume. The condensed fluorocarbon is introduced into the solvent recovery tank 6 and stored.

更に、蓄冷器2内のガスは、配管23により活性炭吸着
塔1へ供給される。活性炭吸着塔1内の活性炭8は、コ
ンプレフサ3からバルブ13、コンデンサ4、膨張弁1
9及びバルブ14を経て活性炭用伝熱管7に供給された
低温の冷媒によって一20℃に冷却されている。ここで
、ガス中のフロン113の蒸気は一20℃の活性炭8と
接触し、活性炭8の細孔に吸着される。この時の活性炭
のフロン吸着量は、温度とガス中のフロンガス濃度によ
って支配され、第2図に示すような吸着等混線に従う。
Furthermore, the gas in the regenerator 2 is supplied to the activated carbon adsorption tower 1 through a pipe 23. The activated carbon 8 in the activated carbon adsorption tower 1 is transported from the compressor 3 to the valve 13, the condenser 4, and the expansion valve 1.
It is cooled to -20° C. by a low-temperature refrigerant supplied to the activated carbon heat exchanger tube 7 through the tube 9 and the valve 14. Here, the vapor of the freon 113 in the gas comes into contact with the activated carbon 8 at -20° C., and is adsorbed into the pores of the activated carbon 8. At this time, the amount of fluorocarbon adsorbed by the activated carbon is controlled by the temperature and the concentration of fluorocarbon gas in the gas, and follows the adsorption equicross line as shown in FIG.

すなわち、−20℃では、20℃の常温の場合に比べて
同一のガス濃度での平衡な活性炭フロン吸着量は高(な
っており、多くのフロンを吸着することができる。活性
炭吸着塔1でフロンを吸着除去されたガスは、バルブ1
2を経て外気へ放出される。
That is, at -20°C, the equilibrium amount of CFCs adsorbed by activated carbon is higher at the same gas concentration than at room temperature of 20C, and more CFCs can be adsorbed. The gas from which the fluorocarbons have been adsorbed and removed is transferred to valve 1.
2 and then released to the outside air.

このような動作により洗浄時に発生するフロン蒸気は、
活性炭吸着塔1に回収される。しかし、洗浄の回数が多
くなり、活性炭のフロン吸着量が増すと、活性炭のフロ
ン吸着能力はなくなる。従って、活性炭の脱着による再
生が必要となる。
Freon vapor generated during cleaning due to this operation,
It is collected in the activated carbon adsorption tower 1. However, as the number of washings increases and the amount of fluorocarbon adsorbed by the activated carbon increases, the activated carbon loses its ability to adsorb fluorocarbons. Therefore, regeneration by desorption of activated carbon is required.

脱着の動作は、次のように行われる。The operation of attaching and detaching is performed as follows.

まず、バルブ11及び12が閉じられ、バルブ17が開
放され、ファン20は起動して、ガスは系内をゆっくり
循環する。蓄冷器2には、吸着時と同様に低温の冷媒が
供給され、蓄冷材10は低温に維持される。一方、活性
炭吸着塔1に対してはコンプレ・ノサ3から出た冷媒が
ホットガスのままバルブ16を経て加熱ガスとして活性
炭用伝熱管7に供給され、活性炭8を徐々に加熱し、吸
着されていたフロンを脱着する。このような操作で活性
炭8の温度は、約60℃まで上昇し、蓄冷材10は最も
温度の低い部分で一20°Cとなる。従って、循環ガス
の活性炭吸着塔1の入口のフロンガス濃度は、蓄冷材1
0の温度−20°Cでの平徐i濃度約5容量%となり、
活性炭8のフロン吸着量は、第2図に示す60℃での吸
着等温線においてガス濃度5容量%と平衡な吸着量まで
脱着される。
First, valves 11 and 12 are closed, valve 17 is opened, fan 20 is started, and gas is slowly circulated through the system. A low-temperature refrigerant is supplied to the regenerator 2 as in the case of adsorption, and the regenerator material 10 is maintained at a low temperature. On the other hand, for the activated carbon adsorption tower 1, the refrigerant discharged from the compre-nosa 3 is supplied as a hot gas to the activated carbon heat transfer tube 7 through the valve 16, gradually heating the activated carbon 8 and absorbing it. Remove and install the Freon. By such an operation, the temperature of the activated carbon 8 rises to about 60°C, and the temperature of the cold storage material 10 becomes -20°C at its lowest temperature. Therefore, the fluorocarbon gas concentration at the inlet of the activated carbon adsorption tower 1 of the circulating gas is
At a temperature of 0 -20°C, the concentration of Heishu i is approximately 5% by volume,
The amount of fluorocarbon adsorbed by the activated carbon 8 is desorbed to the amount that is in equilibrium with the gas concentration of 5% by volume in the adsorption isotherm at 60° C. shown in FIG.

脱着されたフロン蒸気は、前記濃度となるまで蓄冷器2
で凝縮され、溶剤回収槽6に回収される。
The desorbed fluorocarbon vapor is stored in the regenerator 2 until it reaches the above concentration.
The solvent is condensed and collected in a solvent recovery tank 6.

充分に脱着が行われたら、バルブ16が閉鎖され、活性
炭吸着塔1へのホットガスの吸着は停止され、代わって
冷却された冷媒が供給され、活性炭8の温度は下がる。
When sufficient desorption is performed, the valve 16 is closed, the adsorption of hot gas to the activated carbon adsorption tower 1 is stopped, and instead a cooled refrigerant is supplied, and the temperature of the activated carbon 8 is lowered.

活性炭8の温度が下がると、循環ガス中の残存フロン蒸
気は再び活性炭8に吸着され、ガス濃度は低下し、系外
に放出しろる)温度になった後、脱着操作は完了する。
When the temperature of the activated carbon 8 decreases, the residual fluorocarbon vapor in the circulating gas is adsorbed by the activated carbon 8 again, the gas concentration decreases, and after reaching a temperature at which it can be released outside the system, the desorption operation is completed.

このようにして、洗浄装置から出るガス中の溶剤(フロ
ン)の蒸気を回収できる。
In this way, the solvent (fluorocarbon) vapor in the gas exiting the cleaning device can be recovered.

光五互肱果 本発明の溶剤回収装置によれば、活性炭の再生の際に活
性炭の加熱のため、冷媒のホットガスを使用するので、
スチーム及び冷却水は全(必要なく、著しく省エネルギ
ーが達成される。
According to the solvent recovery device of the present invention, hot gas as a refrigerant is used to heat the activated carbon when regenerating the activated carbon.
No steam or cooling water is required and significant energy savings are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の溶剤回収装置の一実施例を示すフロ
ーシート、第2図は、活性炭のフロンの吸着等混線図で
ある。 1・・・活性炭吸着塔、2・・・蓄冷器、3・・・コン
プレッサ、4・・・コンデンサ、6・・・溶剤回収槽、
7・・・活性炭用伝熱管、9・・・蓄冷材用伝熱管
FIG. 1 is a flow sheet showing an embodiment of the solvent recovery apparatus of the present invention, and FIG. 2 is a crosstalk diagram of fluorocarbon adsorption on activated carbon. 1...Activated carbon adsorption tower, 2...Regenerator, 3...Compressor, 4...Condenser, 6...Solvent recovery tank,
7... Heat transfer tube for activated carbon, 9... Heat transfer tube for cold storage material

Claims (1)

【特許請求の範囲】[Claims] 気化した溶剤を蓄冷器に通して一部凝縮して回収し、残
存する溶剤を更に活性炭吸着塔で回収する溶剤蒸気回収
装置において、伝熱管を有する蓄冷器と内部に伝熱管を
設けた活性炭吸着塔が配管により連結され、蓄冷器及び
活性炭吸着塔の伝熱管には、冷媒コンプレッサからバル
ブを介して膨張弁及びコンデンサを経て冷媒が供給され
、活性炭吸着塔の伝熱管には、更に前記コンプレッサか
ら直接、高温の冷媒ホットガスを供給する配管が付設さ
れており、更に、活性炭吸着塔からの流出配管と蓄冷器
への流入配管とが、脱着ガス循環配管によって連結され
ていることを特徴とする溶剤蒸気回収装置。
In a solvent vapor recovery device, the vaporized solvent is passed through a regenerator to partially condense and recovered, and the remaining solvent is further collected in an activated carbon adsorption tower. The towers are connected by piping, and the regenerator and the heat transfer tubes of the activated carbon adsorption tower are supplied with refrigerant from a refrigerant compressor via a valve via an expansion valve and a condenser, and the heat transfer tubes of the activated carbon adsorption tower are supplied with refrigerant from the compressor. A pipe is attached to directly supply high-temperature refrigerant hot gas, and the outflow pipe from the activated carbon adsorption tower and the inflow pipe to the regenerator are connected by a desorption gas circulation pipe. Solvent vapor recovery equipment.
JP61203434A 1986-08-29 1986-08-29 Solvent vapor recovery device Expired - Lifetime JPH0624606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203434A JPH0624606B2 (en) 1986-08-29 1986-08-29 Solvent vapor recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203434A JPH0624606B2 (en) 1986-08-29 1986-08-29 Solvent vapor recovery device

Publications (2)

Publication Number Publication Date
JPS6359331A true JPS6359331A (en) 1988-03-15
JPH0624606B2 JPH0624606B2 (en) 1994-04-06

Family

ID=16474027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203434A Expired - Lifetime JPH0624606B2 (en) 1986-08-29 1986-08-29 Solvent vapor recovery device

Country Status (1)

Country Link
JP (1) JPH0624606B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728093A (en) * 2012-07-05 2012-10-17 苏州龙杰特种纤维股份有限公司 Environment-friendly gas exhaust device of vacuum furnace
WO2021132071A1 (en) * 2019-12-26 2021-07-01 東洋紡株式会社 Organic solvent recovery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728093A (en) * 2012-07-05 2012-10-17 苏州龙杰特种纤维股份有限公司 Environment-friendly gas exhaust device of vacuum furnace
WO2021132071A1 (en) * 2019-12-26 2021-07-01 東洋紡株式会社 Organic solvent recovery system

Also Published As

Publication number Publication date
JPH0624606B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
US4197713A (en) Process and plant for the recovery of water from humid air
KR101250769B1 (en) Hybrid air conditioning system
US4336159A (en) Method and arrangement for the thermal regeneration of charged adsorption materials
JP2001317307A (en) Method of removing carbon dioxide from exhaust gas of gas turbine plant and device for carrying out the method
Szarzynski et al. Study of different internal vapour transports for adsorption cycles with heat regeneration
KR20130039185A (en) Dry sorbent co2 capturing device with improving energy efficiency
JPH10508682A (en) Thermal compression device
CN112105441B (en) Carbon dioxide separation and recovery system and method
JPH0126737B2 (en)
JPS6359331A (en) System recovering vapor of solvent
JP2005172380A (en) Adsorption-type heat pump
CN115388616B (en) Mars surface carbon dioxide continuous capturing system adopting pressurizing liquefaction and method thereof
JPH02104988A (en) Cryopump and reclaiming process thereof
JPH06272989A (en) Refrigerator
JPH0854184A (en) Method and apparatus for drying closed-type washer
JP6061462B2 (en) Chemical heat storage device
JP2590729Y2 (en) Activated carbon solvent recovery equipment with hot air desorption
JPH0639670Y2 (en) Solvent recovery device
JPH05288485A (en) Waste heat temperature increasing and recovering device
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPS58170518A (en) Operation of adsorbing tower
JPH07228545A (en) Dehydrating method of alcohol
JPH0319934Y2 (en)
JPH08327188A (en) Device for removing non-condensed gas of adsorption type freezer
JP2004232928A (en) Adsorption type refrigerator and method of operating the same