JP2004232928A - Adsorption type refrigerator and method of operating the same - Google Patents

Adsorption type refrigerator and method of operating the same Download PDF

Info

Publication number
JP2004232928A
JP2004232928A JP2003020582A JP2003020582A JP2004232928A JP 2004232928 A JP2004232928 A JP 2004232928A JP 2003020582 A JP2003020582 A JP 2003020582A JP 2003020582 A JP2003020582 A JP 2003020582A JP 2004232928 A JP2004232928 A JP 2004232928A
Authority
JP
Japan
Prior art keywords
adsorbent
refrigerant
tank
adsorption
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003020582A
Other languages
Japanese (ja)
Inventor
Junji Matsuda
潤二 松田
Akito Machida
明登 町田
Hiroyuki Suzuki
啓之 鈴木
Kazuyuki Iwase
和之 岩瀬
Shinya Ishizuka
伸哉 石塚
Kazuhiro Hattori
一裕 服部
Hideo Inaba
英男 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2003020582A priority Critical patent/JP2004232928A/en
Publication of JP2004232928A publication Critical patent/JP2004232928A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized, low cost adsorption type refrigerator and a method of operating the refrigerator capable of dispensing with a cool water storage tank by making constant the temperature of cool water supplied to a cooling load, facilitating and allowing a reduction in size of a storage facility for adsorbent, and reducing the manufacturing man-hours for an adsorbent heat exchanger module. <P>SOLUTION: This adsorption type refrigerator generating cool heat with hot heat supplied from a hot heat source such as hot water by utilizing heating and heat absorbing phenomena caused by a reversible reaction between adsorbent and refrigerant comprises an adsorbing tank in which the refrigerant is adsorbed to the adsorbent to form refrigerant-adhered adsorbent, a detaching tank installed separately from the adsorbing tank and separating the refrigerant from the adsorbent in the refrigerant-adhered adsorbent, and a carrying pipe connecting the adsorbing tank to the detaching tank and allowing the adsorbent to circulate between the adsorbent tank and the detaching tank. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空調用、工場プロセス用等の冷水を発生させる吸着式冷凍機に適用され、吸着槽にて冷媒を吸着剤に吸着し、該吸着剤を吸着槽とは別個に設けられた脱着槽に搬送して該脱着槽にて吸着剤から冷媒を脱着するようにした吸着式冷凍機及び吸着剤の搬送方法に関する。
【0002】
【従来の技術】
廃熱等の熱源を利用して冷水を発生させる冷水発生装置として、塩化リチウム等の液状吸湿剤を使用する吸収式冷凍機や、シリカゲル、ゼオライト、活性炭等の固体吸着剤を使用する吸着式冷凍機がある。
図2は、かかる吸着式冷凍機の1例として特許文献1(特開平5−272833号公報)にて提供されている吸着式冷凍機の全体構成図である。
【0003】
図2において、1は真空容器で、仕切板2で区画された2室内に吸着剤熱交換器3a,3bを設置している。該吸着剤熱交換器3a,3bは伝熱管の伝熱面にシリカゲル、ゼオライト、活性炭等の固体吸着剤を充填した構成である。該吸着剤熱交換器3a,3bの伝熱管に接続される供給管は、4つの切換弁8a、8b、9a、9bを備えた切換機構5を介して冷却水供給系統6及び温水供給系統7に接続している。
10は冷水系統12に連なる伝熱管13を備えた蒸発器、11は冷却水供給系統6に連なる伝熱管14を備えた凝縮器であり、該蒸発器10及び凝縮器11はそれぞれ冷媒蒸気経路を介して前記吸着剤熱交換器3a,3bに接続されている。また前記蒸発器10と凝縮器11との間には、膨張弁15が介装された冷媒供給管16を設置している。
【0004】
かかる吸着式冷凍機の運転時において、図2は吸着剤熱交換器3aを吸着器、吸着剤熱交換器3bを再生器として動作させているバッチサイクルの運転状態を示しており、冷却水供給系統6に対応する切換弁8a、8bは吸着器としての吸着剤熱交換器3a側に切り換えられ、温水供給系統7に対応する切換弁9a、9bは再生器(脱着器)としての吸着剤熱交換器3b側に切り換えられている。また、吸着剤熱交換器3a側の開閉弁17aは閉、制御弁18aは開となっており、吸着剤熱交換器3b側の開閉弁17bは開、制御弁18bは閉となっている。
19はコントローラで、前記切換弁8a、8b、9a、9bを切換制御するとともに、開閉弁17a、17b、制御弁18a、18bを開閉制御するものである。
【0005】
かかるバッチサイクルにおいて、再生器(脱着器)としての吸着剤熱交換器3b内における水を吸着している吸着剤は、温水供給系統7から切換弁9a、9bを経て伝熱管に供給される温水により加熱されて脱着反応用の熱が与えられ、該吸着剤と水とが脱着して冷媒蒸気を発生せしめる。
この冷媒蒸気は図中矢印で示すように、開閉弁17bを経て凝縮器11に入る。そして該冷媒蒸気は、凝縮器11において伝熱管14内を流れる冷却水供給系統6の冷却水と熱交換をして凝縮し、この凝縮液は冷媒供給管16を通って膨張弁15に至り、該膨張弁15にて膨張、減圧されて蒸発器10に送り込まれる。このようにして、前記吸着剤熱交換器3b側において吸着剤の再生が行われる。
【0006】
該蒸発器10においては、前記膨張弁15を経た減圧凝縮液と冷水系統12の水とを熱交換することにより該減圧凝縮液を蒸発、気化して冷媒蒸気とするとともに、冷水系統12の水は冷却、降温されて図示しない冷却負荷側に送られる。
一方、吸着器としての吸着剤熱交換器3aでは、吸着剤は前のバッチサイクルにおいて前述と同様な再生が行われているため、制御弁18aを介して蒸発器10内の冷媒蒸気を吸引して吸着する。
即ち、この吸着反応で吸着剤に発生する吸着熱を、切換弁8a、8bを経て冷却水供給系統6から供給される冷却水で奪うことによって、前記蒸発器10内の冷媒蒸気を吸引して吸着剤に吸着する吸着作用がなされる。
【0007】
【特許文献1】
特開平5−272833号公報
【0008】
【発明が解決しようとする課題】
特許文献1記載の技術を含む従来技術にあっては、前記のように、吸着剤が収納された2つの吸着剤熱交換器3a、3bを交互に作動させて該吸着剤熱交換器3a、3b内の吸着剤と凝縮器11〜蒸発器10間を流動する冷媒とを吸着、脱着せしめるように構成されている。
このため、かかる従来技術にあっては、吸着剤熱交換器3a、3bにおける吸着剤の吸着量が単位時間当たり一定とならないため、冷水系統12から取り出して冷却負荷に供給される冷水の温度が一定とならず、一定温度の冷水を得るには該冷水を収容するタンクが必要となり、装置が大型化するとともに装置コストも上昇する。
【0009】
また、かかる従来技術にあっては、吸着剤を保管するための吸着槽を2個必要とするため、この面からも装置が大型化するとともに装置コストも上昇する。
さらには、前記吸着槽内に装着される吸着剤熱交換器モジュールは製作に多くの工数を要するため、装置の製作コストが上昇する。
等の問題点を有している。
【0010】
本発明はかかる従来技術の課題に鑑み、冷却負荷に供給される冷水の温度を一定化して冷水収容タンクを不要とし、吸着剤の保管設備を簡単、小型化し、さらには吸着剤熱交換器モジュールの製作工数を低減可能として、小型で低コストの吸着式冷凍機及びその運転方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明はかかる目的を達成するもので、その第1発明は、固体の吸着剤と冷媒との間の可逆反応に伴う発熱、吸熱現象を利用し、温水等の温熱源から供給される温熱を熱源として冷熱を発生させる吸着式冷凍機において、前記吸着剤に冷媒を吸着して冷媒付着吸着剤を形成せしめる吸着槽と、該吸着槽とは別個に設置されて前記冷媒付着吸着剤の冷媒と吸着剤とを分離せしめる脱着槽と、前記吸着槽と脱着槽とを接続し前記吸着槽から冷媒付着吸着剤を脱着槽に搬送する搬送管路とを備えてなることを特徴とする。
【0012】
かかる第1発明において好ましくは、蒸発器にて蒸発した低圧冷媒蒸気を前記吸着槽に導く低圧冷媒管路と、前記脱着槽にて吸着剤と分離せしめられた高圧冷媒蒸気を凝縮器に導く高圧冷媒管路とを備えてなる。
【0013】
また第1発明において好ましくは、前記吸着槽と脱着槽とを接続する搬送管路を、前記冷媒付着吸着剤を該吸着槽から脱着槽へ搬送する吸着剤搬入管路と、前記冷媒と分離した吸着剤を脱着槽から吸着槽へ戻す吸着剤戻し管路とにより構成し、前記吸着剤搬入管路を前記吸着槽内から前記脱着槽内に分離反応用の温水を供給する温水供給路と兼用するとともに、前記吸着剤戻し管路を前記脱着槽内から前記吸着槽内に吸着反応用の冷却水を供給する冷却水供給路と兼用する。
【0014】
また第1発明において好ましくは、前記搬送管路に設けられて該搬送管路を流動する前記冷媒付着吸着剤の搬送量を調整する搬送量調整弁と、蒸発器において前記冷媒の蒸発により冷熱を供給される冷水の温度を検出する冷水温度検出器と、該冷水温度検出器からの前記冷水の温度検出値に基づき前記搬送量調整弁の開度を制御するコントローラとを備えてなる。
【0015】
第2発明は前記吸着式冷凍機の運転方法、特に吸着剤及び冷媒の使用方法に係り、固体の吸着剤と冷媒との間の可逆反応に伴う発熱、吸熱現象を利用し、温水等の温熱源から供給される温熱を熱源として冷熱を発生させる吸着式冷凍機の運転方法において、吸着槽にて前記吸着剤に冷媒を吸着して冷媒付着吸着剤を形成し、該冷媒付着吸着剤を搬送流体により脱着槽に搬送し、該脱着槽において冷媒付着吸着剤の冷媒と吸着剤との分離を行うことを特徴とする。
【0016】
かかる第2発明において、前記搬送流体としては、水よりも蒸発圧力が高く、かつ非水溶性であって、かつ吸着剤に吸着されない性質を有する高分子体の流体が好適であり、その1つとして1−ノナノール(C19OH)がある。
【0017】
また第2発明において好ましくは、蒸発器において前記冷媒の蒸発により冷熱を供給される冷水の温度を検出し、該冷水温度の検出値により前記冷媒付着吸着剤の搬送量を制御する。
【0018】
かかる発明によれば、吸着槽において、吸着反応で発生する熱を冷却水で奪うことによって、蒸発器内にて蒸発した低圧冷媒蒸気を低圧冷媒管路を通して吸引し、該低圧冷媒蒸気を固体の吸着剤に吸着させて冷媒付着吸着剤を形成し、該冷媒付着吸着剤を搬送流体、具体的には水よりも蒸発圧力が高く非水溶性で吸着剤に吸着されない高分子体からなる搬送流体に乗せて、搬送管路を通して前記吸着槽とは別個に設置された脱着槽に搬入する。
【0019】
そして脱着槽においては、前記吸着槽内よりも高圧状態にて、前記冷媒付着吸着剤の冷媒と吸着剤との分離反応に必要な熱を温水により供給することによって、該冷媒付着吸着剤の冷媒と吸着剤とを分離する。
前記のようにして吸着剤から分離された高圧の冷媒蒸気は高圧冷媒管路を通して凝縮器に搬送され、該凝縮器において凝縮、液化し、前記蒸発器に搬送される。
また、前記脱着槽において冷媒を分離した吸着剤は前記搬送流体に乗せられて前記吸着槽に還流され、次の吸着作用に供される。
【0020】
従ってかかる発明によれば、蒸発器からの冷媒と吸着剤とを吸着する吸着槽を、該冷媒と吸着剤とを分離する脱着槽とは別個に設けて吸着作用専用としたので、脱着側の作動に影響されることなく吸着槽における吸着剤の単位時間当たり吸着量が一定となる。
これにより、蒸発器から冷却負荷に供給される冷水の取り出し温度が一定となって、従来技術のような冷水の温度を一定化するためのタンク及びその附帯設備が不要となって、装置が小型化されるとともに装置コストが低減される。
【0021】
またかかる発明によれば、吸着剤は別個に設けられた吸着槽と脱着槽との間を循環するので、従来技術のような吸着剤を保管するための槽が不要となって、装置が小型化されるとともに装置コストが大幅に低減される。
さらには、冷媒を吸着した吸着剤、あるいは吸着剤のみを搬送流体に乗せて吸着槽と脱着槽との間を循環させるので、吸着槽内及び脱着槽内に熱交換器モジュールは不要となり、装置の製作工数が大幅に少なくなり製作コストが低減される。
【0022】
また、かかる発明によれば、吸着槽における吸着反応用の冷却水として、脱着槽において前記冷媒付着吸着剤の冷媒と吸着剤との分離反応を行わせる際に使用されて降温された温水を脱着槽から吸着槽に循環させて使用することが可能となるとともに、また脱着槽における冷媒と吸着剤との分離反応用の温水として、吸着槽において吸着反応で発生する熱を奪うことによって昇温された冷却水を吸着槽から脱着槽に循環させて使用することが可能となる。
これにより、冷媒付着吸着剤あるいは吸着剤の搬送管路を、吸着槽への冷却水供給管路及び脱着槽への温水供給管路と共用できて、装置が小型コンパクトとなる。
【0023】
尚、前記吸着槽〜脱着槽間の循環水は、前記吸着剤及び搬送流体と同一の管内を流すようにしても、吸着剤及び搬送流体の搬送管路とは別個に設けた循環管路を循環させてもよい。
【0024】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0025】
図1は本発明の実施例に係る吸着式冷凍機の全体構成図である。
図1において、10は冷却負荷(図示省略)に接続されている冷水管33に連なる伝熱管10aを備えた蒸発器、11は冷却水供給管34に連なる伝熱管11aを備えた凝縮器で、該凝縮器11の冷媒液溜めと蒸発器10の蒸発空間とは膨張弁15が介装された冷媒管16により接続されている。
31は前記蒸発器10内の冷媒液溜めと該蒸発器10内の蒸発空間とを接続する散水管、32は該散水管31に設置された循環ポンプである。
【0026】
21は吸着槽で、前記蒸発器10の蒸発空間と冷媒管29により接続されて、前記蒸発器10にて蒸発した低圧冷媒が導入され、該低圧冷媒をシリカゲル、ゼオライト、活性炭等の固体吸着剤に吸着して冷媒付着吸着剤を形成せしめるものである。22は前記吸着槽21とは別個に設置され前記吸着槽21からの前記冷媒付着吸着剤の冷媒と吸着剤とを分離せしめる脱着槽で、その蒸気出口は冷媒管30を介して前記凝縮器11に接続されている。
【0027】
23は前記吸着槽21の下部液溜め部と前記脱着槽22の上部空間とを接続する吸着剤搬入管、24は前記脱着槽22の下部液溜め部と前記吸着槽21の上部空間とを接続する吸着剤戻し管である。
27は前記吸着剤搬入管23に設置されて該吸着剤搬入管23内を通流する前記冷媒付着吸着剤の搬送量を制御する搬送量調整弁、25は該冷媒付着吸着剤を脱着槽22に搬入する搬送ポンプである。
28は前記吸着剤戻し管24に設置されて該吸着剤戻し管24内を通流する吸着剤の搬送量を制御する搬送量調整弁、26は該吸着剤を吸着槽21に戻す搬送ポンプである。
42は前記蒸発器10出口の冷水温度を検出する冷水温度センサ、41はコントローラで、該コントローラ41には前記冷水温度センサ42から蒸発器10出口の冷水温度の検出値が入力され、該検出値に基づき後述する制御を行い前記搬送量調整弁27及び28の開度つまり通路面積を調整するようになっている。
【0028】
かかる吸着式冷凍機の稼働時において、前記蒸発器10においては、前記凝縮器11から冷媒管16を通り膨張弁15にて減圧された減圧冷媒液と冷水管33からの水とを伝熱管10aを介して熱交換することにより、該減圧冷媒液を蒸発、気化して低圧冷媒蒸気とするとともに、冷水管33からの冷水は冷却、降温されて図示しない冷却負荷側に送られる。
【0029】
一方、前記吸着槽21においては、吸着反応で発生する熱を、脱着槽22から吸着剤とともに吸着剤戻し管24を通って該吸着槽21に戻される分離反応供用後の降温温水からなる冷却水で奪うことによって、該蒸発器10内にて蒸発した前記低圧冷媒蒸気を冷媒管29を通して吸引し、該低圧冷媒蒸気を固体の吸着剤に吸着させて冷媒付着吸着剤を形成する。
そして、該冷媒付着吸着剤は、搬送ポンプ25により搬送流体に乗せて、吸着剤搬入管23及び搬送量調整弁27を通して前記吸着槽21とは別個に設置された脱着槽22に搬入される。
前記搬送流体としては、水よりも蒸発圧力が高く、非水溶性で吸着剤に吸着されない性質を備えた高分子体からなる流体が好適であり、その1つとして1−ノナノール(C19OH)がある。
この際において、前記吸着槽21において吸着反応で発生する熱により昇温された冷却水が、前記冷媒付着吸着剤及び搬送流体とともに前記吸着剤搬入管23を通って前記脱着槽22に搬入される。
【0030】
そして脱着槽22においては、前記搬送ポンプ25によって前記吸着槽21内よりも高圧状態にて、前記冷媒付着吸着剤の冷媒と吸着剤との分離反応に必要な熱を前記吸着槽21からの温水(昇温冷却水)により供給することによって、該冷媒付着吸着剤から冷媒蒸気を分離する。
このようにして吸着剤から分離された高圧の冷媒蒸気は高圧の冷媒管30を通して凝縮器11に搬送され、該凝縮器11において冷却水管34からの冷却水によって伝熱管11aを介して凝縮、液化し、前記冷媒管16から膨張弁15を経て蒸発器10に搬送される。
【0031】
また、前記脱着槽22において冷媒を分離した吸着剤は、搬送ポンプ26により、搬送流体に乗せられて、前記吸着剤戻し管24及び搬送量調整弁28を通って前記吸着槽21に還流され、次の吸着作用に供される。
この際において、脱着槽22において分離反応のための熱を放出して降温された温水が、前記冷媒付着吸着剤及び搬送流体とともに前記吸着剤戻し管24を通って前記吸着槽21に搬入される。
【0032】
前記のように、かかる実施例によれば、吸着槽21における吸着反応用の冷却水として、脱着槽22において前記冷媒付着吸着剤の冷媒と吸着剤との分離反応を行わせる際に使用されて降温された温水を、該脱着槽から吸着剤戻し管24を通して吸着槽21に循環させ使用することが可能となるとともに、また該脱着槽22における冷媒と吸着剤との分離反応用の温水として、吸着槽21において吸着反応で発生する熱を奪うことによって昇温された冷却水を、該吸着槽21から吸着剤搬入管23を通して脱着槽22に循環させて使用することが可能となる。これにより、冷媒付着吸着剤あるいは吸着剤の搬送管路つまり前記吸着剤戻し管24及び吸着剤搬入管23を、吸着槽21への冷却水供給管路及び脱着槽への温水供給管路と共用できて、装置が小型コンパクトとなる。
【0033】
従ってかかる実施例によれば、蒸発器10からの冷媒と吸着剤とを吸着する吸着槽21を該冷媒と吸着剤とを分離する脱着槽22とは別個に設けて吸着作用専用としたので、吸着槽21における吸着剤の単位時間当たり吸着量が、脱着側の作動に影響されることなく常時一定となる。
これにより、蒸発器10から冷却負荷に供給される冷水の取り出し温度が常時一定に保持される。
【0034】
また、前記冷水温度センサ42からの冷水温度検出値は前記コントローラ41に入力される。該コントローラ41においては、前記冷水温度に対応して設定された冷媒付着吸着剤の流量になるように前記搬送量調整弁27の開度を制御するとともに、前記冷水温度に対応して設定された吸着剤の戻し流量になるように前記搬送量調整弁28の開度を制御する。
これにより、予め設定された冷水温度になるように吸着剤と冷媒との吸着がなされることとなり、冷水の取り出し温度が常時一定となる。
【0035】
【発明の効果】
以上記載のごとく本発明によれば、蒸発器からの冷媒と吸着剤とを吸着する吸着槽を該冷媒と吸着剤とを分離する脱着槽とは別個に設けて吸着作用専用としたので、脱着側の作動に影響されることなく吸着槽における吸着剤の単位時間当たり吸着量が一定となり、これにより蒸発器から冷却負荷に供給される冷水の取り出し温度が一定となって、従来技術のような冷水の温度を一定化するためのタンク及びその附帯設備が不要となって、装置を小型化できるとともに装置コストが低減される。
【0036】
また本発明によれば、吸着剤は別個に設けられた吸着槽と脱着槽との間を循環するので、従来技術のような吸着剤を保管するための槽が不要となって、装置を小型化できるとともに装置コストを大幅に低減できる。
さらには、冷媒を吸着した吸着剤、あるいは吸着剤のみを搬送流体に乗せて吸着槽と脱着槽との間を循環させるので、吸着槽内及び脱着槽内に熱交換器モジュールは不要となり、装置の製作工数を大幅に少なくでき製作コストを低減できる。
【0037】
また、本発明によれば、吸着槽における吸着反応用の冷却水として、脱着槽において前記冷媒付着吸着剤の冷媒と吸着剤との分離反応を行わせる際に使用されて降温された温水を脱着槽から吸着槽に循環させて使用することが可能となるとともに、また脱着槽における冷媒と吸着剤との分離反応用の温水として、吸着槽において吸着反応で発生する熱を奪うことによって昇温された冷却水を吸着槽から脱着槽に循環させて使用することが可能となる。
これにより、冷媒付着吸着剤あるいは吸着剤の搬送管路を、吸着槽への冷却水供給管路及び脱着槽への温水供給管路と共用できて、装置が小型コンパクトとなる。
【図面の簡単な説明】
【図1】本発明の実施例に係る吸着式冷凍機の全体構成図である。
【図2】従来技術に係る吸着式冷凍機の全体構成図である。
【符号の説明】
10 蒸発器
11 凝縮器
15 膨張弁
16、29、30 冷媒管
21 吸着槽
22 脱着槽
23 吸着剤搬入管
24 吸着剤戻し管
25、26 搬送ポンプ
27、28 搬送量調整弁
33 冷水管
41 コントローラ
42 冷水温度センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is applied to an adsorption refrigerator that generates cold water for air conditioning, for a factory process, etc., adsorbs a refrigerant to an adsorbent in an adsorption tank, and desorbs the adsorbent separately from the adsorption tank. The present invention relates to an adsorption refrigerator and a method for conveying an adsorbent in which the refrigerant is conveyed to a tank and the refrigerant is desorbed from the adsorbent in the desorption tank.
[0002]
[Prior art]
As a chilled water generator that generates chilled water using a heat source such as waste heat, an absorption refrigerator using a liquid desiccant such as lithium chloride or an adsorption refrigeration using a solid adsorbent such as silica gel, zeolite, or activated carbon There is a machine.
FIG. 2 is an overall configuration diagram of an adsorption refrigerator provided in Patent Document 1 (Japanese Patent Laid-Open No. 5-272833) as an example of such an adsorption refrigerator.
[0003]
In FIG. 2, reference numeral 1 denotes a vacuum vessel in which adsorbent heat exchangers 3a and 3b are installed in two chambers partitioned by a partition plate 2. The adsorbent heat exchangers 3a and 3b have a structure in which a heat transfer surface of a heat transfer tube is filled with a solid adsorbent such as silica gel, zeolite, or activated carbon. A supply pipe connected to the heat transfer pipes of the adsorbent heat exchangers 3a, 3b is connected to a cooling water supply system 6 and a hot water supply system 7 through a switching mechanism 5 having four switching valves 8a, 8b, 9a, 9b. Connected to
Reference numeral 10 denotes an evaporator provided with a heat transfer tube 13 connected to the chilled water system 12, reference numeral 11 denotes a condenser provided with a heat transfer tube 14 connected to the cooling water supply system 6, and the evaporator 10 and the condenser 11 each have a refrigerant vapor path. The heat exchanger is connected to the adsorbent heat exchangers 3a and 3b via the heat exchanger. Further, between the evaporator 10 and the condenser 11, a refrigerant supply pipe 16 provided with an expansion valve 15 is provided.
[0004]
FIG. 2 shows an operation state of a batch cycle in which the adsorbent heat exchanger 3a is operated as an adsorber and the adsorbent heat exchanger 3b is operated as a regenerator during the operation of the adsorption refrigerator. The switching valves 8a and 8b corresponding to the system 6 are switched to the adsorbent heat exchanger 3a side as an adsorber, and the switching valves 9a and 9b corresponding to the hot water supply system 7 are adsorbent heat as a regenerator (desorber). It has been switched to the exchanger 3b. The on-off valve 17a on the adsorbent heat exchanger 3a side is closed and the control valve 18a is open, and the on-off valve 17b on the adsorbent heat exchanger 3b side is open and the control valve 18b is closed.
Reference numeral 19 denotes a controller that controls the switching of the switching valves 8a, 8b, 9a, and 9b, and controls the opening and closing of the on-off valves 17a and 17b and the control valves 18a and 18b.
[0005]
In such a batch cycle, the adsorbent adsorbing water in the adsorbent heat exchanger 3b as a regenerator (desorber) is supplied from the hot water supply system 7 to the heat transfer pipe supplied to the heat transfer tube via the switching valves 9a and 9b. To give heat for desorption reaction, and the adsorbent and water are desorbed to generate refrigerant vapor.
This refrigerant vapor enters the condenser 11 via the on-off valve 17b as shown by the arrow in the figure. The refrigerant vapor exchanges heat with the cooling water of the cooling water supply system 6 flowing in the heat transfer tube 14 in the condenser 11 and condenses. The condensed liquid reaches the expansion valve 15 through the refrigerant supply tube 16. The gas is expanded and decompressed by the expansion valve 15 and sent to the evaporator 10. Thus, the regeneration of the adsorbent is performed on the adsorbent heat exchanger 3b side.
[0006]
The evaporator 10 evaporates and evaporates the depressurized condensate into refrigerant vapor by exchanging heat between the depressurized condensate passed through the expansion valve 15 and the water in the chilled water system 12, and also converts the water in the chilled water system 12 into water. Is cooled and cooled, and sent to a cooling load side (not shown).
On the other hand, in the adsorbent heat exchanger 3a as the adsorber, since the adsorbent is regenerated in the previous batch cycle in the same manner as described above, the refrigerant vapor in the evaporator 10 is sucked through the control valve 18a. To adsorb.
That is, the refrigerant vapor in the evaporator 10 is sucked by removing the heat of adsorption generated in the adsorbent by the adsorption reaction with the cooling water supplied from the cooling water supply system 6 via the switching valves 8a and 8b. An adsorbing action of adsorbing the adsorbent is performed.
[0007]
[Patent Document 1]
JP-A-5-272833
[Problems to be solved by the invention]
In the conventional technology including the technology described in Patent Document 1, as described above, the two adsorbent heat exchangers 3a and 3b containing the adsorbent are alternately operated to operate the adsorbent heat exchangers 3a and 3b. The adsorbent in 3b and the refrigerant flowing between the condenser 11 and the evaporator 10 are adsorbed and desorbed.
For this reason, in the related art, since the adsorbed amount of the adsorbent in the adsorbent heat exchangers 3a and 3b is not constant per unit time, the temperature of the cold water taken out of the cold water system 12 and supplied to the cooling load is reduced. In order to obtain cold water at a constant temperature, a tank for storing the cold water is required, which increases the size of the apparatus and increases the cost of the apparatus.
[0009]
In addition, in this conventional technique, two adsorption tanks for storing the adsorbent are required, which also increases the size of the apparatus and the cost of the apparatus.
Furthermore, since the adsorbent heat exchanger module mounted in the adsorption tank requires many man-hours to manufacture, the manufacturing cost of the apparatus increases.
And the like.
[0010]
In view of the problems of the prior art, the present invention stabilizes the temperature of chilled water supplied to a cooling load, eliminates the need for a chilled water storage tank, simplifies and reduces the size of the adsorbent storage facility, and further reduces the adsorbent heat exchanger module. It is an object of the present invention to provide a small-sized and low-cost adsorption type refrigerator and a method of operating the same, which can reduce the number of manufacturing steps of the apparatus.
[0011]
[Means for Solving the Problems]
The present invention achieves such an object, and the first invention utilizes heat generated by a reversible reaction between a solid adsorbent and a refrigerant, an endothermic phenomenon to reduce the heat supplied from a heat source such as hot water. In an adsorption refrigerator that generates cold heat as a heat source, an adsorption tank that adsorbs a refrigerant to the adsorbent to form a refrigerant-adsorbed adsorbent, and a refrigerant of the refrigerant-adsorbed adsorbent that is separately installed from the adsorption tank. It is characterized by comprising a desorption tank for separating the adsorbent, and a transport pipe connecting the adsorption tank and the desorption tank and transporting the refrigerant-adsorbed adsorbent from the adsorption tank to the desorption tank.
[0012]
In the first invention, preferably, a low-pressure refrigerant pipe for guiding the low-pressure refrigerant vapor evaporated in the evaporator to the adsorption tank, and a high-pressure refrigerant for introducing the high-pressure refrigerant vapor separated from the adsorbent in the desorption tank to the condenser. And a refrigerant pipe.
[0013]
In the first invention, preferably, a transfer pipe connecting the adsorption tank and the desorption tank is separated from the refrigerant, an adsorbent carry-in pipe for transferring the refrigerant adsorbent from the adsorption tank to the desorption tank. An adsorbent return pipe for returning the adsorbent from the desorption tank to the adsorption tank; and the adsorbent carry-in pipe also serving as a hot water supply path for supplying hot water for separation reaction from inside the adsorption tank to inside the desorption tank. At the same time, the adsorbent return pipe is also used as a cooling water supply path for supplying cooling water for the adsorption reaction from inside the desorption tank to inside the adsorption tank.
[0014]
Further, in the first invention, preferably, a transfer amount adjusting valve provided in the transfer line to adjust a transfer amount of the refrigerant adsorbing agent flowing through the transfer line, and a cooler by evaporating the refrigerant in an evaporator. A cooling water temperature detector for detecting a temperature of the supplied chilled water; and a controller for controlling an opening degree of the transport amount adjusting valve based on a detected value of the chilled water temperature from the chilled water temperature detector.
[0015]
The second invention relates to an operation method of the adsorption type refrigerator, particularly to a method of using an adsorbent and a refrigerant, and utilizes heat generation and endothermic phenomenon caused by a reversible reaction between a solid adsorbent and a refrigerant to generate heat of hot water or the like. In an operation method of an adsorption refrigerator in which cold heat is generated using heat supplied from a heat source as a heat source, a refrigerant is adsorbed to the adsorbent in an adsorption tank to form a refrigerant adsorbent, and the refrigerant adsorbent is conveyed. The method is characterized in that the fluid is conveyed to a desorption tank, and in the desorption tank, the refrigerant of the refrigerant adsorbing adsorbent and the adsorbent are separated.
[0016]
In the second aspect, the carrier fluid is preferably a polymer fluid having a higher evaporation pressure than water, being insoluble in water, and having a property of not being adsorbed by an adsorbent. Is 1-nonanol (C 9 H 19 OH).
[0017]
Preferably, in the second invention, the temperature of the chilled water to which the chilled heat is supplied by the evaporation of the coolant is detected in the evaporator, and the transport amount of the coolant adsorbent is controlled based on the detected value of the chilled water temperature.
[0018]
According to the invention, in the adsorption tank, the low-pressure refrigerant vapor evaporated in the evaporator is sucked through the low-pressure refrigerant line by removing heat generated by the adsorption reaction with the cooling water, and the low-pressure refrigerant vapor is solid. A refrigerant-adsorbed adsorbent is formed by adsorbing the adsorbent, and the refrigerant-adsorbed adsorbent is a carrier fluid, specifically, a carrier fluid composed of a polymer that has a higher evaporation pressure than water and is water-insoluble and is not adsorbed by the adsorbent. And carried into a desorption tank provided separately from the adsorption tank through a transfer pipeline.
[0019]
In the desorption tank, at a higher pressure than in the adsorption tank, the heat required for the separation reaction between the refrigerant of the refrigerant adsorbent and the adsorbent is supplied by hot water, whereby the refrigerant of the refrigerant adsorbent is supplied. And the adsorbent.
The high-pressure refrigerant vapor separated from the adsorbent as described above is conveyed to a condenser through a high-pressure refrigerant line, condensed and liquefied in the condenser, and conveyed to the evaporator.
Further, the adsorbent from which the refrigerant has been separated in the desorption tank is put on the carrier fluid and is returned to the adsorption tank, where it is subjected to the next adsorption action.
[0020]
Therefore, according to the invention, the adsorption tank for adsorbing the refrigerant and the adsorbent from the evaporator is provided separately from the desorption tank for separating the refrigerant and the adsorbent, and is dedicated to the adsorption operation. The adsorption amount of the adsorbent in the adsorption tank per unit time becomes constant without being affected by the operation.
As a result, the temperature at which the cold water supplied from the evaporator to the cooling load is taken out is constant, so that a tank for keeping the temperature of the cold water constant as in the prior art and its ancillary equipment are not required, and the apparatus is compact. And the equipment cost is reduced.
[0021]
Further, according to the invention, the adsorbent circulates between the separately provided adsorption tank and the desorption tank, so that a tank for storing the adsorbent as in the prior art is not required, and the apparatus is compact. And the cost of the apparatus is greatly reduced.
Furthermore, since the adsorbent that has adsorbed the refrigerant or only the adsorbent is placed on the carrier fluid and circulated between the adsorption tank and the desorption tank, a heat exchanger module is not required in the adsorption tank and the desorption tank, and the apparatus is not required. The number of manufacturing steps is greatly reduced, and the manufacturing cost is reduced.
[0022]
Further, according to the invention, the cooling water for the adsorption reaction in the adsorption tank is used to cause the desorption tank to perform a separation reaction between the refrigerant and the adsorbent of the refrigerant adsorbing adsorbent, and the depressurized hot water is desorbed. It is possible to circulate from the tank to the adsorption tank and use it.Also, as hot water for the separation reaction between the refrigerant and the adsorbent in the desorption tank, the temperature is raised by removing the heat generated by the adsorption reaction in the adsorption tank. It is possible to circulate the used cooling water from the adsorption tank to the desorption tank for use.
Thereby, the refrigerant adsorbent or the transport line for the adsorbent can be shared with the cooling water supply line to the adsorption tank and the hot water supply line to the desorption tank, and the apparatus becomes compact and compact.
[0023]
In addition, even if the circulating water between the adsorption tank and the desorption tank flows in the same pipe as the adsorbent and the carrier fluid, a circulation pipe provided separately from the carrier pipe for the adsorbent and the carrier fluid is used. It may be circulated.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples.
[0025]
FIG. 1 is an overall configuration diagram of an adsorption refrigerator according to an embodiment of the present invention.
In FIG. 1, reference numeral 10 denotes an evaporator provided with a heat transfer tube 10a connected to a cooling water pipe 33 connected to a cooling load (not shown). Reference numeral 11 denotes a condenser provided with a heat transfer tube 11a connected to a cooling water supply pipe. The refrigerant reservoir of the condenser 11 and the evaporation space of the evaporator 10 are connected by a refrigerant pipe 16 in which an expansion valve 15 is interposed.
Reference numeral 31 denotes a water sprinkling pipe connecting the refrigerant liquid reservoir in the evaporator 10 and the evaporation space in the evaporator 10, and 32 denotes a circulation pump installed in the water sprinkling pipe 31.
[0026]
Reference numeral 21 denotes an adsorption tank, which is connected to an evaporation space of the evaporator 10 by a refrigerant pipe 29, into which a low-pressure refrigerant evaporated in the evaporator 10 is introduced, and converts the low-pressure refrigerant into a solid adsorbent such as silica gel, zeolite, or activated carbon. To form a refrigerant adsorbent. Reference numeral 22 denotes a desorption tank which is provided separately from the adsorption tank 21 and separates the refrigerant of the refrigerant adsorbing adsorbent from the adsorption tank 21 and the adsorbent. The vapor outlet of the desorption tank is connected to the condenser 11 via a refrigerant pipe 30. It is connected to the.
[0027]
Reference numeral 23 denotes an adsorbent inlet pipe connecting the lower liquid reservoir of the adsorption tank 21 and the upper space of the desorption tank 22, and 24 connects the lower liquid reservoir of the desorption tank 22 and the upper space of the adsorption tank 21. Adsorbent return pipe.
Reference numeral 27 denotes a transfer amount adjusting valve which is installed in the adsorbent carry-in tube 23 and controls a carry amount of the refrigerant adsorbent flowing through the adsorbent carry-in tube 23; This is a transfer pump to be carried into the machine.
Reference numeral 28 denotes a transfer amount adjusting valve which is installed in the adsorbent return pipe 24 and controls a transfer amount of the adsorbent flowing through the adsorbent return pipe 24, and 26 denotes a transfer pump for returning the adsorbent to the adsorption tank 21. is there.
42 is a chilled water temperature sensor for detecting the chilled water temperature at the outlet of the evaporator 10, 41 is a controller, and the controller 41 receives a detected value of the chilled water temperature at the outlet of the evaporator 10 from the chilled water temperature sensor 42, , The opening degree of the transport amount adjusting valves 27 and 28, that is, the passage area, is adjusted.
[0028]
During the operation of the adsorption refrigerator, the evaporator 10 transfers the decompressed refrigerant liquid from the condenser 11 through the refrigerant pipe 16 through the expansion valve 15 and water from the chilled water pipe 33 to the heat transfer pipe 10a. , The decompressed refrigerant liquid evaporates and vaporizes into low-pressure refrigerant vapor, and the chilled water from the chilled water pipe 33 is cooled and cooled to be sent to a cooling load (not shown).
[0029]
On the other hand, in the adsorption tank 21, the heat generated by the adsorption reaction is returned to the adsorption tank 21 through the adsorbent return pipe 24 together with the adsorbent from the desorption tank 22, and the cooling water composed of the temperature-reduced hot water after the separation reaction is applied. As a result, the low-pressure refrigerant vapor evaporated in the evaporator 10 is sucked through the refrigerant pipe 29, and the low-pressure refrigerant vapor is adsorbed by the solid adsorbent to form a refrigerant adsorbent.
Then, the refrigerant-adsorbed adsorbent is loaded on the transport fluid by the transport pump 25 and is transported through the adsorbent carry-in pipe 23 and the transport amount adjusting valve 27 into the desorption tank 22 separately installed from the adsorption vessel 21.
As the carrier fluid, a fluid composed of a polymer having a higher evaporation pressure than water, being insoluble in water, and having a property of not being adsorbed by an adsorbent is preferable. One of the fluids is 1-nonanol (C 9 H 19). OH).
At this time, the cooling water heated by the heat generated by the adsorption reaction in the adsorption tank 21 is carried into the desorption tank 22 through the adsorbent carry-in pipe 23 together with the refrigerant-adsorbed adsorbent and the carrier fluid. .
[0030]
In the desorption tank 22, the heat required for the separation reaction between the refrigerant of the refrigerant adsorbing adsorbent and the adsorbent is heated by the transfer pump 25 at a higher pressure than the inside of the adsorption tank 21, and the hot water from the adsorption tank 21 is heated. (Heated cooling water) to separate refrigerant vapor from the refrigerant adsorbent.
The high-pressure refrigerant vapor thus separated from the adsorbent is conveyed to the condenser 11 through the high-pressure refrigerant pipe 30, where it is condensed and liquefied by the cooling water from the cooling water pipe 34 via the heat transfer pipe 11a. Then, the refrigerant is conveyed from the refrigerant pipe 16 to the evaporator 10 through the expansion valve 15.
[0031]
The adsorbent from which the refrigerant has been separated in the desorption tank 22 is loaded on a transfer fluid by the transfer pump 26, and is returned to the adsorption tank 21 through the adsorbent return pipe 24 and the transfer amount adjusting valve 28. It is subjected to the following adsorption action.
At this time, the heated water that has been cooled by releasing heat for the separation reaction in the desorption tank 22 is carried into the adsorption tank 21 through the adsorbent return pipe 24 together with the refrigerant adsorbent and the carrier fluid. .
[0032]
As described above, according to this embodiment, the cooling water for the adsorption reaction in the adsorption tank 21 is used when the separation reaction between the refrigerant of the refrigerant adsorbent and the adsorbent is performed in the desorption tank 22. The temperature-reduced hot water can be circulated from the desorption tank through the adsorbent return pipe 24 to the adsorption tank 21 for use, and as hot water for a separation reaction between the refrigerant and the adsorbent in the desorption tank 22. The cooling water heated by removing heat generated by the adsorption reaction in the adsorption tank 21 can be circulated from the adsorption tank 21 to the desorption tank 22 through the adsorbent carrying pipe 23 and used. Thereby, the transfer line for the adsorbent or the adsorbent attached to the refrigerant, that is, the adsorbent return tube 24 and the adsorbent carry-in tube 23 are shared with the cooling water supply line to the adsorption tank 21 and the hot water supply line to the desorption tank. As a result, the device becomes small and compact.
[0033]
Therefore, according to this embodiment, the adsorption tank 21 for adsorbing the refrigerant and the adsorbent from the evaporator 10 is provided separately from the desorption tank 22 for separating the refrigerant and the adsorbent, and is dedicated to the adsorption function. The adsorption amount of the adsorbent per unit time in the adsorption tank 21 is always constant without being affected by the operation on the desorption side.
As a result, the temperature at which cold water is supplied from the evaporator 10 to the cooling load is always kept constant.
[0034]
Further, a chilled water temperature detection value from the chilled water temperature sensor 42 is input to the controller 41. The controller 41 controls the opening degree of the transport amount adjusting valve 27 so that the flow rate of the refrigerant adsorbent set in accordance with the chilled water temperature is set, and is set in accordance with the chilled water temperature. The opening degree of the transport amount adjusting valve 28 is controlled so that the return flow rate of the adsorbent is obtained.
As a result, the adsorbent and the refrigerant are adsorbed so as to reach a preset cold water temperature, and the cold water take-out temperature is always constant.
[0035]
【The invention's effect】
As described above, according to the present invention, the adsorption tank for adsorbing the refrigerant and the adsorbent from the evaporator is provided separately from the desorption tank for separating the refrigerant and the adsorbent, and is dedicated to the adsorption operation. The adsorption amount of the adsorbent in the adsorption tank per unit time becomes constant without being affected by the operation of the side, whereby the temperature of taking out the cold water supplied from the evaporator to the cooling load becomes constant, as in the prior art. The need for a tank for keeping the temperature of the chilled water constant and ancillary equipment therefor is not required, so that the size of the device can be reduced and the cost of the device can be reduced.
[0036]
Further, according to the present invention, since the adsorbent circulates between the separately provided adsorption tank and desorption tank, a tank for storing the adsorbent as in the prior art is not required, and the apparatus can be reduced in size. Device cost can be greatly reduced.
Furthermore, since the adsorbent that has adsorbed the refrigerant or only the adsorbent is placed on the carrier fluid and circulated between the adsorption tank and the desorption tank, a heat exchanger module is not required in the adsorption tank and the desorption tank, and the apparatus is not required. Can significantly reduce the number of manufacturing steps and the manufacturing cost.
[0037]
Further, according to the present invention, as cooling water for the adsorption reaction in the adsorption tank, desorbed hot water which has been used in performing the separation reaction between the refrigerant and the adsorbent of the refrigerant adsorbing adsorbent in the desorption tank and depressurized is used. It is possible to circulate from the tank to the adsorption tank and use it.Also, as hot water for the separation reaction between the refrigerant and the adsorbent in the desorption tank, the temperature is raised by removing the heat generated by the adsorption reaction in the adsorption tank. It is possible to circulate the used cooling water from the adsorption tank to the desorption tank for use.
Thereby, the refrigerant adsorbent or the transport line for the adsorbent can be shared with the cooling water supply line to the adsorption tank and the hot water supply line to the desorption tank, and the apparatus becomes compact and compact.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an adsorption refrigerator according to an embodiment of the present invention.
FIG. 2 is an overall configuration diagram of an adsorption refrigerator according to the related art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Evaporator 11 Condenser 15 Expansion valve 16, 29, 30 Refrigerant pipe 21 Adsorption tank 22 Desorption tank 23 Adsorbent carry-in pipe 24 Adsorbent return pipe 25, 26 Transport pump 27, 28 Transport amount adjustment valve 33 Cold water pipe 41 Controller 42 Chilled water temperature sensor

Claims (7)

固体の吸着剤と冷媒との間の可逆反応に伴う発熱、吸熱現象を利用し、温水等の温熱源から供給される温熱を熱源として冷熱を発生させる吸着式冷凍機において、前記吸着剤に冷媒を吸着して冷媒付着吸着剤を形成せしめる吸着槽と、該吸着槽とは別個に設置されて前記冷媒付着吸着剤の冷媒と吸着剤とを分離せしめる脱着槽と、前記吸着槽と脱着槽とを接続し該吸着槽と脱着槽との間において前記吸着剤を循環させる搬送管路とを備えてなることを特徴とする吸着式冷凍機。The heat generated by the reversible reaction between the solid adsorbent and the refrigerant, utilizing an endothermic phenomenon, in an adsorption type refrigerator that generates cold heat using heat supplied from a heat source such as hot water as a heat source, the refrigerant in the adsorbent An adsorption tank for adsorbing the adsorbent to form a refrigerant adsorbent, a desorption tank installed separately from the adsorption tank to separate the refrigerant and adsorbent of the refrigerant adsorbent, the adsorption tank and the desorption tank And a transfer pipeline for circulating the adsorbent between the adsorption tank and the desorption tank. 蒸発器にて蒸発した低圧冷媒蒸気を前記吸着槽に導く低圧冷媒管路と、前記脱着槽にて吸着剤と分離せしめられた高圧冷媒蒸気を凝縮器に導く高圧冷媒管路とを備えてなることを特徴とする請求項1記載の吸着式冷凍機。A low-pressure refrigerant pipe for guiding the low-pressure refrigerant vapor evaporated by the evaporator to the adsorption tank; and a high-pressure refrigerant pipe for guiding the high-pressure refrigerant vapor separated from the adsorbent in the desorption tank to the condenser. The adsorption refrigerator according to claim 1, wherein: 前記吸着槽と脱着槽とを接続する搬送管路を、前記冷媒付着吸着剤を該吸着槽から脱着槽へ搬送する吸着剤搬入管路と、前記冷媒と分離した吸着剤を脱着槽から吸着槽へ戻す吸着剤戻し管路とにより構成し、前記吸着剤搬入管路を前記吸着槽内から前記脱着槽内に分離反応用の温水を供給する温水供給路と兼用するとともに、前記吸着剤戻し管路を前記脱着槽内から前記吸着槽内に吸着反応用の冷却水を供給する冷却水供給路と兼用したことを特徴とする請求項1記載の吸着式冷凍機。A transfer pipe connecting the adsorption tank and the desorption tank, an adsorbent carry-in pipe for transferring the refrigerant-adsorbed adsorbent from the adsorption tank to the desorption tank, and an adsorbent separated from the refrigerant from the desorption tank to the adsorption tank. The adsorbent carry-in line also serves as a hot water supply line for supplying hot water for separation reaction from the inside of the adsorption tank to the inside of the desorption tank, and the adsorbent return line. 2. The adsorption refrigerator according to claim 1, wherein the passage is also used as a cooling water supply passage for supplying cooling water for an adsorption reaction from inside the desorption tank to inside the adsorption tank. 前記搬送管路に設けられて該搬送管路を流動する前記冷媒付着吸着剤の搬送量を調整する搬送量調整弁と、蒸発器において前記冷媒の蒸発により冷熱を供給される冷水の温度を検出する冷水温度検出器と、該冷水温度検出器からの前記冷水の温度検出値に基づき前記搬送量調整弁の開度を制御するコントローラとを備えてなることを特徴とする請求項1記載の吸着式冷凍機。A transfer amount adjusting valve provided in the transfer line for adjusting the transfer amount of the refrigerant adsorbent flowing through the transfer line, and detecting a temperature of cold water supplied with cold by evaporation of the refrigerant in an evaporator; 2. The adsorption apparatus according to claim 1, further comprising: a chilled water temperature detector that performs the operation, and a controller that controls an opening degree of the conveyance amount adjusting valve based on the chilled water temperature detected by the chilled water temperature detector. Type refrigerator. 固体の吸着剤と冷媒との間の可逆反応に伴う発熱、吸熱現象を利用し、温水等の温熱源から供給される温熱を熱源として冷熱を発生させる吸着式冷凍機の運転方法において、吸着槽にて前記吸着剤に冷媒を吸着して冷媒付着吸着剤を形成し、該冷媒付着吸着剤を搬送流体により脱着槽に搬送し、該脱着槽において冷媒付着吸着剤の冷媒と吸着剤との分離を行うことを特徴とする吸着式冷凍機の運転方法。In an operation method of an adsorption refrigerator in which a heat generated by a reversible reaction between a solid adsorbent and a refrigerant and an endothermic phenomenon are used to generate cold heat using heat supplied from a heat source such as hot water as a heat source, an adsorption tank is used. Adsorbing the refrigerant to the adsorbent to form a refrigerant adsorbent, transporting the refrigerant adsorbent to a desorption tank by a carrier fluid, and separating the refrigerant and the adsorbent of the refrigerant adsorbent in the desorption tank Operating method of the adsorption type refrigerator. 前記搬送流体として、水よりも蒸発圧力が高く、かつ吸着剤に吸着されない性質を有する高分子体の流体を用いることを特徴とする請求項5記載の吸着式冷凍機の運転方法。The method according to claim 5, wherein a polymer fluid having a higher evaporation pressure than water and having a property of not being adsorbed by an adsorbent is used as the carrier fluid. 蒸発器において前記冷媒の蒸発により冷熱を供給される冷水の温度を検出し、該冷水温度の検出値により前記冷媒付着吸着剤の搬送量を制御することを特徴とする請求項5記載の吸着式冷凍機の運転方法。6. The adsorption method according to claim 5, wherein the evaporator detects the temperature of the chilled water to which the chilled heat is supplied by the evaporation of the refrigerant, and controls the transport amount of the sorbent adhering to the refrigerant based on the detected value of the chilled water temperature. How to operate the refrigerator.
JP2003020582A 2003-01-29 2003-01-29 Adsorption type refrigerator and method of operating the same Pending JP2004232928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020582A JP2004232928A (en) 2003-01-29 2003-01-29 Adsorption type refrigerator and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020582A JP2004232928A (en) 2003-01-29 2003-01-29 Adsorption type refrigerator and method of operating the same

Publications (1)

Publication Number Publication Date
JP2004232928A true JP2004232928A (en) 2004-08-19

Family

ID=32950183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020582A Pending JP2004232928A (en) 2003-01-29 2003-01-29 Adsorption type refrigerator and method of operating the same

Country Status (1)

Country Link
JP (1) JP2004232928A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818967A (en) * 2010-05-20 2010-09-01 上海交通大学 Composite energy storage and supply device via thermochemical temperature swing adsorption combined cold-heat supply
JP2012021712A (en) * 2010-07-15 2012-02-02 Fujitsu Ltd Adsorption type heat pump
JP2012037203A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd System for cooling and recovering exhaust heat of electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818967A (en) * 2010-05-20 2010-09-01 上海交通大学 Composite energy storage and supply device via thermochemical temperature swing adsorption combined cold-heat supply
CN101818967B (en) * 2010-05-20 2012-08-29 上海交通大学 Composite energy storage and supply device via thermochemical temperature swing adsorption combined cold-heat supply
JP2012021712A (en) * 2010-07-15 2012-02-02 Fujitsu Ltd Adsorption type heat pump
JP2012037203A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd System for cooling and recovering exhaust heat of electronic apparatus

Similar Documents

Publication Publication Date Title
EP3247948B1 (en) Split type adsorption air conditioning unit
US4594856A (en) Method and device for pumping heat
JPH02230068A (en) Absorption freezer and its operating method
JP5725201B2 (en) Adsorption heat pump system and drive method of adsorption heat pump
JP4946894B2 (en) Waste heat utilization system
JPH11316061A (en) Air conditioning system and its operation method
JP5412775B2 (en) Adsorption refrigerator, control method thereof, and cooling system
JP2010223515A (en) Heat pump and method of operating heat pump
JP2008170137A (en) Dehumidifying air conditioner
JP3831964B2 (en) Adsorption type refrigerator
JP2009121740A (en) Adsorption type heat pump and its operation control method
JPH11223411A (en) Adsorption heat pump
KR102097783B1 (en) Adsorption type air conditioning apparatus for automotive vehicles
JP2004232928A (en) Adsorption type refrigerator and method of operating the same
JP2004293905A (en) Adsorption type refrigerating machine and its operating method
JP3991700B2 (en) Adsorption refrigeration system
JP3353839B2 (en) Refrigeration output control method of adsorption chiller and adsorption chiller capable of refrigeration output control
JP2002162130A (en) Air conditioner
KR102549953B1 (en) Adsorption based heat pump
JPH07301469A (en) Adsorption type refrigerator
JP2013019616A (en) Adsorption type heat pump and information processing system
JP5625571B2 (en) Adsorption heat pump
JP2019027715A (en) Heat storage system
JP4022944B2 (en) Adsorption refrigeration system
JP4565539B2 (en) Operation method of adsorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090918