JP3991700B2 - Adsorption refrigeration system - Google Patents

Adsorption refrigeration system Download PDF

Info

Publication number
JP3991700B2
JP3991700B2 JP2002032660A JP2002032660A JP3991700B2 JP 3991700 B2 JP3991700 B2 JP 3991700B2 JP 2002032660 A JP2002032660 A JP 2002032660A JP 2002032660 A JP2002032660 A JP 2002032660A JP 3991700 B2 JP3991700 B2 JP 3991700B2
Authority
JP
Japan
Prior art keywords
fluid
temperature
switching
adsorbent
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002032660A
Other languages
Japanese (ja)
Other versions
JP2003240383A (en
Inventor
健一 西川
攻明 田中
浩一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002032660A priority Critical patent/JP3991700B2/en
Publication of JP2003240383A publication Critical patent/JP2003240383A/en
Application granted granted Critical
Publication of JP3991700B2 publication Critical patent/JP3991700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸着剤およびこの吸着剤を冷却或いは加熱するための熱交換流路を有した吸着器を備え、この熱交換流路への加熱流体と冷却流体との供給を交互に切り替えて、吸着剤に冷媒蒸気の脱着と吸着を交互に行わせる吸着式冷凍装置に関する。
【0002】
【従来の技術】
従来技術として、特開平9−196493号公報に開示された吸着式冷凍装置が知られている。これは、吸着剤を備えた吸着器への加熱流体と冷却流体との供給を交互に切り替えて吸着剤に冷媒蒸気の脱着と吸着とを交互に行わせる吸着式冷凍装置において、その加熱流体の供給から冷却流体の供給に切り替える際、熱交換流路内に残っている加熱流体が冷却流体供給路に流入することを防止するために、入口側切替弁の切り替え後、熱交換流路内の加熱流体が冷却流体に押し流される分の時間遅れて出口側切替弁を切り替えるように構成している。
【0003】
しかしながら、この従来の吸着式冷凍装置では、熱交換器や吸着剤の熱容量のために、入口側切替弁と出口側切替弁の作動の時間差が、熱交換流路内の加熱流体が冷却流体に押し流される分の遅れだけでは足りず、冷却流体は熱交換器や吸着剤の熱容量分加熱されて冷却流体流路に流入し、同様に加熱流体は熱交換器や吸着剤の熱容量分冷却されて加熱流体流路に流入してしまうという現象が起き、加熱流体・冷却流体の温度が大きく変動するため、吸脱着切替時に吸着能力・脱着能力が大幅に低下し、ひいては冷凍装置の能力が低下するという問題が生じている。
【0004】
また、この冷凍システムを構成する熱交換器や接続配管の形状・長さや、循環ポンプの能力・運転条件などが変わると、加熱流体・冷却流体の流量が変わってしまうために、流量条件によって入口側切替弁と出口側切替弁の作動の最適な時間差が変化してしまうという問題もある。
【0005】
【発明が解決しようとする課題】
本発明は、上記問題に鑑みなされたもので、その目的は、冷媒蒸気の脱着と吸着とを切り替える際に、熱交換媒体(加熱流体と冷却流体)の温度変動を最小にして、切替時の冷凍能力の低下を最小限に抑えることができる吸着式冷凍装置を提供することである。
【0006】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、特許請求の範囲の各請求項に記載された吸着式冷凍装置を提供する。
請求項1に記載の吸着式冷凍装置は、吸着器が少なくとも2つ設けられていて、各々の吸着器における冷媒蒸気の脱着と吸着とを切り替える際に、吸着器への出口側の切替弁の下流側での加熱流体と冷却流体の温度を検知して、入口側切替弁の切替動作後に、加熱流体と冷却流体の温度が略等しくなるタイミングで出口側切替弁の切替動作を行うようにしたものであり、これにより、加熱流体と冷却流体の温度変動を最小にし、脱・吸着切替時の冷凍能力の低下を最小限に抑え、冷凍装置の能力を高めることができる。
【0007】
請求項2の吸着式冷凍装置は、出口側切替弁の下流側での加熱流体と冷却流体の温度を検知するのに代えて、出口側切替弁の上流側で加熱流体と冷却流体の温度を検知するようにしたものであり、この場合においても、請求項1と同様の作用効果を奏する。
請求項3に記載の吸着式冷凍装置は、液冷媒及び蒸発した蒸気冷媒を吸着する吸着剤とを含む第1と第2の吸着器と、これらの吸着器内にそれぞれ設けられた、液冷媒と熱交換媒体(高温流体と低温流体)と熱交換を行う下側熱交換器、及び吸着剤と熱交換媒体(加熱流体と冷却流体)と熱交換を行う上側熱交換器と、加熱流体と冷却流体のこれらの上側熱交換器への流路の切り替えを行う入口側切替弁と出口側切替弁と、高温流体と低温流体のこれらの下側熱交換器への流路の切り替えを行う入口側切替弁と出口側切替弁とを備えていて、一方の吸着器が吸着剤の吸着作用を行い、他方の吸着器が吸着剤の脱着作用を行う第1の状態から、一方の吸着器が脱着作用を行い、他方の吸着器が吸着作用を行う第2の状態へ切り替える際に、加熱流体と冷却流体及び高温流体と低温流体のそれぞれの入口側切替弁を切り替えた後に、出口側切替弁の下流側での加熱流体と冷却流体及び高温流体と低温流体のそれぞれの両者の流体温度が略等しくなるタイミングで、それぞれの出口側切替弁を切替作動させるようにしたものである。これにより、加熱流体と冷却流体並びに高温流体と低温流体の各々の温度変動を最小にして、脱・吸着切替時の冷凍能力の低下を最小限に抑えることができる。
【0008】
請求項4の吸着式冷凍装置は、出口側切替弁の下流側でそれぞれの流体の温度を検知していたのに代えて、出口側切替弁の上流側でそれぞれの流体の温度を検知するようにしたものであり、この場合においても、請求項3のものと同様の作用効果を奏する。
請求項5の吸着式冷凍装置は、冷却流体の流通系路内に設置される放熱器と、高温流体の流通系路内に設置される放熱器とを一つの放熱器で共用で使用するようにしたものであり、これにより、システムのコンパクト化が図れる。
【0009】
【発明の実施の形態】
以下、図面に従って本発明の実施の形態の吸着式冷凍装置について説明する。図1〜4において、本発明の実施の形態の吸着式冷凍装置1の全体のシステム構成が、点線の枠で示され、互いに異なる状態にして示されている。吸着式冷凍装置1は、略真空に保たれた容器(吸着器)内の液冷媒(水など)の蒸発により冷凍能力を発揮する吸着式冷凍機であり、この吸着式冷凍装置1内には、図に示すように液冷媒および蒸発した蒸気冷媒を吸着する吸着剤の入った第1吸着器2aと第2吸着器2bとが設けられており、それぞれの吸着器2a,2b内には、液冷媒Lr と熱交換媒体(水など)と熱交換を行う第1下側熱交換器3aと第2下側熱交換器3b、および吸着剤と熱交換媒体と熱交換を行う第1上側熱交換器4aと第2上側熱交換器4bとが設けられている。なお、冷媒として例えば水が使用され、吸着剤として例えばシリカゲル、ゼオライト、活性炭、活性アルミナ等が使用されている。
【0010】
第1、第2吸着器2a,2b内の第1、第2下側熱交換器3a,3bには、液冷媒Lr の蒸発により冷却され、室内熱交換器7にて室内に吹き出す空気と熱交換された熱交換器媒体と、放熱器6にて外気で冷却された熱交換媒体とが第3、第4四方弁12,13により切り替え流通する。一方、第1、第2吸着器2a,2b内の第1、第2上側熱交換器4a,4bには、放熱器5にて外気で冷却された熱交換媒体(冷却流体)と、高温熱交換媒体を供給する熱源(例えばエンジン)8で加熱された熱交換媒体(加熱流体)とが第1、第2四方弁10,11により切り替え流通する。
【0011】
第1〜第4四方弁10〜13は、熱交換媒体の循環流路を切り替える四方電磁弁であり、これは三方弁、二方弁でも代用可能である。図において、符号20〜23は、熱交換媒体を循環させるポンプであり、30〜33は熱交換媒体の温度を検知する温度センサ、例えばサーミスタ、測温抵抗体、熱電対など、である。
【0012】
本発明においては、第1〜第4四方弁10〜13は、図1に示す状態(以下、第1の状態と称する)と図3に示す状態(以下、第2の状態と称する)との間で切り替えられるようになっている。図2は、第1の状態から第2の状態へ移る移行期Iの状態を示しており、図4は、第2の状態から第1の状態へ移る移行期IIの状態を示している。
【0013】
図1の第1の状態においては、熱源8で加熱された加熱流体は第1四方弁10を通って第2吸着器2bの第2上側熱交換器4bに入り、そこから第2四方弁11を通って熱源8に戻る回路と、放熱器5によって冷却された冷却流体が第1四方弁10を通って第1吸着器2aの第1上側熱交換器4aに入り、そこから第2四方弁11を通って放熱器5に戻る回路と、放熱器6によって冷却された熱交換媒体が第3四方弁12を通って第2吸着器2bの第2下側熱交換器3bに入り、そこで加熱されて第4四方弁13を通って放熱器6に戻る回路と、室内熱交換器7により加熱された熱交換器媒体が第3四方弁12を通って第1吸着器2aの第1下側熱交換器3aに入り、そこで冷却されて第4四方弁13を通って室内熱交換器7へと戻る回路とが形成される。
【0014】
図3の第2の状態においては、熱源8で加熱された加熱流体は第1四方弁10を通って第1吸着器2aの第1上側熱交換器4aに入り、そこから第2四方弁11を通って熱源8に戻る回路と、放熱器5によって冷却された冷却流体が第1四方弁10を通って第2吸着器2bの第2上側熱交換器4bに入り、そこから第2四方弁12を通って放熱器5に戻る回路と、放熱器6によって冷却された熱交換媒体が第3四方弁12を通って第1吸着器2aの第1下側熱交換器3aに入り、そこで加熱されて第4四方弁13を通って放熱器6に戻る回路と、室内熱交換器7により加熱された熱交換媒体が第3四方弁12を通って第2吸着器2bの第2下側熱交換器3bに入り、そこで冷却されて第4四方弁13を通って室内熱交換器7へと戻る回路とが形成される。
【0015】
次にその作用について説明する。吸着式冷凍装置1のポンプ20〜23を作動させる。図1の第1の状態においては、第1吸着器2aでは、第1上側熱交換器4aに放熱器5からの冷却流体が循環することで吸着剤が冷却され、第1吸着器2a内の液冷媒が蒸発し、吸着剤に吸着される。このときの蒸発潜熱により第1吸着器2a内の第1下側熱交換器3aで熱交換媒体が冷却され、これを室内熱交換器7に循環させることにより室内を冷房する。
一方、第2吸着器2bでは、第2上側熱交換器4bに熱源8よりの加熱流体が循環することで吸着剤が加熱され、吸着剤に吸着していた蒸気冷媒が脱着し、凝縮する。このときの凝縮潜熱により、第2吸着器2b内の第2下側熱交換器3bにて熱交換媒体が加熱され、これを放熱器6に循環させることにより外気に放熱する。
【0016】
このような第1の状態が一定時間続くと、第1吸着器2a内の吸着剤の吸着能力が低下し、また第2吸着器2bの吸着剤の脱着が終了する。そこで、第3図の第2の状態に移行するが、その場合、図2に示すようにまず入口側の四方弁である第1、第3四方弁10,12を切り替える。
【0017】
次いで、第2の状態に移行するために、まず出口側四方弁である第2四方弁11を切り替えるタイミングについて説明する。第1四方弁10を切り替えると、図2に示すように熱源8からの加熱流体が第1吸着器2aの第1上側熱交換器4aに供給され、この第1上側熱交換器4aの熱交換流路内に残っている冷却流体が、新らたに供給されてくる加熱流体に押されるようにして流し出される。
一方、放熱器5からの冷却流体が第2吸着器2bの第2上側熱交換器4bに供給され、この第2上側熱交換器4bの熱交換流路内に残っている加熱流体が、新らたに供給されてくる冷却流体に押されるようにして流し出される。
【0018】
そして第1上側熱交換器4aの熱交換流路内に残っている冷却流体が流れ出され尽くすと、第2四方弁11の下流側に配置された温度センサ31が検知する流体温度が上昇し始めるが、冷却されていた第1吸着器2aの吸着剤・熱交換器・容器などの熱容量により急激ではなく、或る程度の勾配で上昇する。
同様に第2上側熱交換器4bの熱交換流路内に残っている加熱流体が流し出され尽くすと、第2四方弁11の下流側に配置された温度センサ30が検知する流体温度が低下し始めるが、加熱されていた第2吸着器2bの吸着剤・熱交換器・容器などの熱容量により急激ではなく、或る程度の勾配で低下する。つまり、温度センサ30,31が検知する温度差が徐々に小さくなってくる。そこで両者の温度がほぼ等しくなったときに出口側四方弁である第2四方弁11を切り替える(図3)。
【0019】
次に、同じく出口側四方弁である第4四方弁13の切り替えのタイミングについて説明する。入口側四方弁である第3四方弁12を切り替えると、放熱器6からの高温(外気温度相当)の熱交換媒体(高温流体)が第1吸着器2aの第1下側熱交換器3aに供給され、この第1下側熱交換器3aの熱交換流路内に残っている低温の熱交換媒体(低温流体)が、新らたに供給されてくる高温流体に押されるようにして流し出される。
一方、室内熱交換器7からの低温の熱交換媒体(低温流体)が第2吸着器の第2下側熱交換器3bに供給され、この第2下側熱交換器3bの熱交換流路内に残っている高温の熱交換媒体(高温流体)が、新らたに供給されてくる低温流体に押されるようにして流し出される。
【0020】
そして、第1吸着器2aの第1下側熱交換器3aの熱交換流路内に残っている低温流体が流し出され尽くすと、出口側四方弁である第4四方弁13の下流側に配置された温度センサ33が検知する流体温度が上昇し始めるが、冷却されていた第1吸着器2aの吸着剤・熱交換器・容器などの熱容量により急激ではなく、或る程度の勾配で上昇する。
同様に第2吸着器2bの第2下側熱交換器3bの熱交換流路内に残っている高温流体が流し出され尽くすと、第4四方弁の下流側に配置された温度センサ32が検知する流体温度が低下し始めるが、加熱されていた第2吸着器2bの吸着剤・熱交換器・容器などの熱容量により急激ではなく、或る程度の勾配で低下する。つまり、温度センサ32,33が検知する温度差が徐々に小さくなってくる。そこで両者の温度がほぼ等しくなったときに、出口側四方弁である第4四方弁13を切り替える(図3)。
【0021】
以上のようにして、第1、第2吸着器の吸着側・脱着側が切り替わり、第1の状態から第2の状態(図3)に移行する。この第2の状態が一定時間続くと、第2吸着器2bの吸着能力が低下し、また第1吸着器2aの脱着が終了する。そこで、第1の状態から第2の状態に移行する場合と同様に、図4に示すように、まず入口側四方弁である第1、第3四方弁10,12を切り替える。その後、温度センサ30,31の温度がほぼ等しくなったときに出口側四方弁である第2四方弁11を切り替え、温度センサ32,33の温度がほぼ等しくなったときに出口側四方弁である第4四方弁13を切り替える。このようにして、図1に示される第1の状態に戻される。
このように、第1、第2吸着器2a,2bは、一方が吸着工程を実行するとき、他方は脱着工程を実行するようにして、吸着工程と脱着工程とを交互に繰り返す。
【0022】
以上説明した本発明の実施の形態の吸着式冷凍装置を使用し、加熱流体の温度が約70℃、冷却流体の温度が約30℃の場合で、実験した結果を説明する。
特開平9−196493号公報の従来の吸着式冷凍装置のように、図2において、第1吸着器2aの第1上側熱交換器4aの熱交換流路内に残っている加熱流体が冷却流体によって流し出され尽くしたときに、出口側の第2四方弁11を切り替えた場合、図5に示すように、温度センサ30が示す加熱流体の温度は、冷却されていた第1吸着器2aの熱容量により急激に低下し、同様に温度センサ31が示す冷却流体の温度は、加熱されていた第2吸着器2bの熱容量により、急激に上昇する。実験結果では、温度センサ30は約70℃から約35℃まで低下し、温度センサ31は約30℃から約60℃まで上昇する(図5)。
【0023】
本発明においては、図2において、第1吸着器2aの第1上側熱交換器4aの熱交換流路内に残っている冷却流体が加熱流体によって流し出され尽くし、また第2吸着器2bの第2上側熱交換器4bの熱交換流路内に残っている加熱流体が冷却流体によって流し出され尽くしても、しばらくそのままの回路状態での加熱・冷却流体の循環を続け、図6に示すように、温度センサ30の示す温度が低下し、温度センサ31が示す温度が上昇し、両者の温度がほぼ等しくなったときに出口側の第2四方弁11を切り替えると、温度センサ30の示す温度は上昇し、温度センサ31が示す温度は低下する。実験結果では、温度センサ30は約70℃から約48℃まで低下し、温度センサ31は約30℃から約48℃まで上昇したが、図5に対し温度変動を大幅に小さくすることができる(図6)。
【0024】
本発明における場合よりも、出口側の第2四方弁11を切り替えるタイミングをさらに遅くした場合、即ち、入口側の第1四方弁10の切り替え後、温度センサ30,31の温度が逆転後に出口側の第2四方弁11を切り替えた場合においてもまた、図7に示すように、加熱流体・冷却流体の温度変動が大きくなってしまう。
【0025】
なお、上述の実験の説明では、出口側の第2四方弁11の切り替えのタイミングにおける効果について説明したが、出口側の第4四方弁13の切り替えについても同様に、吸着器の吸・脱着切替時に室内を冷房する低温流体の温度変動を最小に抑える効果がある。このようにして、吸着器の吸・脱着切替時の熱交換媒体の温度変動を最小にすることで、吸・脱着切替時の吸着能力・脱着能力の低下を抑えること、すなわち吸着式冷凍装置の能力を高めることができ、システム全体での熱収支の向上の効果もある。
【0026】
図8は、本発明の別の実施形態の吸着式冷凍装置の全体システムを示している。本実施形態では、温度センサ30〜33の取付位置が前述の実施形態と異なっている以外は、前述の実施形態と同様の構成である。即ち、出口側四方弁である第2四方弁11及び第4四方弁13の下流側にそれぞれの温度センサ30〜33を設けていたのに代えて、第2、第4四方弁11,13の上流側にそれぞれの温度センサ30〜33を配置したものである。ただし、温度センサ30〜33を出口側の第2、第4四方弁11,13の上流側に配置したため、図1の第1の状態と図3の第2の状態とでは、それぞれ検知する熱交換媒体が異なる。例えば、第1の状態では、温度センサ30は加熱流体の温度を、また温度センサ31は冷却流体の温度を検知するが、第2の状態では、温度センサ30は冷却流体の温度を、温度センサ31は加熱流体の温度をそれぞれ検知する。同様に第1の状態では、温度センサ32は、高温流体の温度を、また温度センサ33は低温流体の温度を検知するが、第2の状態では、温度センサ32は低温流体の温度を、温度センサ33は高温流体の温度をそれぞれ検知する。
このように温度センサ30〜33の設置位置を、出口側の第2、第4四方弁11,13の下流側から上流側に変えても、前述の実施形態と同様に吸着器の吸・脱着切替時の熱交換媒体の温度変動を最小にすることができ、吸・脱着切替時の吸着能力・脱着能力の低下を抑えることができる。
【0027】
図9は、本発明の更に別の実施形態の吸着式冷凍装置の全体システムを示している。本実施形態では、放熱器5,6を上述のように別個に設けたものから、共用して設けたものに変更している。このように放熱器5,6を共用させても、上述の実施形態と同様の作用効果を奏する。
【0028】
以上説明したように、本発明によれば、吸着器の吸・脱着切替時の熱交換媒体の温度変動を最小にすることで、吸・脱着切替時の吸着能力・脱着能力の低下を抑えることができる。したがって冷凍装置の能力を高めることができ、システム全体での熱収支の向上を図れる。
また、冷凍装置のシステムを構成する熱交換器や接続配管の形状・長さや、循環ポンプの能力・運転条件などが変わると、熱交換媒体の流量が変わってしまうために、流量条件によって入口側四方弁と出口側四方弁の作動の最適な時間差が変化してしまう。しかしながら、本発明では、熱交換媒体の温度検知によって出口側四方弁の作動を制御することにより、設置場所・条件による流量のバラツキがあったり、使用途中に何らかの要因で熱交換媒体の流量が変化したりした場合でも、常に最適なタイミングで出口側四方弁を作動させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の吸着式冷凍装置の全体のシステム構成であり、吸着・脱着作用の第1の状態を示している。
【図2】図1の第1の状態から図3の第2の状態へ移行中の吸着式冷凍装置の全体のシステム構成を示している。
【図3】吸着・脱着作用の第2の状態の吸着式冷凍装置の全体のシステム構成を示している。
【図4】第2の状態から第1の状態へ移行中の吸着式冷凍装置の全体のシステム構成を示している。
【図5】入口側切替弁(四方弁)の切替作動後に、熱交換流路内のそれぞれの流体(加熱流体と冷却流体)が入れ替ったところで出口側切替弁(四方弁)を切替作動した場合における加熱流体と冷却流体の温度変化を示すグラフである。
【図6】本発明における、入口側切替弁(四方弁)の切替作動後に、それぞれの流体(加熱流体と冷却流体)の温度を検知する温度センサの温度が略等しくなったところで、出口側切替弁(四方弁)を切替作動した場合における加熱流体と冷却流体の温度変化を示すグラフである。
【図7】入口側切替弁(四方弁)の切替作動後に、それぞれの流体(加熱流体と冷却流体)の温度を検知する温度センサの温度が逆転した後、出口側切替弁(四方弁)を切替作動した場合における加熱流体と冷却流体の温度変化を示すグラフである。
【図8】本発明の別の実施形態の吸着式冷凍装置の全体のシステム構成を示す図である。
【図9】本発明の更に別の実施形態の吸着式冷凍装置の全体のシステム構成を示す図である。
【符号の説明】
1…吸着式冷凍装置
2a,2b…吸着器
3a,3b…下側熱交換器
4a,4b…上側熱交換器
5,6…放熱器
7…室内熱交換器
10,12…入口側四方弁(切替弁)
11,13…出口側四方弁(切替弁)
20〜23…ポンプ
30〜33…温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention comprises an adsorbent and an adsorber having a heat exchange channel for cooling or heating the adsorbent, and alternately switching the supply of the heating fluid and the cooling fluid to the heat exchange channel, The present invention relates to an adsorption refrigeration apparatus that causes an adsorbent to alternately perform desorption and adsorption of refrigerant vapor.
[0002]
[Prior art]
As a prior art, an adsorption refrigeration apparatus disclosed in Japanese Patent Laid-Open No. 9-196493 is known. This is an adsorption refrigeration apparatus in which heating fluid and cooling fluid are alternately supplied to an adsorber equipped with an adsorbent to cause the adsorbent to alternately perform desorption and adsorption of refrigerant vapor. When switching from supply to cooling fluid supply, in order to prevent the heated fluid remaining in the heat exchange channel from flowing into the cooling fluid supply channel, after switching the inlet side switching valve, The outlet-side switching valve is switched with a time delay corresponding to the time when the heating fluid is pushed away by the cooling fluid.
[0003]
However, in this conventional adsorption refrigeration system, due to the heat capacity of the heat exchanger and the adsorbent, the time difference between the operation of the inlet side switching valve and the outlet side switching valve is caused by the heating fluid in the heat exchange channel being the cooling fluid. The delay of the pushed away is not enough, and the cooling fluid is heated by the heat capacity of the heat exchanger and the adsorbent and flows into the cooling fluid flow path. Similarly, the heating fluid is cooled by the heat capacity of the heat exchanger and the adsorbent. The phenomenon of flowing into the heating fluid flow path occurs, and the temperature of the heating fluid / cooling fluid fluctuates greatly. Therefore, the adsorption capacity / desorption capacity is greatly reduced at the time of adsorption / desorption switching, and the capacity of the refrigeration system is reduced. The problem has arisen.
[0004]
In addition, if the shape and length of the heat exchangers and connection pipes that make up this refrigeration system and the capacity and operating conditions of the circulation pump change, the flow rate of the heating fluid and cooling fluid will change. There is also a problem that the optimal time difference between the operation of the side switching valve and the outlet side switching valve changes.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and its purpose is to minimize the temperature fluctuation of the heat exchange medium (heating fluid and cooling fluid) when switching between desorption and adsorption of refrigerant vapor, and at the time of switching. It is an object to provide an adsorption refrigeration apparatus capable of minimizing a decrease in refrigeration capacity.
[0006]
[Means for Solving the Problems]
The present invention provides an adsorption refrigeration apparatus described in each claim as a means for solving the problems.
The adsorption refrigeration apparatus according to claim 1 is provided with at least two adsorbers, and when switching between desorption and adsorption of refrigerant vapor in each adsorber, the switching valve on the outlet side to the adsorber The temperature of the heating fluid and the cooling fluid on the downstream side is detected, and after the switching operation of the inlet side switching valve, the switching operation of the outlet side switching valve is performed at the timing when the temperature of the heating fluid and the cooling fluid becomes substantially equal. Thus, the temperature fluctuation of the heating fluid and the cooling fluid can be minimized, the decrease in the refrigerating capacity at the time of desorption / adsorption switching can be minimized, and the capacity of the refrigerating apparatus can be increased.
[0007]
Instead of detecting the temperature of the heating fluid and the cooling fluid on the downstream side of the outlet side switching valve, the adsorption refrigeration apparatus of claim 2 sets the temperature of the heating fluid and the cooling fluid on the upstream side of the outlet side switching valve. In this case, the same effect as that of the first aspect can be obtained.
The adsorption refrigeration apparatus according to claim 3, wherein the first and second adsorbers each include a liquid refrigerant and an adsorbent that adsorbs the evaporated vapor refrigerant, and the liquid refrigerant provided in each of the adsorbers. A lower heat exchanger that exchanges heat with the heat exchange medium (high temperature fluid and low temperature fluid), an upper heat exchanger that exchanges heat with the adsorbent and the heat exchange medium (heating fluid and cooling fluid), and a heating fluid. An inlet-side switching valve and an outlet-side switching valve for switching the flow path of the cooling fluid to these upper heat exchangers, and an inlet for switching the flow path of the high-temperature fluid and the low-temperature fluid to these lower heat exchangers From the first state in which one adsorber performs an adsorbing action of the adsorbent and the other adsorber performs a desorbing action of the adsorbent. When the desorption action is performed and the other adsorber is switched to the second state where the adsorption action is performed, heating is performed. After switching the inlet side switching valves for the body, the cooling fluid, and the high temperature fluid and the low temperature fluid, the fluid temperatures of both the heating fluid and the cooling fluid and the high temperature fluid and the low temperature fluid on the downstream side of the outlet side switching valve are Each outlet-side switching valve is switched at substantially the same timing. Thereby, the temperature fluctuation of each of the heating fluid and the cooling fluid and the high temperature fluid and the low temperature fluid can be minimized, and the decrease in the refrigerating capacity at the time of desorption / adsorption switching can be minimized.
[0008]
The adsorption refrigeration apparatus according to claim 4 detects the temperature of each fluid upstream of the outlet side switching valve instead of detecting the temperature of each fluid downstream of the outlet side switching valve. In this case, the same function and effect as those of the third aspect can be obtained.
The adsorption refrigeration apparatus according to claim 5 uses the radiator installed in the cooling fluid circulation system and the radiator installed in the high-temperature fluid circulation system shared by one radiator. Thus, the system can be made compact.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an adsorption refrigeration apparatus according to an embodiment of the present invention will be described with reference to the drawings. 1 to 4, the entire system configuration of the adsorption refrigeration apparatus 1 according to the embodiment of the present invention is indicated by a dotted frame and is shown in a different state. The adsorption refrigeration apparatus 1 is an adsorption refrigeration machine that exhibits a refrigerating capacity by evaporation of liquid refrigerant (such as water) in a container (adsorber) kept in a substantially vacuum. As shown in the figure, a first adsorber 2a and a second adsorber 2b containing an adsorbent that adsorbs liquid refrigerant and evaporated vapor refrigerant are provided, and in each of the adsorbers 2a and 2b, The first lower heat exchanger 3a and the second lower heat exchanger 3b that exchange heat with the liquid refrigerant Lr and the heat exchange medium (water, etc.), and the first upper side that exchanges heat between the adsorbent and the heat exchange medium. A heat exchanger 4a and a second upper heat exchanger 4b are provided. For example, water is used as the refrigerant, and silica gel, zeolite, activated carbon, activated alumina, or the like is used as the adsorbent.
[0010]
First, second adsorber 2a, first in 2b, the second lower-side heat exchanger 3a, the 3b, is cooled by evaporation of the liquid refrigerant L r, and air blown by the indoor heat exchanger 7 into the room The heat exchange medium subjected to heat exchange and the heat exchange medium cooled by outside air in the radiator 6 are switched and circulated by the third and fourth four-way valves 12 and 13. On the other hand, the first and second upper heat exchangers 4a and 4b in the first and second adsorbers 2a and 2b include a heat exchange medium (cooling fluid) cooled by outside air in the radiator 5 and high-temperature heat. A heat exchange medium (heating fluid) heated by a heat source (for example, an engine) 8 that supplies the exchange medium is switched and circulated by the first and second four-way valves 10 and 11.
[0011]
The first to fourth four-way valves 10 to 13 are four-way electromagnetic valves that switch the circulation flow path of the heat exchange medium, and this can be replaced with a three-way valve or a two-way valve. In the figure, reference numerals 20 to 23 are pumps for circulating the heat exchange medium, and 30 to 33 are temperature sensors for detecting the temperature of the heat exchange medium, such as a thermistor, a resistance temperature detector, a thermocouple, and the like.
[0012]
In the present invention, the first to fourth four-way valves 10 to 13 are in a state shown in FIG. 1 (hereinafter referred to as a first state) and a state shown in FIG. 3 (hereinafter referred to as a second state). Can be switched between. FIG. 2 shows the state of the transition period I in which the first state shifts to the second state, and FIG. 4 shows the state of the transition period II in which the transition from the second state to the first state occurs.
[0013]
In the first state of FIG. 1, the heated fluid heated by the heat source 8 passes through the first four-way valve 10 and enters the second upper heat exchanger 4 b of the second adsorber 2 b, and from there, the second four-way valve 11. Through which the cooling fluid cooled by the radiator 5 passes through the first four-way valve 10 and enters the first upper heat exchanger 4a of the first adsorber 2a and from there the second four-way valve. 11 and the circuit returning to the radiator 5 and the heat exchange medium cooled by the radiator 6 enter the second lower heat exchanger 3b of the second adsorber 2b through the third four-way valve 12 and heated there. The circuit returned to the radiator 6 through the fourth four-way valve 13 and the heat exchanger medium heated by the indoor heat exchanger 7 pass through the third four-way valve 12 and the first lower side of the first adsorber 2a. A circuit that enters the heat exchanger 3a, is cooled there, and returns to the indoor heat exchanger 7 through the fourth four-way valve 13. It is formed.
[0014]
In the second state of FIG. 3, the heated fluid heated by the heat source 8 passes through the first four-way valve 10 and enters the first upper heat exchanger 4 a of the first adsorber 2 a, and from there, the second four-way valve 11. Through which the cooling fluid cooled by the radiator 5 passes through the first four-way valve 10 and enters the second upper heat exchanger 4b of the second adsorber 2b, and from there the second four-way valve. A circuit that returns to the radiator 5 through 12 and the heat exchange medium cooled by the radiator 6 enters the first lower heat exchanger 3a of the first adsorber 2a through the third four-way valve 12, and heats there And the circuit returning to the radiator 6 through the fourth four-way valve 13 and the heat exchange medium heated by the indoor heat exchanger 7 pass through the third four-way valve 12 and the second lower heat of the second adsorber 2b. A circuit that enters the exchanger 3b, is cooled there, and returns to the indoor heat exchanger 7 through the fourth four-way valve 13. It is made.
[0015]
Next, the operation will be described. The pumps 20 to 23 of the adsorption refrigeration apparatus 1 are operated. In the first state of FIG. 1, in the first adsorber 2a, the adsorbent is cooled by circulating the cooling fluid from the radiator 5 to the first upper heat exchanger 4a, and the first adsorber 2a The liquid refrigerant evaporates and is adsorbed by the adsorbent. The heat exchange medium is cooled by the first lower heat exchanger 3a in the first adsorber 2a by the latent heat of vaporization at this time, and this is circulated to the indoor heat exchanger 7 to cool the room.
On the other hand, in the second adsorber 2b, the adsorbent is heated by circulating the heating fluid from the heat source 8 in the second upper heat exchanger 4b, and the vapor refrigerant adsorbed on the adsorbent is desorbed and condensed. Due to the latent heat of condensation at this time, the heat exchange medium is heated in the second lower heat exchanger 3b in the second adsorber 2b and is radiated to the outside air by circulating it through the radiator 6.
[0016]
When such a first state continues for a certain period of time, the adsorption capacity of the adsorbent in the first adsorber 2a is reduced, and the desorption of the adsorbent in the second adsorber 2b is completed. Therefore, the second state shown in FIG. 3 is entered. In this case, first, the first and third four-way valves 10 and 12, which are four-way valves on the inlet side, are switched as shown in FIG.
[0017]
Next, the timing for switching the second four-way valve 11 that is the outlet side four-way valve in order to shift to the second state will be described. When the first four-way valve 10 is switched, the heating fluid from the heat source 8 is supplied to the first upper heat exchanger 4a of the first adsorber 2a as shown in FIG. 2, and heat exchange of the first upper heat exchanger 4a is performed. The cooling fluid remaining in the flow path is poured out by being pushed by the newly supplied heating fluid.
On the other hand, the cooling fluid from the radiator 5 is supplied to the second upper heat exchanger 4b of the second adsorber 2b, and the heating fluid remaining in the heat exchange flow path of the second upper heat exchanger 4b is new. The liquid is poured out by being pushed by the cooling fluid supplied to it.
[0018]
When the cooling fluid remaining in the heat exchange flow path of the first upper heat exchanger 4a is exhausted, the fluid temperature detected by the temperature sensor 31 disposed on the downstream side of the second four-way valve 11 begins to rise. However, it rises with a certain gradient rather than abruptly due to the heat capacity of the adsorbent, heat exchanger, container, etc. of the first adsorber 2a that has been cooled.
Similarly, when the heated fluid remaining in the heat exchange flow path of the second upper heat exchanger 4b is exhausted, the fluid temperature detected by the temperature sensor 30 disposed on the downstream side of the second four-way valve 11 decreases. However, it does not become abrupt due to the heat capacity of the adsorbent, heat exchanger, vessel, etc. of the second adsorber 2b that has been heated, but decreases with a certain gradient. That is, the temperature difference detected by the temperature sensors 30 and 31 is gradually reduced. Therefore, the second four-way valve 11 which is the outlet-side four-way valve is switched when the temperatures of the two become substantially equal (FIG. 3).
[0019]
Next, the switching timing of the fourth four-way valve 13, which is also the outlet side four-way valve, will be described. When the third four-way valve 12 that is the inlet-side four-way valve is switched, a high-temperature (equivalent to the outside air temperature) heat exchange medium (high-temperature fluid) from the radiator 6 is transferred to the first lower heat exchanger 3a of the first adsorber 2a. The supplied low temperature heat exchange medium (low temperature fluid) remaining in the heat exchange flow path of the first lower heat exchanger 3a is made to flow by being pushed by the newly supplied high temperature fluid. Is issued.
On the other hand, a low-temperature heat exchange medium (low-temperature fluid) from the indoor heat exchanger 7 is supplied to the second lower heat exchanger 3b of the second adsorber, and the heat exchange flow path of the second lower heat exchanger 3b. The high temperature heat exchange medium (high temperature fluid) remaining inside is pushed out by the newly supplied low temperature fluid.
[0020]
When the low-temperature fluid remaining in the heat exchange flow path of the first lower heat exchanger 3a of the first adsorber 2a is exhausted, the downstream side of the fourth four-way valve 13 that is the outlet-side four-way valve is discharged. Although the fluid temperature detected by the arranged temperature sensor 33 starts to rise, it rises with a certain gradient rather than abruptly due to the heat capacity of the adsorbent, heat exchanger, container, etc. of the first adsorber 2a that has been cooled. To do.
Similarly, when the high temperature fluid remaining in the heat exchange flow path of the second lower heat exchanger 3b of the second adsorber 2b is exhausted, the temperature sensor 32 disposed on the downstream side of the fourth four-way valve is Although the fluid temperature to be detected starts to decrease, the fluid temperature to be detected decreases with a certain gradient rather than abruptly due to the heat capacity of the adsorbent, heat exchanger, container, etc. of the second adsorber 2b that has been heated. That is, the temperature difference detected by the temperature sensors 32 and 33 gradually decreases. Therefore, when the temperatures of the two become substantially equal, the fourth four-way valve 13 which is the outlet-side four-way valve is switched (FIG. 3).
[0021]
As described above, the adsorption side and the desorption side of the first and second adsorbers are switched to shift from the first state to the second state (FIG. 3). When this second state continues for a certain period of time, the adsorption capacity of the second adsorber 2b decreases, and the desorption of the first adsorber 2a ends. Therefore, as in the case of shifting from the first state to the second state, first, the first and third four-way valves 10 and 12 that are inlet side four-way valves are switched as shown in FIG. Thereafter, the second four-way valve 11 that is the outlet-side four-way valve is switched when the temperature sensors 30 and 31 are substantially equal, and the outlet-side four-way valve is selected when the temperature sensors 32 and 33 are substantially equal in temperature. The fourth four-way valve 13 is switched. In this manner, the first state shown in FIG. 1 is restored.
As described above, when one of the first and second adsorbers 2a and 2b performs the adsorption process, the other performs the desorption process, and alternately repeats the adsorption process and the desorption process.
[0022]
The experimental results will be described using the adsorption refrigeration apparatus according to the embodiment of the present invention described above, in the case where the temperature of the heating fluid is about 70 ° C. and the temperature of the cooling fluid is about 30 ° C.
As in the conventional adsorption refrigeration apparatus disclosed in JP-A-9-196493, in FIG. 2, the heating fluid remaining in the heat exchange flow path of the first upper heat exchanger 4a of the first adsorber 2a is the cooling fluid. When the second four-way valve 11 on the outlet side is switched when the flow is exhausted, the temperature of the heated fluid indicated by the temperature sensor 30 is the temperature of the first adsorber 2a that has been cooled, as shown in FIG. Similarly, the temperature of the cooling fluid indicated by the temperature sensor 31 rapidly increases due to the heat capacity of the second adsorber 2b that has been heated. In the experimental results, the temperature sensor 30 decreases from about 70 ° C. to about 35 ° C., and the temperature sensor 31 increases from about 30 ° C. to about 60 ° C. (FIG. 5).
[0023]
In the present invention, in FIG. 2, the cooling fluid remaining in the heat exchange flow path of the first upper heat exchanger 4a of the first adsorber 2a is exhausted by the heated fluid, and the second adsorber 2b Even if the heating fluid remaining in the heat exchange flow path of the second upper heat exchanger 4b is exhausted by the cooling fluid, the circulation of the heating / cooling fluid is continued in the circuit state for a while, as shown in FIG. As described above, when the temperature indicated by the temperature sensor 30 is decreased, the temperature indicated by the temperature sensor 31 is increased, and the temperature of the both becomes substantially equal, the second four-way valve 11 on the outlet side is switched. The temperature increases and the temperature indicated by the temperature sensor 31 decreases. In the experimental results, the temperature sensor 30 decreased from about 70 ° C. to about 48 ° C., and the temperature sensor 31 increased from about 30 ° C. to about 48 ° C., but the temperature fluctuation can be greatly reduced as compared with FIG. FIG. 6).
[0024]
In the present invention, when the timing for switching the second four-way valve 11 on the outlet side is further delayed, that is, after switching the first four-way valve 10 on the inlet side, the temperature of the temperature sensors 30 and 31 is reversed after the temperature is reversed. Even when the second four-way valve 11 is switched, as shown in FIG. 7, the temperature fluctuations of the heating fluid and the cooling fluid become large.
[0025]
In the above description of the experiment, the effect on the switching timing of the outlet-side second four-way valve 11 has been described. Similarly, the switching of the outlet-side fourth four-way valve 13 also switches the suction / desorption of the adsorber. There is an effect of minimizing temperature fluctuations of a low-temperature fluid that sometimes cools the room. In this way, by minimizing the temperature fluctuation of the heat exchange medium during adsorption / desorption switching of the adsorber, it is possible to suppress a decrease in adsorption capacity / desorption capacity during adsorption / desorption switching, The capacity can be increased, and the heat balance of the entire system can be improved.
[0026]
FIG. 8 shows an entire system of an adsorption refrigeration apparatus according to another embodiment of the present invention. In the present embodiment, the configuration is the same as that of the above-described embodiment except that the attachment positions of the temperature sensors 30 to 33 are different from those of the above-described embodiment. That is, instead of providing the temperature sensors 30 to 33 on the downstream side of the second four-way valve 11 and the fourth four-way valve 13 which are outlet side four-way valves, the second and fourth four-way valves 11 and 13 are provided. The temperature sensors 30 to 33 are arranged on the upstream side. However, since the temperature sensors 30 to 33 are arranged on the upstream side of the second and fourth four-way valves 11 and 13 on the outlet side, the heat detected in the first state in FIG. 1 and the second state in FIG. 3 respectively. The exchange medium is different. For example, in the first state, the temperature sensor 30 detects the temperature of the heating fluid, and the temperature sensor 31 detects the temperature of the cooling fluid. In the second state, the temperature sensor 30 detects the temperature of the cooling fluid. 31 detects the temperature of the heated fluid. Similarly, in the first state, the temperature sensor 32 detects the temperature of the hot fluid, and the temperature sensor 33 detects the temperature of the cold fluid. In the second state, the temperature sensor 32 detects the temperature of the cold fluid. The sensors 33 detect the temperature of the hot fluid.
Thus, even if the installation positions of the temperature sensors 30 to 33 are changed from the downstream side to the upstream side of the second and fourth four-way valves 11 and 13 on the outlet side, the adsorption / desorption of the adsorber is performed in the same manner as in the above embodiment. The temperature fluctuation of the heat exchange medium at the time of switching can be minimized, and a decrease in adsorption capacity / desorption capacity at the time of switching between suction and desorption can be suppressed.
[0027]
FIG. 9 shows an overall system of an adsorption refrigeration apparatus according to still another embodiment of the present invention. In the present embodiment, the radiators 5 and 6 are changed from those separately provided as described above to those provided in common. Thus, even if the radiators 5 and 6 are shared, the same effects as those of the above-described embodiment can be obtained.
[0028]
As described above, according to the present invention, by suppressing the temperature fluctuation of the heat exchange medium during the adsorption / desorption switching of the adsorber, it is possible to suppress a decrease in the adsorption capacity / desorption capability during the adsorption / desorption switching. Can do. Therefore, the capacity of the refrigeration apparatus can be increased, and the heat balance of the entire system can be improved.
In addition, if the shape and length of the heat exchanger and connection piping that make up the refrigeration system and the capacity and operating conditions of the circulation pump change, the flow rate of the heat exchange medium changes. The optimum time difference between the operation of the four-way valve and the outlet-side four-way valve changes. However, in the present invention, by controlling the operation of the outlet side four-way valve by detecting the temperature of the heat exchange medium, the flow rate varies depending on the installation location and conditions, or the flow rate of the heat exchange medium changes for some reason during use. Even if it does, the outlet side four-way valve can always be operated at the optimal timing.
[Brief description of the drawings]
FIG. 1 is an overall system configuration of an adsorption refrigeration apparatus according to an embodiment of the present invention, and shows a first state of adsorption / desorption action.
2 shows the overall system configuration of the adsorption refrigeration apparatus during the transition from the first state of FIG. 1 to the second state of FIG. 3;
FIG. 3 shows an overall system configuration of an adsorption refrigeration apparatus in a second state of adsorption / desorption action.
FIG. 4 shows the overall system configuration of the adsorption refrigeration apparatus during the transition from the second state to the first state.
FIG. 5 After the switching operation of the inlet side switching valve (four-way valve), the switching operation of the outlet side switching valve (four-way valve) is performed when the respective fluids (heating fluid and cooling fluid) in the heat exchange channel are switched. It is a graph which shows the temperature change of the heating fluid and cooling fluid in a case.
FIG. 6 shows that when the temperature of each temperature sensor for detecting the temperature of each fluid (heating fluid and cooling fluid) becomes substantially equal after the switching operation of the inlet side switching valve (four-way valve) in the present invention, the outlet side switching is performed. It is a graph which shows the temperature change of a heating fluid and a cooling fluid at the time of switching operation of a valve (four-way valve).
FIG. 7 After the switching operation of the inlet side switching valve (four-way valve), after the temperature of the temperature sensor that detects the temperature of each fluid (heating fluid and cooling fluid) is reversed, the outlet side switching valve (four-way valve) is It is a graph which shows the temperature change of the heating fluid at the time of switching operation, and a cooling fluid.
FIG. 8 is a diagram showing an overall system configuration of an adsorption refrigeration apparatus according to another embodiment of the present invention.
FIG. 9 is a diagram showing an overall system configuration of an adsorption refrigeration apparatus according to still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Adsorption-type refrigeration apparatus 2a, 2b ... Adsorber 3a, 3b ... Lower heat exchanger 4a, 4b ... Upper heat exchanger 5, 6 ... Radiator 7 ... Indoor heat exchanger 10, 12 ... Inlet side four-way valve ( Switching valve)
11, 13 ... Outlet side four-way valve (switching valve)
20-23 ... Pump 30-33 ... Temperature sensor

Claims (5)

吸着剤及び該吸着剤を冷却或いは加熱するための熱交換流路を有した吸着器を備え、該熱交換流路への加熱流体と冷却流体との供給を交互に切り替えて、該吸着剤に冷媒蒸気の脱着と吸着とを交互に行わせる吸着式冷凍装置において、
前記吸着器が少なくとも2個設けられていて、それぞれ加熱流体と冷却流体の供給を、前記吸着器の入口側と出口側のそれぞれの切替弁によって切り替え可能であり、冷媒蒸気の脱着と吸着とを切り替える際に、前記出口側切替弁の下流側での加熱流体と冷却流体の温度を検知し、前記入口側切替弁の切り替え後に、両者の温度が略等しくなるタイミングで前記出口側切替弁を切り替えることを特徴とする吸着式冷凍装置。
An adsorber having a heat exchange channel for cooling or heating the adsorbent and the adsorbent is provided, and the supply of the heating fluid and the cooling fluid to the heat exchange channel is alternately switched to the adsorbent. In an adsorption refrigeration apparatus that alternately performs desorption and adsorption of refrigerant vapor,
At least two adsorbers are provided, and the supply of the heating fluid and the cooling fluid can be switched by respective switching valves on the inlet side and the outlet side of the adsorber, and the desorption and adsorption of the refrigerant vapor can be performed. When switching, the temperature of the heating fluid and the cooling fluid on the downstream side of the outlet side switching valve is detected, and after the switching of the inlet side switching valve, the outlet side switching valve is switched at a timing at which both temperatures become substantially equal. An adsorptive refrigeration apparatus.
前記出口側切替弁の下流側での加熱流体と冷却流体の温度検知に代えて、前記出口側切替弁の上流側で両者の流体の温度を検知することを特徴とする請求項1に記載の吸着式冷凍装置。The temperature of both fluids is detected on the upstream side of the outlet side switching valve instead of the temperature detection of the heating fluid and the cooling fluid on the downstream side of the outlet side switching valve. Adsorption refrigeration equipment. 吸着器の加熱流体と冷却流体との供給を交互に切り替えて、吸着剤に冷媒蒸気の脱着と吸着とを交互に行わせる吸着式冷凍装置において、該吸着式冷凍装置が、
液冷媒及び蒸発した蒸気冷媒を吸着する吸着剤とを含む第1と第2の吸着器と、
前記第1と第2の吸着器内にそれぞれ設けられた、液冷媒と熱交換媒体(高温流体と低温流体)と熱交換を行う第1と第2の下側熱交換器、及び前記吸着剤と熱交換媒体(加熱流体と冷却流体)と熱交換を行う第1と第2の上側熱交換器と、
前記加熱流体と前記冷却流体の前記第1と第2の上側熱交換器への流路の切り替えを行う入口側第1切替弁と出口側第2切替弁と、
前記高温流体と前記低温流体の前記第1と第2の下側熱交換器への流路の切り替えを行う入口側第3切替弁と出口側第4切替弁と、
を備えていて、
前記第1の吸着器が吸着剤の吸着作用を行い、前記第2の吸着器が吸着剤の脱着作用を行う第1の状態から、前記第2の吸着器が吸着剤の吸着作用を行い、前記第1の吸着器が吸着剤の脱着作用を行う第2の状態に切り替える際に、前記出口側第2切替弁の下流側での前記加熱流体と前記冷却流体の温度、及び前記出口側第4切替弁の下流側での前記高温流体と前記低温流体の温度を検知し、前記入口側第1と第3切替弁を切り替え後に、前記加熱流体と前記冷却流体並びに前記高温流体と前記低温流体の温度がそれぞれ略等しくなるタイミングで、それぞれの前記出口側第2切替弁及び前記出口側第4切替弁を切り替えることを特徴とする吸着式冷凍装置。
In the adsorption refrigeration apparatus that alternately switches the supply of the heating fluid and the cooling fluid of the adsorber and causes the adsorbent to alternately perform the desorption and adsorption of the refrigerant vapor, the adsorption refrigeration apparatus includes:
First and second adsorbers including an adsorbent that adsorbs liquid refrigerant and evaporated vapor refrigerant;
First and second lower heat exchangers for exchanging heat between the liquid refrigerant and the heat exchange medium (high temperature fluid and low temperature fluid) provided in the first and second adsorbers, respectively, and the adsorbent And first and second upper heat exchangers that exchange heat with the heat exchange medium (heating fluid and cooling fluid),
An inlet-side first switching valve and an outlet-side second switching valve for switching the flow paths of the heating fluid and the cooling fluid to the first and second upper heat exchangers;
An inlet-side third switching valve and an outlet-side fourth switching valve for switching the flow path of the high-temperature fluid and the low-temperature fluid to the first and second lower heat exchangers;
With
From the first state where the first adsorber performs adsorbing action of the adsorbent and the second adsorbing apparatus performs desorbing action of the adsorbent, the second adsorber performs adsorbing action of the adsorbent, When the first adsorber switches to the second state where the adsorbent desorbs, the temperature of the heating fluid and the cooling fluid on the downstream side of the outlet-side second switching valve, and the outlet-side first 4 After detecting the temperature of the high temperature fluid and the low temperature fluid on the downstream side of the switching valve and switching the inlet side first and third switching valves, the heating fluid, the cooling fluid, and the high temperature fluid and the low temperature fluid Each of the outlet side second switching valve and the outlet side fourth switching valve is switched at a timing at which the temperatures of the two become substantially equal to each other.
前記出口側第2、第4切替弁の下流側でのそれぞれの流体の温度の検知に代えて、前記出口側第2、第4切替弁の上流側でそれぞれの流体の温度を検知することを特徴とする請求項3に記載の吸着式冷凍装置。Instead of detecting the temperature of each fluid on the downstream side of the outlet side second and fourth switching valves, detecting the temperature of each fluid on the upstream side of the outlet side second and fourth switching valves. The adsorptive refrigeration apparatus according to claim 3. 前記冷却流体の流通系路内に設置される放熱器と、前記高温流体の流通系路内に設置される放熱器とを一つの放熱器で共用で使用することを特徴とする請求項3又は4に記載の吸着式冷凍装置。The heat radiator installed in the circulation system of the cooling fluid and the radiator installed in the circulation system of the high-temperature fluid are commonly used by one radiator. 4. The adsorption refrigeration apparatus according to 4.
JP2002032660A 2002-02-08 2002-02-08 Adsorption refrigeration system Expired - Fee Related JP3991700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032660A JP3991700B2 (en) 2002-02-08 2002-02-08 Adsorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032660A JP3991700B2 (en) 2002-02-08 2002-02-08 Adsorption refrigeration system

Publications (2)

Publication Number Publication Date
JP2003240383A JP2003240383A (en) 2003-08-27
JP3991700B2 true JP3991700B2 (en) 2007-10-17

Family

ID=27775712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032660A Expired - Fee Related JP3991700B2 (en) 2002-02-08 2002-02-08 Adsorption refrigeration system

Country Status (1)

Country Link
JP (1) JP3991700B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240062A (en) * 2006-03-08 2007-09-20 Japan Steel Works Ltd:The Cold/hot heat output method and device for absorption cooling/heating machine
DE102007061551B4 (en) * 2007-12-20 2010-10-28 Sortech Ag Method for power control of a sorption refrigeration system and apparatus therefor
JP2012202584A (en) * 2011-03-24 2012-10-22 Union Sangyo Kk Switching device for fluid, and adsorption refrigerator using the same
CN102261764B (en) * 2011-05-13 2012-11-14 山东大学 Composite refrigerating system
JP2015165168A (en) * 2014-02-28 2015-09-17 トヨタ自動車株式会社 Adsorption refrigeration cycle control method
JP6481541B2 (en) * 2014-10-15 2019-03-13 株式会社デンソー Adsorber
JP6260576B2 (en) * 2015-04-13 2018-01-17 株式会社デンソー Adsorption type refrigerator

Also Published As

Publication number Publication date
JP2003240383A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP4192385B2 (en) Adsorption type refrigerator
JPH02230068A (en) Absorption freezer and its operating method
JPH11316061A (en) Air conditioning system and its operation method
JP2010107156A (en) Engine-driven heat pump
JP3991700B2 (en) Adsorption refrigeration system
JP3592374B2 (en) Adsorption type cooling device and method for controlling cooling output thereof
JP2008008581A (en) Absorption type space heating/hot water supply device
JP6260576B2 (en) Adsorption type refrigerator
JP3831964B2 (en) Adsorption type refrigerator
JP2002162130A (en) Air conditioner
JP5747702B2 (en) Adsorption heat pump and information processing system
JPH05126432A (en) Adsorption type air-conditioner
JP4074399B2 (en) Operation method of adsorption refrigeration system
JPH0794933B2 (en) Air-cooled absorption air conditioner
JP2004291669A (en) Vehicular adsorption type air-conditioner
JP7015177B2 (en) Adsorption type refrigerator
JP7015178B2 (en) Adsorption type refrigerator
JP4186738B2 (en) Adsorption type refrigerator
JPH0810091B2 (en) Control method of adsorption refrigerator
JP7326791B2 (en) Adsorption chiller
JP2016223750A (en) Adsorber and adsorption type freezer with adsorber
JP2000039224A (en) Air conditioner system
JP2018021707A (en) Adsorption refrigerator and operation method of adsorption refrigerator
JP3316892B2 (en) Operating method of adsorption refrigeration system
JP3921744B2 (en) Adsorption refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees