JPH05126432A - Adsorption type air-conditioner - Google Patents

Adsorption type air-conditioner

Info

Publication number
JPH05126432A
JPH05126432A JP29014991A JP29014991A JPH05126432A JP H05126432 A JPH05126432 A JP H05126432A JP 29014991 A JP29014991 A JP 29014991A JP 29014991 A JP29014991 A JP 29014991A JP H05126432 A JPH05126432 A JP H05126432A
Authority
JP
Japan
Prior art keywords
heat exchanger
working medium
adsorption
temperature
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29014991A
Other languages
Japanese (ja)
Inventor
Noboru Kobayashi
昇 小林
Yasuyoshi Shinoda
泰嘉 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP29014991A priority Critical patent/JPH05126432A/en
Publication of JPH05126432A publication Critical patent/JPH05126432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To further improve the efficiency of cooling and heating operation of an adsorption type air-conditioner where cooling and heating are carried out by using latent heat of evaporation and heat of condensation caused by adsorption and desorption of working medium such as water by adsorbent such as zeolite, by setting cycle time optimum for operating conditions. CONSTITUTION:Two or more adsorption type refrigerating units U1 and U2 are installed in parallel and each has a closed container 1 which is filled with working medium Wb and encloses a heat exchanger 2 with adsorbent which absorbs the working medium Wb when cooled by a cooler 12 and desorbs the working medium Wb when heated by a heater 11. Heat-exchange between the working media Wa and Wb takes place at working medium heat exchangers 5 as the working medium Wb is adsorbed and desorbed by the heat exchangers 2, and the heat exchangers 5 are alternately connected to an indoor heat exchanger 22 and an outdoor heat exchanger 21 to perform cooling and heating operation. A temperature detector 41 is provided to detect the outlet temperatures of the heater 11, and tire higher the outlet temperature, the longer the process switching cycle time of the refrigerating units U1 and U2 is set by a controller 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、ゼオライト等の吸着
剤における水等の作動媒体の吸着・放出に伴う蒸発潜熱
及び凝縮熱を利用して冷暖房を行うようにした吸着式空
気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption type air conditioner for cooling and heating by utilizing latent heat of vaporization and condensation heat associated with adsorption / release of a working medium such as water in an adsorbent such as zeolite. Is.

【0002】[0002]

【従来の技術】一般に吸着式空気調和機(特に、ヒート
ポンプ式)においては、気液二相間で相変化する作動媒
体を封入してなる密閉容器の中に、低温熱源による冷却
時には上記作動媒体を吸着し、高温熱源による加熱時に
は上記作動媒体を放出する如く作用をする吸着剤を備え
た吸着剤付熱交換器と、該吸着剤付熱交換器による作動
媒体の吸着・放出に伴って該作動媒体との間で熱交換を
行いそれによって該作動媒体に蒸発又は凝縮作用を生ぜ
しめる作用をする作動媒体用熱交換器とを備えた吸着冷
凍ユニットを複数基並設する一方、上記各吸着冷凍ユニ
ットの各作動媒体用熱交換器を室内熱交換器と室外熱交
換器とに可逆的に接続可能とし、冷房運転時には吸着行
程にある上記吸着冷凍ユニットの上記作動媒体用熱交換
器を上記室内熱交換器に、再生行程にある上記吸着冷凍
ユニットの上記作動媒体用熱交換器を上記室外熱交換器
にそれぞれ接続し、また暖房運転時には再生行程にある
上記吸着冷凍ユニットの上記作動媒体用熱交換器を上記
室内熱交換器に、吸着行程にある上記吸着冷凍ユニット
の上記作動媒体用熱交換器を上記室外熱交換器にそれぞ
れ接続するとともに、上記複数基の吸着冷凍ユニットの
作動行程を所定間隔毎に吸着行程と再生行程との間で交
互に切り換えるようにしている(例えば、特開昭63ー
46356号公報参照)。
2. Description of the Related Art Generally, in an adsorption type air conditioner (especially, a heat pump type), a working medium that changes in phase between gas and liquid phases is enclosed in a closed container, and the working medium is cooled during cooling by a low temperature heat source. A heat exchanger with an adsorbent, which is adsorbed and has a function of releasing the working medium when heated by a high-temperature heat source, and the operation accompanying the adsorption and release of the working medium by the heat exchanger with the adsorbent. A plurality of adsorption refrigeration units provided with a heat exchanger for working medium, which performs heat exchange with the medium and thereby causes an evaporation or condensation action in the working medium, are arranged in parallel, while each of the adsorption refrigeration units described above. Each working medium heat exchanger of the unit can be reversibly connected to the indoor heat exchanger and the outdoor heat exchanger, and the working medium heat exchanger of the adsorption refrigeration unit in the adsorption stroke during the cooling operation is the indoor heat exchanger. Heat exchange In, the working medium heat exchanger of the adsorption refrigeration unit in the regeneration process is connected to the outdoor heat exchanger, respectively, and during the heating operation, the working medium heat exchanger of the adsorption refrigeration unit in the regeneration process. The indoor heat exchanger, while connecting the working medium heat exchanger of the adsorption refrigeration unit in the adsorption step to the outdoor heat exchanger, respectively, the operation steps of the plurality of adsorption refrigeration units at predetermined intervals. The adsorption process and the regeneration process are alternately switched (see, for example, JP-A-63-46356).

【0003】この場合、例えば吸着冷凍ユニットの運転
を吸着行程から再生行程に切り換えると、この切り換え
後、徐々に暖・冷房能力が増加して行き、やがて吸着剤
が飽和状態に近付くに従ってその能力が低下してくる。
従って、吸着式空気調和機を効率良く連続的に運転する
ためには、この能力が最大となる時点(以下、最適点と
いう)の付近において各吸着冷凍ユニットの作動行程を
切り換えて、今まで吸着行程にあった吸着冷凍ユニット
はこれを再生行程に、また再生行程にあった吸着冷凍ユ
ニットはこれを吸着行程にそれぞれ切り換えることが必
要となる(尚、以下の説明においては、この吸着冷凍ユ
ニットの作動行程の切換時間をサイクルタイムとい
う)。そして、従来はこのサイクルタイムを所定値に固
定的に設定するのが通例であった。
In this case, for example, when the operation of the adsorption refrigeration unit is switched from the adsorption step to the regeneration step, the heating / cooling capacity gradually increases after this switching, and as the adsorbent approaches a saturated state, the capacity is gradually increased. It is decreasing.
Therefore, in order to operate the adsorption-type air conditioner efficiently and continuously, the operation stroke of each adsorption refrigeration unit is switched near the point when this capacity becomes maximum (hereinafter referred to as the optimum point), It is necessary to switch the adsorption refrigeration unit that was in the process to the regeneration process, and the adsorption refrigeration unit that was in the process to the adsorption process (in the following description, the adsorption refrigeration unit The switching time of the operation stroke is called the cycle time). Then, conventionally, it has been customary to fixedly set the cycle time to a predetermined value.

【0004】[0004]

【発明が解決しようとする課題】ところが、本願発明者
らの実験によれば、このサイクルタイムの設定の基礎と
なる吸着冷凍ユニットの吸着能力の最適点は一定ではな
く、次に述べるように種々の要因によって変化すること
が知見された。
However, according to the experiments by the inventors of the present application, the optimum point of the adsorption capacity of the adsorption refrigeration unit, which is the basis for setting the cycle time, is not constant. It has been found that it changes depending on the factors.

【0005】第1の要因としては、吸着剤の再生に関与
する高温熱源の温度である。即ち、図5には高温熱源の
温度を100℃,150℃,200℃と変化させた場合に
おける平均冷却能力特性を示している。この図5によれ
ば、高温熱源の温度が高くなるほど運転開始から冷却能
力が最高になる(最適点)までの時間が長くなること、即
ちサイクルタイムが長くなることが分かる。この図5に
おけるサイクルタイムと高温熱源の温度との関係を示し
たものが図6である。
The first factor is the temperature of the high temperature heat source involved in the regeneration of the adsorbent. That is, FIG. 5 shows the average cooling capacity characteristics when the temperature of the high temperature heat source is changed to 100 ° C., 150 ° C. and 200 ° C. From FIG. 5, it can be seen that the higher the temperature of the high temperature heat source, the longer the time from the start of operation to the highest cooling capacity (optimal point), that is, the longer the cycle time. FIG. 6 shows the relationship between the cycle time and the temperature of the high temperature heat source in FIG.

【0006】このように高温熱源の温度に応じて吸着冷
凍ユニットのサイクルタイムが変化するのは次のような
理由による。
The reason why the cycle time of the adsorption refrigeration unit changes in accordance with the temperature of the high temperature heat source is as follows.

【0007】即ち、吸着冷凍ユニットのサイクルタイム
は、吸着剤の吸着開始から飽和状態に達するまでの時間
に比例するものであるため、吸着剤付熱交換器における
吸着工程開始時からその終了時(即ち、再生行程開始時)
までの間の温度変化幅が大きいほどサイクルタイムが長
くなると言える。従って、ここで、再生行程において吸
着剤付熱交換器を加熱する高温熱源の温度を、これ以外
の温度条件を一定とした状態で、高めると、この高温熱
源の温度が上昇した分だけ上記温度変化幅が増加し、結
果的にサイクルタイムが長くなるものである。
That is, since the cycle time of the adsorption refrigeration unit is proportional to the time from the start of adsorption of the adsorbent until the adsorbent reaches a saturated state, the cycle time from the start of the adsorption step in the heat exchanger with the adsorbent to the end ( That is, at the start of the playback process)
It can be said that the cycle time becomes longer as the range of temperature change during the period becomes larger. Therefore, if the temperature of the high-temperature heat source that heats the heat exchanger with the adsorbent in the regeneration process is increased while keeping the temperature conditions other than this constant, the above-mentioned temperature is increased by the amount that the temperature of the high-temperature heat source rises. The range of change increases, resulting in a longer cycle time.

【0008】第2及び第3の要因としては、作動媒体に
蒸発または凝縮を生ぜしめる作動媒体用熱交換器に冷房
運転時と暖房運転時とで可逆的に接続される室外熱交換
器と室内熱交換器の出口における冷媒温度である。
The second and third factors are an outdoor heat exchanger and a room which are reversibly connected to a heat exchanger for working medium which causes evaporation or condensation in the working medium during cooling operation and heating operation. It is the refrigerant temperature at the outlet of the heat exchanger.

【0009】先ず、第2の要因としての室外熱交換器の
出口における冷媒温度の影響であるが、これについては
図7に、室内熱交換器の出口における冷媒温度を一定と
した状態で室外熱交換器の出口における冷媒温度を変化
させた場合における冷房運転時のサイクルタイムを実験
によって求めたものを示している。この図7によれば、
冷房運転時においては、室外熱交換器の出口における冷
媒温度が高くなるほどサイクルタイムが長くなることが
分かる。これは次のような理由による。
First, the second factor is the influence of the refrigerant temperature at the outlet of the outdoor heat exchanger. This is shown in FIG. 7 with the refrigerant temperature at the outlet of the indoor heat exchanger kept constant. The cycle time during the cooling operation when the refrigerant temperature at the outlet of the exchanger is changed is shown by experiment. According to this FIG.
It can be seen that during the cooling operation, the cycle time becomes longer as the refrigerant temperature at the outlet of the outdoor heat exchanger becomes higher. This is for the following reasons.

【0010】即ち、作動媒体用熱交換器は、作動媒体に
蒸発・凝縮作用を行わしめるものであることから、当然
に吸着冷凍ユニットの吸着工程と再生行程との間におい
て温度が変化する。従って、その温度変化幅は直接に吸
着冷凍ユニットのサイクルタイムとして影響し、この作
動媒体用熱交換器の温度変化幅が大きいほどサイクルタ
イムが長くなることは、上記の高温熱源の場合と同様で
ある。
That is, since the working medium heat exchanger is for evaporating and condensing the working medium, the temperature naturally changes between the adsorption step and the regeneration step of the adsorption refrigeration unit. Therefore, the temperature change width directly affects the cycle time of the adsorption refrigeration unit, and the larger the temperature change width of the working medium heat exchanger is, the longer the cycle time is as in the case of the high temperature heat source. is there.

【0011】ここで、この作動媒体用熱交換器には、室
外熱交換器が冷房運転時と暖房運転時との間で可逆的に
接続されていることから、例えば冷房運転時に再生行程
側(即ち、高温側)の吸着冷凍ユニットの作動媒体用熱交
換器に接続されている室外熱交換器の出口における冷媒
温度を考えてみると、この冷媒温度が高くなるとそれだ
け再生行程終了時における作動媒体用熱交換器の温度が
高くなる。従って、室内熱交換器側の温度を一定とした
場合には、この冷媒温度の上昇分だけ吸着行程時におけ
る作動媒体用熱交換器の温度変化幅が増大し、結果的に
サイクルタイムが長くなるものである。
Since the outdoor heat exchanger is reversibly connected to the heat exchanger for working medium between the cooling operation and the heating operation, for example, during the cooling operation, the regeneration stroke side ( That is, considering the refrigerant temperature at the outlet of the outdoor heat exchanger connected to the working medium heat exchanger of the adsorption refrigeration unit (on the high temperature side), the higher the refrigerant temperature, the more the working medium at the end of the regeneration process. The temperature of the heat exchanger for use becomes high. Therefore, when the temperature on the indoor heat exchanger side is kept constant, the temperature change width of the working medium heat exchanger during the adsorption stroke increases by the increase in the refrigerant temperature, resulting in a longer cycle time. It is a thing.

【0012】尚、暖房運転時には、室外熱交換器が吸着
工程側(即ち、低温側)の吸着冷凍ユニットの作動媒体用
熱交換器に接続されるため、上記とは逆に、室外熱交換
器の出口における冷媒温度の上昇分だけ作動媒体用熱交
換器の温度変化幅が減少し、結果的にサイクルタイムが
短くなる(図示は省略)。
During the heating operation, the outdoor heat exchanger is connected to the working medium heat exchanger of the adsorption refrigeration unit on the adsorption process side (that is, the low temperature side). Therefore, contrary to the above, the outdoor heat exchanger is The temperature change width of the working medium heat exchanger is reduced by the amount of increase in the refrigerant temperature at the outlet of, and consequently the cycle time is shortened (not shown).

【0013】次に、第3の要因としての、室内熱交換器
の出口における冷媒温度の影響であるが、これについて
は図8に、室外熱交換器側の温度条件を一定とした状態
下で、冷房運転時においてこの冷媒温度を変化させた場
合におけるサイクルタイムの変化状態を実験によって求
めた結果を示している。この図8によれば、室内熱交換
器の出口における冷媒温度の上昇に伴ってサイクルタイ
ムが短くなることが分かる。
Next, as a third factor, the influence of the refrigerant temperature at the outlet of the indoor heat exchanger is shown in FIG. 8 under the condition that the temperature condition on the outdoor heat exchanger side is constant. , Shows the results obtained by experiments of the change state of the cycle time when the refrigerant temperature is changed during the cooling operation. According to this FIG. 8, it is understood that the cycle time becomes shorter as the refrigerant temperature at the outlet of the indoor heat exchanger rises.

【0014】これは、これはこの室内熱交換器が冷房運
転時には吸着工程側(即ち、低温側)の吸着冷凍ユニット
の作動媒体用熱交換器に接続されるため、該冷媒温度の
上昇分だけ該作動媒体用熱交換器の温度変化幅が減少
し、結果的にサイクルタイムが短くなるものであって、
上記室外熱交換器の場合と逆の状態となっている。尚、
暖房運転時にはこれとは逆に、室内熱交換器の出口にお
ける冷媒温度が高くなるほどサイクルタイムが長くな
る。
This is because the indoor heat exchanger is connected to the working medium heat exchanger of the adsorption refrigeration unit on the adsorption process side (that is, the low temperature side) during the cooling operation, so that only the increase in the refrigerant temperature is caused. The temperature change width of the working medium heat exchanger is reduced, and as a result, the cycle time is shortened,
The situation is the reverse of that of the outdoor heat exchanger. still,
On the contrary, during the heating operation, the cycle time becomes longer as the refrigerant temperature at the outlet of the indoor heat exchanger becomes higher.

【0015】そこで本願発明では、吸着冷凍ユニットの
サイクルタイムに対する各種要因を考慮し、運転条件に
最適なサイクルタイムを設定することで冷暖房をより一
層効率的に実現し得るようにした吸着式空気調和機を提
供せんとしてなされたものである。
Therefore, in the present invention, the adsorption-type air conditioner capable of realizing more efficient cooling and heating by considering various factors for the cycle time of the adsorption refrigeration unit and setting the optimum cycle time for the operating conditions. It was made as an offer of a machine.

【0016】[0016]

【課題を解決するための手段】本願発明ではかかる課題
を解決するための具体的手段として、請求項1記載の発
明では図1に例示するように、作動媒体Wを封入してな
る密閉容器1の中に、低温熱源12による冷却時には上
記作動媒体Wを吸着し、高温熱源11による加熱時には
上記作動媒体Wを放出する如く作用する吸着剤3を備え
た吸着剤付熱交換器2と、該吸着剤付熱交換器2,2に
よる作動媒体Wの吸着・放出に伴って該作動媒体Wとの
間で熱交換を行なう作動媒体用熱交換器5,5とを備え
た吸着冷凍ユニットU1、U2を複数基並設する一方、該
各吸着冷凍ユニットU1,U2の各作動媒体用熱交換器5,
5を室内熱交換器22と室外熱交換器21とに可逆的に
接続可能とするとともに、上記複数基の吸着冷凍ユニッ
トU1,U2の作動行程を所定間隔毎に吸着行程と再生行
程との間で交互に切り換えるようにした吸着式空気調和
機において、上記高温熱源11の出口温度を検出する温
度検出手段41と、該温度が高いほど上記各吸着冷凍ユ
ニットU1,U2の作動行程の切換時間を長く設定する制
御手段10とを備えたことを特徴している。
As a concrete means for solving such a problem in the invention of the present application, in the invention according to claim 1, as shown in FIG. 1, a closed container 1 in which a working medium W is enclosed. In which the working medium W is adsorbed when cooled by the low temperature heat source 12, and the adsorbent 3 is provided which acts so as to release the working medium W when heated by the high temperature heat source 11; Adsorption refrigeration unit U 1 including heat exchangers 5 and 5 for working medium that exchange heat with the working medium W as the working medium W is adsorbed and released by the heat exchangers 2 and 2 with an adsorbent. , U 2 are arranged in parallel, while the heat exchangers 5 for working medium of the adsorption refrigeration units U 1 , U 2 are arranged.
5 is reversibly connectable to the indoor heat exchanger 22 and the outdoor heat exchanger 21, and the operation steps of the plurality of adsorption refrigeration units U 1 and U 2 are divided into adsorption steps and regeneration steps at predetermined intervals. In the adsorption type air conditioner which is alternately switched between the two, the temperature detection means 41 for detecting the outlet temperature of the high temperature heat source 11 and the higher the temperature, the operation process of each of the adsorption refrigeration units U 1 and U 2 . And a control means 10 for setting a long switching time.

【0017】請求項2記載の発明では図1に例示するよ
うに、作動媒体Wを封入してなる密閉容器1の中に、該
作動媒体Wの吸着・放出を行う吸着剤3を備えた吸着剤
付熱交換器2,2と、該吸着剤付熱交換器2による作動
媒体Wの吸着・放出に伴って該作動媒体Wとの間で熱交
換を行なう作動媒体用熱交換器5,5とを備えた吸着冷
凍ユニットU1、U2を複数基並設する一方、該各吸着冷
凍ユニットU1,U2の各作動媒体用熱交換器5,5を室内
熱交換器22と室外熱交換器21とに可逆的に接続可能
とするとともに、上記複数基の吸着冷凍ユニットU1,U
2の作動行程を所定間隔毎に吸着行程と再生行程との間
で交互に切り換えるようにした吸着式空気調和機におい
て、上記室外熱交換器21の出口における冷媒温度を検
出する温度検出手段42と、冷房運転時には上記冷媒温
度が高いほど、また暖房運転時には上記冷媒温度が低い
ほど上記各吸着冷凍ユニットU1,U2の作動行程の切換
時間を長く設定する制御手段10とを備えたことを特徴
としている。
According to the second aspect of the present invention, as illustrated in FIG. 1, an adsorbent 3 for adsorbing and releasing the working medium W is provided in a closed container 1 in which the working medium W is enclosed. The heat exchangers 2 and 5 with agent, and the heat exchangers 5 and 5 for working medium that perform heat exchange with the working medium W as the working medium W is adsorbed and released by the heat exchanger 2 with adsorbent. preparative adsorption refrigeration unit U 1 having a, while the U 2 to multiple Motonami set, respective adsorption refrigeration unit U 1, the heat exchanger 5, 5 for each working medium U 2 the indoor heat exchanger 22 and the outdoor heat It can be reversibly connected to the exchanger 21 and has a plurality of adsorption refrigeration units U 1 and U 1 .
In the adsorption type air conditioner in which the second operation step is alternately switched between the adsorption step and the regeneration step at a predetermined interval, the temperature detection means 42 for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger 21. And a control means 10 for setting the switching time of the operation stroke of each of the adsorption refrigeration units U 1 , U 2 longer as the refrigerant temperature is higher during the cooling operation and as the refrigerant temperature is lower during the heating operation. It has a feature.

【0018】請求項3記載の発明では図1に例示するよ
うに、作動媒体Wを封入してなる密閉容器1の中に、該
作動媒体Wの吸着・放出を行う吸着剤3を備えた吸着剤
付熱交換器2,2と、該吸着剤付熱交換器2による作動
媒体Wの吸着・放出に伴って該作動媒体Wとの間で熱交
換を行なう作動媒体用熱交換器5,5とを備えた吸着冷
凍ユニットU1、U2を複数基並設する一方、該各吸着冷
凍ユニットU1,U2の各作動媒体用熱交換器5,5を室内
熱交換器22と室外熱交換器21とに可逆的に接続可能
とするとともに、上記複数基の吸着冷凍ユニットU1,U
2の作動行程を所定間隔毎に吸着行程と再生行程との間
で交互に切り換えるようにした吸着式空気調和機におい
て、上記室内熱交換器22の出口における冷媒温度を検
出する温度検出手段43と、冷房運転時には該冷媒温度
が低いほど、また暖房運転時には該冷媒温度が高いほど
上記各吸着冷凍ユニットU1,U2の作動行程の切換時間
を長く設定する制御手段10とを備えたことを特徴とし
ている。
According to the third aspect of the present invention, as shown in FIG. 1, the adsorption is provided with the adsorbent 3 for adsorbing and releasing the working medium W in the closed container 1 in which the working medium W is enclosed. The heat exchangers 2 and 5 with agent, and the heat exchangers 5 and 5 for working medium that perform heat exchange with the working medium W as the working medium W is adsorbed and released by the heat exchanger 2 with adsorbent. preparative adsorption refrigeration unit U 1 having a, while the U 2 to multiple Motonami set, respective adsorption refrigeration unit U 1, the heat exchanger 5, 5 for each working medium U 2 the indoor heat exchanger 22 and the outdoor heat It can be reversibly connected to the exchanger 21 and has a plurality of adsorption refrigeration units U 1 and U 1 .
In the adsorption type air conditioner in which the operation stroke of 2 is alternately switched between the adsorption stroke and the regeneration stroke at a predetermined interval, the temperature detection means 43 for detecting the refrigerant temperature at the outlet of the indoor heat exchanger 22. And a control means 10 for setting a longer switching time between the operation steps of the adsorption refrigeration units U 1 and U 2 as the refrigerant temperature is lower during the cooling operation and higher when the heating operation is performed. It has a feature.

【0019】[0019]

【作用】本願各発明ではかかる構成とすることによって
それぞれ次のような作用が得られる。
With each of the inventions of the present application, the following effects can be obtained by adopting such a configuration.

【0020】請求項1記載の発明では、再生行程におい
て吸着剤3を加熱する高温熱源11の温度が高くなるほ
ど各吸着冷凍ユニットU1,U2相互の作動行程の切換時
間(即ち、サイクルタイム)が短く設定されることによ
り、該各吸着冷凍ユニットU1,Uは常時最適な性能下で
運転されることとなり、この結果、高温熱源11の全温
度域において最適な冷暖房性能が得られるものである。
According to the first aspect of the present invention, the higher the temperature of the high temperature heat source 11 for heating the adsorbent 3 in the regeneration process, the higher the temperature of the adsorption refrigerating units U 1 and U 2 is when the operation process is switched (that is, the cycle time). Is set to be short, the adsorption and refrigeration units U 1 and U are always operated under optimum performance, and as a result, optimum cooling / heating performance can be obtained in the entire temperature range of the high temperature heat source 11. is there.

【0021】請求項2記載の発明では、冷房運転時にお
いては室外熱交換器21の出口における冷媒温度が高い
ほど、また暖房運転時においては該冷媒温度が低いほど
各吸着冷凍ユニットU1,U2のサイクルタイムが長くな
るように制御されることで、外気温に対応した最適条件
下で効率的な冷房あるいは暖房運転が行なわれるもので
ある。
In the second aspect of the present invention, the higher the temperature of the refrigerant at the outlet of the outdoor heat exchanger 21 during the cooling operation, and the lower the temperature of the refrigerant during the heating operation, the adsorption refrigeration units U 1 , U. By controlling the cycle time of 2 to be long, efficient cooling or heating operation is performed under optimum conditions corresponding to the outside temperature.

【0022】請求項3記載の発明では、冷房運転時にお
いては室内熱交換器22の出口における冷媒温度が高い
ほど、また暖房運転時においては該冷媒温度が低いほど
各吸着冷凍ユニットU1,U2のサイクルタイムが短くな
るように制御されることで、室温に対応した最適条件下
で効率的な冷房あるいは暖房運転が行なわれるものであ
る、
According to the third aspect of the invention, the higher the refrigerant temperature at the outlet of the indoor heat exchanger 22 during the cooling operation, and the lower the refrigerant temperature during the heating operation, the adsorption refrigeration units U 1 , U. By controlling the cycle time of 2 to be short, efficient cooling or heating operation is performed under optimal conditions corresponding to room temperature.

【0023】[0023]

【発明の効果】従って、本願各発明の吸着式空気調和機
によれば、各吸着冷凍ユニットのサイクルタイムが高温
熱源の温度あるいは外気温等の諸条件に応じた最適運転
状態に設定されることから、熱ロスの少ない効率的な暖
・冷房が実現されるものである。
Therefore, according to the adsorption type air conditioner of each invention of the present application, the cycle time of each adsorption refrigeration unit is set to the optimum operating state according to various conditions such as the temperature of the high temperature heat source or the outside air temperature. Therefore, efficient heating and cooling with less heat loss can be realized.

【0024】また、高温熱源の温度に対応してサイクル
タイムを変更設定するものにあっては、特に高温熱源と
して、例えば一日のうちでも時間によって温度が大きく
変化する廃熱を利用するシステムとした場合に、その効
果がより顕著である。
Further, in a system in which the cycle time is changed and set according to the temperature of the high temperature heat source, a system using waste heat whose temperature greatly changes with time, for example, as a high temperature heat source, When it does, the effect is more remarkable.

【0025】さらに、室外熱交換器の出口における冷媒
温度に対応してサイクルタイムを変更設定するものにあ
っては、例えば外気温度が一日のうちでも大きく変化す
るような気象条件をもつ地域において使用する場合にそ
の効果が特に顕著である。
Further, in the one in which the cycle time is changed and set in accordance with the refrigerant temperature at the outlet of the outdoor heat exchanger, for example, in an area having a weather condition in which the outside air temperature greatly changes during the day. The effect is particularly remarkable when used.

【0026】また、室内熱交換器の出口における冷媒温
度に対応してサイクルタイムを変更設定するものにあっ
ては、例えば室内人員の増減が大きくこれによって室内
温度が大きく変化する環境下において使用する場合にそ
の効果が特に顕著である。
Further, the one in which the cycle time is changed and set in accordance with the refrigerant temperature at the outlet of the indoor heat exchanger is used, for example, in an environment in which the indoor temperature greatly changes due to a large increase or decrease in indoor personnel. In that case, the effect is particularly remarkable.

【0027】[0027]

【実施例】以下、添付図面に示す実施例に基づいて本願
発明の吸着式空気調和機を具体的に説明すると、図1に
は後述する第1吸着冷凍ユニットU1と第2吸着冷凍ユ
ニットU2とを備えた吸着式空気調和機が示されてい
る。この各吸着冷凍ユニットU1,U2は、同一構成を有
するものであって、その構造を第1吸着冷凍ユニットU
1を例にとって説明すると、該第1吸着冷凍ユニットU1
は気相と液相の間で相変化する、たとえば水などの作動
媒体Wが充填された密閉容器1内に、2種類の熱交換器
2,5を組み込んで構成されている。この二つの熱交換
器2,5のうち、一方の熱交換器2は、後述する加熱器
11あるいは冷却器12から供給される流体の温度に応
じてガス状の作動媒体Wbを吸着したり放出したりする
ゼオライト、シリカゲル等の吸着剤3を付設した吸着剤
付熱交換器である。これに対して、他方の熱交換器5
は、上記作動媒体Wと熱交換して該作動媒体Wの蒸発時
には該作動媒体Wから冷熱を受け、該作動媒体Wの凝縮
時には該作動媒体Wを冷却する作用をする作動媒体用熱
交換器である。吸着剤付熱交換器2には、第1四路切換
弁31と第2四路切換弁32の切換に応じて、この吸着
剤付熱交換器の吸着剤3に作動媒体Wの吸着作用を生ぜ
しめるための流体F1が冷却器12から、又は同吸着剤
3に作動媒体Wの放出作用を生ぜしめるための流体F2
が加熱器11から選択的に供給されるようになってい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The adsorption type air conditioner of the present invention will be described below in detail with reference to the embodiments shown in the accompanying drawings. In FIG. 1, a first adsorption refrigeration unit U 1 and a second adsorption refrigeration unit U described later are shown. An adsorption air conditioner with 2 and is shown. Each of the adsorption and refrigeration units U 1 and U 2 has the same structure, and the structure thereof is the first adsorption and refrigeration unit U 1.
Taking 1 as an example, the first adsorption refrigeration unit U 1
Is constructed by incorporating two types of heat exchangers 2, 5 in a closed container 1 filled with a working medium W such as water, which changes its phase between a gas phase and a liquid phase. One of the two heat exchangers 2 and 5 adsorbs or discharges the gaseous working medium Wb according to the temperature of the fluid supplied from the heater 11 or the cooler 12 described later. It is a heat exchanger with an adsorbent to which an adsorbent 3 such as zeolite or silica gel is attached. On the other hand, the other heat exchanger 5
Is a heat exchanger for a working medium that exchanges heat with the working medium W, receives cold heat from the working medium W when the working medium W is evaporated, and cools the working medium W when the working medium W is condensed. Is. In the heat exchanger with adsorbent 2, the adsorbent 3 of this heat exchanger with adsorbent adsorbs the working medium W to the adsorbent 3 of the heat exchanger with adsorbent in accordance with the switching of the first four-way switching valve 31 and the second four-way switching valve 32. The fluid F 1 for producing the fluid F 2 for producing the release action of the working medium W from the cooler 12 or on the adsorbent 3
Are selectively supplied from the heater 11.

【0028】作動媒体用熱交換器5には、第3四路切換
弁33及び第4四路切換弁34の切換に応じて、吸着剤
3による作動媒体吸着時には液状の作動媒体Waを蒸発
させて該蒸発時に作動媒体Wより冷熱を受ける作用をす
る流体F3が室外熱交換器21から、又は吸着剤3から
放出されたガス状の作動媒体Wbを冷却して該作動媒体
Wbを凝縮させる作用をする流体F4が室内熱交換器22
から、選択的に供給されるようになっている。尚、この
流体F3と流体F4が、それぞれ特許請求の範囲中の冷媒
に該当する。
In the working medium heat exchanger 5, the liquid working medium Wa is vaporized when the working medium is adsorbed by the adsorbent 3 in accordance with the switching of the third four-way switching valve 33 and the fourth four-way switching valve 34. The fluid F 3 that acts to receive cold heat from the working medium W during the evaporation cools the gaseous working medium Wb released from the outdoor heat exchanger 21 or from the adsorbent 3 to condense the working medium Wb. The acting fluid F 4 is the indoor heat exchanger 22.
From here, it is supplied selectively. The fluid F 3 and the fluid F 4 correspond to the refrigerants in the claims.

【0029】このように構成された第1吸着冷凍ユニッ
トU1と第2吸着冷凍ユニットU2とは、その各吸着剤付
熱交換器2,2が上記第1四路切換弁31及び第2四路
切換弁32の切り換えに応じて加熱器11と冷却器12
に対して選択的に接続され、また作動媒体用熱交換器
5,5が上記第3四路切換弁33及び第4四路切換弁3
4の切り換えに応じて上記室外熱交換器21と室内熱交
換器22に対して選択的に接続されることにより、連続
運転の可能な一つの冷暖房システムを構成する。
In the thus configured first adsorption refrigeration unit U 1 and second adsorption refrigeration unit U 2 , the heat exchangers with adsorbents 2, 2 have the first four-way switching valve 31 and the second adsorption refrigeration unit 31, respectively. Depending on the switching of the four-way switching valve 32, the heater 11 and the cooler 12
And the working medium heat exchangers 5, 5 are connected to the third four-way switching valve 33 and the fourth four-way switching valve 3 respectively.
By selectively connecting to the outdoor heat exchanger 21 and the indoor heat exchanger 22 in accordance with the switching of No. 4, one cooling / heating system capable of continuous operation is configured.

【0030】また、上記各四路切換弁31〜34は、と
もに制御器10からの制御信号に基づいて切換制御され
るものであり、このうち、第1四路切換弁31と第2四
路切換弁32は、後述するように所定のサイクルタイム
で切り換えられ、加熱器11側に接続された第2吸着冷
凍ユニットU2は吸着剤3から作動媒体の放出を行う再
生行程側ユニットとされ、冷却器12側に接続された第
1吸着冷凍ユニットU1は吸着剤3への作動媒体の吸着
を実行する吸着行程側ユニットとされる。尚、図1にお
いては、第1吸着冷凍ユニットU1が吸着行程、第2吸
着冷凍ユニットU2が再生行程とされた状態を示してい
る。尚、この実施例おいては、第1四路切換弁31と第
2四路切換弁32が特許請求の範囲中の切換手段に該当
する。
Further, each of the four-way switching valves 31 to 34 is controlled to be switched based on a control signal from the controller 10. Of these, the first four-way switching valve 31 and the second four-way switching valve are included. The switching valve 32 is switched at a predetermined cycle time as described later, and the second adsorption refrigeration unit U 2 connected to the heater 11 side is a regeneration process side unit for releasing the working medium from the adsorbent 3, The first adsorption refrigeration unit U 1 connected to the cooler 12 side is an adsorption stroke side unit for adsorbing the working medium to the adsorbent 3. Note that FIG. 1 shows a state in which the first adsorption refrigeration unit U 1 is in the adsorption step and the second adsorption refrigeration unit U 2 is in the regeneration step. In this embodiment, the first four-way switching valve 31 and the second four-way switching valve 32 correspond to the switching means in the claims.

【0031】これに対して、上記第3四路切換弁33と
第4四路切換弁34は、使用者がスイッチ操作によって
冷房運転と暖房運転とを選択すると、制御器10におい
ては冷房運転が選択されている場合には室外熱交換器2
1を再生行程側の吸着冷凍ユニットの作動媒体用熱交換
器5に、室内熱交換器22を吸着行程側の吸着冷凍ユニ
ットの作動媒体用熱交換器5にそれぞれ接続させ、また
逆に暖房運転が選択されている場合には室外熱交換器2
1を吸着行程側の吸着冷凍ユニットの作動媒体用熱交換
器5に、室内熱交換器22を再生行程側の吸着冷凍ユニ
ットの作動媒体用熱交換器5にそれぞれ接続する如く、
スイッチ選択と各吸着冷凍ユニットU1,U2の作動行程
の切り換えとに関連してその弁切換位置が制御されるよ
うになっている。尚、図1は冷房時における室外熱交換
器21と室内熱交換器22の接続状態を示している。
On the other hand, when the user selects the cooling operation or the heating operation for the third four-way switching valve 33 and the fourth four-way switching valve 34, the cooling operation is performed in the controller 10. Outdoor heat exchanger 2 if selected
1 is connected to the working medium heat exchanger 5 of the adsorption refrigeration unit on the regeneration stroke side, and the indoor heat exchanger 22 is connected to the working medium heat exchanger 5 of the adsorption refrigeration unit on the adsorption stroke side, and vice versa. Outdoor heat exchanger 2 when is selected
1 is connected to the working medium heat exchanger 5 of the adsorption refrigeration unit on the adsorption process side, and the indoor heat exchanger 22 is connected to the working medium heat exchanger 5 of the adsorption refrigeration unit on the regeneration process side.
The valve switching position is controlled in relation to the switch selection and the switching of the operation strokes of the adsorption refrigeration units U 1 and U 2 . Note that FIG. 1 shows a connection state of the outdoor heat exchanger 21 and the indoor heat exchanger 22 during cooling.

【0032】上記加熱器11は、特許請求の範囲中の高
温熱源に該当するものであって、例えば太陽熱温水器と
か温廃水が利用されるボイラー等で構成される。また、
上記冷却器12は、上記室外熱交換器21からの流体F
3との間で熱交換を行って上記流体F1を冷却する如く作
用する熱交換器で構成されている。
The heater 11 corresponds to the high temperature heat source in the claims, and is composed of, for example, a solar water heater or a boiler using hot waste water. Also,
The cooler 12 uses the fluid F from the outdoor heat exchanger 21.
3 by heat exchange with are configured in the heat exchanger acting as cooling the fluid F 1.

【0033】続いて、このように構成された吸着式空調
機の作動を、冷房運転時を例にとって説明すると、先ず
最初は第1四路切換弁31と第2四路切換弁32とは図
1のような切換位置に設定されており、冷却器12から
の低温流体F1が第1吸着冷凍ユニットU1の吸着剤付熱
交換器2に、加熱器11からの高温流体F2が第2吸着
冷凍ユニットU2の吸着剤付熱交換器2にそれぞれ供給
され、該第1吸着冷凍ユニットU1は吸着剤3によって
ガス状の作動媒体Wbを吸着する吸着行程にあり、逆に
第2吸着冷凍ユニットU2は吸着剤3に吸着したガス状
の作動媒体Wbを放出する再生行程にある。
Next, the operation of the thus constructed adsorption type air conditioner will be described by taking the cooling operation as an example. First, the first four-way switching valve 31 and the second four-way switching valve 32 are illustrated. 1, the low temperature fluid F 1 from the cooler 12 is fed to the heat exchanger 2 with the adsorbent of the first adsorption refrigeration unit U 1 and the high temperature fluid F 2 from the heater 11 is fed to the first heat exchanger 2 . The second adsorption refrigeration unit U 2 is supplied to the heat exchanger 2 with an adsorbent, and the first adsorption refrigeration unit U 1 is in the adsorption process of adsorbing the gaseous working medium Wb by the adsorbent 3, and conversely the second adsorption refrigeration unit U 1 . The adsorption refrigeration unit U 2 is in the regeneration process for releasing the gaseous working medium Wb adsorbed by the adsorbent 3.

【0034】一方、冷房運転時においては、第3四路切
換弁33と第4四路切換弁34とが、室外熱交換器21
を再生行程にある吸着冷凍ユニット(この状態では第2
吸着冷凍ユニットU2)の作動媒体用熱交換器5に、室内
熱交換器22を吸着行程にある吸着冷凍ユニット(この
状態では第1吸着冷凍ユニットU1)の作動媒体用熱交換
器5にそれぞれ接続せしめる如くその切換位置が設定さ
れている。
On the other hand, during the cooling operation, the third four-way switching valve 33 and the fourth four-way switching valve 34 serve as the outdoor heat exchanger 21.
The adsorption refrigeration unit (in this state, the second
The indoor heat exchanger 22 is used as the working medium heat exchanger 5 of the adsorption refrigeration unit U 2 ) and the indoor heat exchanger 22 is used as the working medium heat exchanger 5 of the adsorption refrigeration unit (in this state, the first adsorption refrigeration unit U 1 ). The switching positions are set so that they can be connected to each other.

【0035】従って、この図1に示す状態では、第1吸
着冷凍ユニットU1においては、上記吸着剤3の吸着作
用に伴って液状の作動媒体Waが連続的に蒸発して該作
動媒体Waの温度を低下せしめ、これによって室内熱交
換器22から作動媒体用熱交換器5に供給される流体F
4が冷却され、該室内熱交換器22において室内冷房が
行なわれる。
Therefore, in the state shown in FIG. 1, in the first adsorption refrigeration unit U 1 , the liquid working medium Wa is continuously evaporated by the adsorbing action of the adsorbent 3, and the working medium Wa is The fluid F that lowers the temperature and is thereby supplied from the indoor heat exchanger 22 to the working medium heat exchanger 5
4 is cooled, and indoor cooling is performed in the indoor heat exchanger 22.

【0036】一方、第2吸着冷凍ユニットU2において
は、その吸着剤付熱交換器2に加熱器11からの高温流
体F2が供給され、吸着剤3が加熱されることに伴って
該吸着剤3内に吸着されていた作動媒体Wbが放出され
る。この吸着剤3から放出されたガス状の作動媒体Wb
は、室外熱交換器21から作動媒体用熱交換器5に供給
される流体F3によって順次凝縮される。従って、上記
吸着剤3からの作動媒体の放出が連続的に行なわれる。
On the other hand, in the second adsorption refrigeration unit U 2 , the high temperature fluid F 2 from the heater 11 is supplied to the heat exchanger 2 with an adsorbent, and the adsorbent 3 is heated and the adsorbent 3 is adsorbed. The working medium Wb adsorbed in the agent 3 is released. Gaseous working medium Wb released from the adsorbent 3
Are sequentially condensed by the fluid F 3 supplied from the outdoor heat exchanger 21 to the working medium heat exchanger 5. Therefore, the working medium is released from the adsorbent 3 continuously.

【0037】このような第1吸着冷凍ユニットU1を吸
着行程とし、第2吸着冷凍ユニットU2を再生行程とし
た冷房運転がある程度継続されると、該第1吸着冷凍ユ
ニットU1の吸着剤3が次第に飽和状態に近付いて作動
媒体の吸着作用が低下し、上記室内熱交換器22にける
冷房能力が落ちてくる。従って、この場合には、上記各
吸着冷凍ユニットU1,U2の作動行程を、上記第1四路
切換弁31と第2四路切換弁32の弁位置の切換えによ
って切り換えて、今まで吸着行程にあった第1吸着冷凍
ユニットU1を再生行程に、再生行程にあった第2吸着
冷凍ユニットU2を吸着行程に切り換え、連続的な冷房
運転を可能とする。尚、この吸着冷凍ユニットU1,U2
の作動行程の切換に伴って、上記第3四路切換弁33と
第4四路切換弁34もその弁位置が切り換えられ、今度
は室外熱交換器21が第1吸着冷凍ユニットU1の作動
媒体用熱交換器5に、室内熱交換器22が第2吸着冷凍
ユニットU2の作動媒体用熱交換器5にそれぞれ接続さ
れることは勿論である。
When the cooling operation in which the first adsorption refrigeration unit U 1 is used as the adsorption process and the second adsorption refrigeration unit U 2 is used as the regeneration process is continued to some extent, the adsorbent of the first adsorption refrigeration unit U 1 is adsorbed. 3 gradually approaches the saturated state, the adsorbing action of the working medium decreases, and the cooling capacity in the indoor heat exchanger 22 decreases. Therefore, in this case, the operation stroke of each of the adsorption refrigeration units U 1 and U 2 is switched by switching the valve positions of the first four-way switching valve 31 and the second four-way switching valve 32, and adsorption is performed up to now. The first adsorption / refrigeration unit U 1 in the stroke is switched to the regeneration stroke, and the second adsorption / refrigeration unit U 2 in the regeneration stroke is switched to the adsorption stroke to enable continuous cooling operation. The adsorption refrigeration unit U 1 , U 2
The valve positions of the third four-way switching valve 33 and the fourth four-way switching valve 34 are also switched in accordance with the switching of the operation stroke of No. 3, and this time the outdoor heat exchanger 21 operates the first adsorption refrigeration unit U 1 . It goes without saying that the indoor heat exchanger 22 is connected to the medium heat exchanger 5 and is connected to the working medium heat exchanger 5 of the second adsorption refrigeration unit U 2 .

【0038】ところで、高い冷却能力を継続的に確保す
るためにはあるサイクルタイムをもって二つの吸着冷凍
ユニットU1,U2の作動行程を交互に切り換えるわけで
あり、従来はこのサイクルタイムを予じめ設定した一定
値に固定していた。ところが、最適性能が達成されるサ
イクルタイムは一定ではなく、種々の運転要素に応じて
変化するものでり、従って従来のようにサイクルタイム
を一定に固定した場合には熱ロスが大きくなって効率的
な運転が実現できないことは既述の通りである。
By the way, in order to continuously secure a high cooling capacity, the operation steps of the two adsorption refrigeration units U 1 and U 2 are alternately switched at a certain cycle time. Therefore, it was fixed at the set value. However, the cycle time at which the optimum performance is achieved is not constant, but changes according to various operating factors. Therefore, if the cycle time is fixed to a constant value as in the conventional case, heat loss will increase and efficiency will increase. As mentioned above, it is not possible to realize the ideal driving.

【0039】また、この最適性能が得られるサイクルタ
イムは、主として加熱器11から供給され再生行程にお
いて吸着剤3の再生作用を促進せしめる高温流体F2
温度と、室外熱交換器21の出口における流体F3の温
度(換言すれば、外気温度)と、室内熱交換器22の出口
における流体F4の温度(換言すれば、室内温度)とに左
右されるものであって、このうち、高温流体F2の温度
についてはその温度が高くなるほど最適サイクルタイム
が長くなり、流体F3の温度についてはその温度が高く
なるほど最適サイクルタイムが長くなり、さらに流体F
4の温度についてはその温度が高くなるほど最適サイク
ルタイムが短くなること、及びその理由についても既述
の通りである(「発明が解決しょうとする課題」の項、及
び図5〜図8参照)。
The cycle time at which this optimum performance is obtained is mainly the temperature of the high temperature fluid F 2 supplied from the heater 11 and promoting the regeneration action of the adsorbent 3 in the regeneration process, and the outlet of the outdoor heat exchanger 21. The temperature depends on the temperature of the fluid F 3 (in other words, the outside air temperature) and the temperature of the fluid F 4 at the outlet of the indoor heat exchanger 22 (in other words, the indoor temperature). Regarding the temperature of the fluid F 2, the higher the temperature, the longer the optimum cycle time, and regarding the temperature of the fluid F 3 , the longer the temperature, the longer the optimum cycle time.
Regarding the temperature of 4, the higher the temperature is, the shorter the optimum cycle time is, and the reason is as described above (refer to the "Problems to be solved by the invention" section and Figs. 5 to 8). ..

【0040】このようなことから、運転条件の変化にか
かわらず常時最適性能で装置を運転してより高効率の冷
暖房性能を実現するためには、上記各温度に対応してサ
イクルタイムを変化(即ち、第1四路切換弁31と第2
四路切換弁32の切換の間隔時間を変化)させてやれば
よく、このためこの実施例においては、図1に示すよう
に加熱器11の出口側と室外熱交換器21の出口側と室
内熱交換器22の出口側のいずれか一箇所に温度センサ
41,42,43を配置し、高温流体F2の温度により、
または流体F3の温度により、あるいは流体F4の温度に
より、サイクルタイムを変更設定して常時最適性能で装
置の運転が行えるようにしている。
From the above, in order to operate the device with optimum performance at all times regardless of changes in operating conditions and realize more efficient cooling and heating performance, the cycle time is changed in accordance with each temperature ( That is, the first four-way switching valve 31 and the second
It suffices to change the interval time of switching of the four-way switching valve 32. Therefore, in this embodiment, as shown in FIG. 1, the outlet side of the heater 11 and the outlet side of the outdoor heat exchanger 21 and the room. The temperature sensors 41, 42, 43 are arranged at any one of the outlet sides of the heat exchanger 22, and depending on the temperature of the high temperature fluid F 2 ,
Alternatively, the cycle time is changed and set depending on the temperature of the fluid F 3 or the temperature of the fluid F 4 so that the apparatus can always be operated with optimum performance.

【0041】例えば、加熱器11の出口における高温流
体の温度によってサイクルタイムを制御する場合には、
図2のフロ−チャ−トに示すように、制御開始後、先ず
現在の加熱器11の出口温度(T)と、現在のサイクルタ
イム(ta)とを読み込む(ステップS1)。次に、現在の加
熱器11の出口温度(T)に対応する最適サイクルタイム
(tb)をマップ(図6参照)から読み出す(ステップS2)。
そして、この現在のサイクルタイム(ta)と現在の温度条
件に対応した最適サイクルタイム(tb)とを比較し(ステ
ップS3)、(ta)≠(tb)である場合には、現在のサイク
ルタイムを読み出した最適サイクルタイムに変更設定す
る(ステップS4)。
For example, when the cycle time is controlled by the temperature of the hot fluid at the outlet of the heater 11,
As shown in the flowchart of FIG. 2, after the control is started, the current outlet temperature (T) of the heater 11 and the current cycle time (ta) are first read (step S1). Next, the optimum cycle time corresponding to the current outlet temperature (T) of the heater 11
(tb) is read from the map (see FIG. 6) (step S2).
Then, the present cycle time (ta) is compared with the optimum cycle time (tb) corresponding to the present temperature condition (step S3), and if (ta) ≠ (tb), the present cycle time Is set to the optimum cycle time read (step S4).

【0042】このようなサイクルタイムの変更制御が装
置の運転期間中継続的に行なわれることにより、吸着式
空気調和機は常に最適性能を発揮した状態で運転される
ことから熱ロスの少ない高効率の冷暖房運転が実現され
るものである。
By continuously performing such cycle time change control during the operation of the apparatus, the adsorption type air conditioner is always operated in a state of exhibiting optimum performance, so that high efficiency with less heat loss is achieved. The air-conditioning operation of is realized.

【0043】このように加熱器11の出口温度に応じて
サイクルタイムの変更制御を行うようにした場合には、
例えばボイラー等の廃熱のように一日のうちでも時間に
よって温度変化が大きい熱を高温熱源として利用するシ
ステムにおいて特にその効果が顕著である。
When the cycle time change control is performed according to the outlet temperature of the heater 11 as described above,
For example, the effect is particularly remarkable in a system that uses, as a high-temperature heat source, heat such as waste heat of a boiler that has a large temperature change with time even in one day.

【0044】尚、室外熱交換器21の出口温度、あるい
は室内熱交換器22の出口温度に応じてサイクルタイム
を制御する場合も上記と同様であり、従ってここでは図
3に室外熱交換器21の出口温度に基づく制御のフロ−
チャ−トを、図4に室内熱交換器22の出口温度に基づ
く制御のフロ−チャ−トをそれぞれ提示するに止どめ、
その詳細説明は省略する。
The same applies to the case where the cycle time is controlled according to the outlet temperature of the outdoor heat exchanger 21 or the outlet temperature of the indoor heat exchanger 22, and therefore the outdoor heat exchanger 21 is shown in FIG. Flow of control based on the outlet temperature of
The charts are limited to presenting the control flow chart based on the outlet temperature of the indoor heat exchanger 22 in FIG.
Detailed description thereof will be omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の実施例にかかる吸着式空気調和機の
全体システム図である。
FIG. 1 is an overall system diagram of an adsorption type air conditioner according to an embodiment of the present invention.

【図2】図1に示した吸着式空気調和機における第1の
制御例における制御フロ−チャ−トである。
FIG. 2 is a control flow chart in a first control example of the adsorption type air conditioner shown in FIG.

【図3】図1に示した吸着式空気調和機における第2の
制御例における制御フロ−チャ−トである。
FIG. 3 is a control flowchart in a second control example of the adsorption type air conditioner shown in FIG.

【図4】図1に示した吸着式空気調和機における第3の
制御例における制御フロ−チャ−トである。
FIG. 4 is a control flowchart in a third control example of the adsorption type air conditioner shown in FIG.

【図5】高温熱源温度を変化させた場合における冷却能
力とサイクルタイムとの相関図である。
FIG. 5 is a correlation diagram between the cooling capacity and the cycle time when the high temperature heat source temperature is changed.

【図6】サイクルタイムと高温熱源温度との相関図であ
る。
FIG. 6 is a correlation diagram between cycle time and high temperature heat source temperature.

【図7】室外熱交換器の温度を変化させた場合における
サイクルタイムの特性図である。
FIG. 7 is a characteristic diagram of cycle time when the temperature of the outdoor heat exchanger is changed.

【図8】室内熱交換器の温度を変化させた場合における
サイクルタイムの特性図である。
FIG. 8 is a characteristic diagram of cycle time when the temperature of the indoor heat exchanger is changed.

【符号の説明】[Explanation of symbols]

1は密閉容器、2は吸着剤付熱交換器、3は吸着剤、5
は作動媒体用熱交換器、10は制御器、11は加熱器、
12は冷却器、21は室外熱交換器、22は室内熱交換
器、31〜34は四路切換弁、41は熱源用温度セン
サ、42は外気温用温度センサ、43は室温用温度セン
サ、U1及びU2は吸着冷凍ユニットである。
1 is a closed container, 2 is a heat exchanger with an adsorbent, 3 is an adsorbent, 5
Is a heat exchanger for working medium, 10 is a controller, 11 is a heater,
12 is a cooler, 21 is an outdoor heat exchanger, 22 is an indoor heat exchanger, 31 to 34 are four-way switching valves, 41 is a temperature sensor for heat source, 42 is a temperature sensor for outside air temperature, 43 is a temperature sensor for room temperature, U 1 and U 2 are adsorption refrigeration units.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 作動媒体(W)を封入してなる密閉容器
(1)の中に、低温熱源(12)による冷却時には上記作動
媒体(W)を吸着し、高温熱源(11)による加熱時には上
記作動媒体(W)を放出する如く作用する吸着剤(3)を備
えた吸着剤付熱交換器(2)と、該吸着剤付熱交換器
(2),(2)による作動媒体(W)の吸着・放出に伴って該
作動媒体(W)との間で熱交換を行なう作動媒体用熱交換
器(5),(5)とを備えた吸着冷凍ユニット(U1、U2)を
複数基並設する一方、該各吸着冷凍ユニット(U1),
(U2)の各作動媒体用熱交換器(5),(5)を室内熱交換器
(22)と室外熱交換器(21)とに可逆的に接続可能とす
るとともに、上記複数基の吸着冷凍ユニット(U1),
(U2)の作動行程を所定間隔毎に吸着行程と再生行程と
の間で交互に切り換えるようにした吸着式空気調和機で
あって、上記高温熱源(11)の出口温度を検出する温度
検出手段(41)と、該温度が高いほど上記各吸着冷凍ユ
ニット(U1),(U2)の作動行程の切換時間を長く設定す
る制御手段(10)とを備えたことを特徴とする吸着式空
気調和機。
1. A closed container containing a working medium (W).
In (1), an adsorbent (3) that acts so as to adsorb the working medium (W) when cooled by the low temperature heat source (12) and release the working medium (W) when heated by the high temperature heat source (11). (2) with an adsorbent, and a heat exchanger with an adsorbent
(2), a working medium heat exchanger (5), (5) for exchanging heat with the working medium (W) according to adsorption and release of the working medium (W) While a plurality of adsorption refrigeration units (U 1 , U 2 ) are installed in parallel, each adsorption refrigeration unit (U 1 ),
Replace the heat exchangers (5) and (5) for each working medium of (U 2 ) with the indoor heat exchanger.
(22) and the outdoor heat exchanger (21) can be reversibly connected to each other, and the plurality of adsorption refrigeration units (U 1 ),
An adsorption type air conditioner in which the operation stroke of (U 2 ) is alternately switched between an adsorption stroke and a regeneration stroke at a predetermined interval, the temperature detection detecting the outlet temperature of the high temperature heat source (11). Adsorption means comprising means (41) and control means (10) for setting the switching time of the operation stroke of each of the adsorption refrigeration units (U 1 ) and (U 2 ) longer as the temperature is higher. Type air conditioner.
【請求項2】 作動媒体(W)を封入してなる密閉容器
(1)の中に、該作動媒体(W)の吸着・放出を行う吸着剤
(3)を備えた吸着剤付熱交換器(2),(2)と、該吸着剤
付熱交換器(2)による作動媒体(W)の吸着・放出に伴っ
て該作動媒体(W)との間で熱交換を行なう作動媒体用熱
交換器(5),(5)とを備えた吸着冷凍ユニット(U1
2)を複数基並設する一方、該各吸着冷凍ユニット
(U1),(U2)の各作動媒体用熱交換器(5),(5)を室内熱
交換器(22)と室外熱交換器(21)とに可逆的に接続可
能とするとともに、上記複数基の吸着冷凍ユニット
(U1),(U2)の作動行程を所定間隔毎に吸着行程と再生
行程との間で交互に切り換えるようにした吸着式空気調
和機であって、上記室外熱交換器(21)の出口における
冷媒温度を検出する温度検出手段(42)と、冷房運転時
には上記冷媒温度が高いほど、また暖房運転時には上記
冷媒温度が低いほど上記各吸着冷凍ユニット(U1),
(U2)の作動行程の切換時間を長く設定する制御手段(1
0)とを備えたことを特徴とする吸着式空気調和機。
2. A closed container containing a working medium (W).
An adsorbent that adsorbs / releases the working medium (W) in (1)
(3) Adsorbent-equipped heat exchanger (2), (2), and the working medium (W) adsorbed and released by the adsorbent-equipped heat exchanger (2) Adsorption refrigeration unit (U 1 , equipped with a working medium heat exchanger (5), (5) for exchanging heat with
U 2 ), a plurality of U 2 ) are arranged in parallel, and each of the adsorption refrigeration units
The heat exchangers (5) and (5) for working media (U 1 ) and (U 2 ) are reversibly connectable to the indoor heat exchanger (22) and the outdoor heat exchanger (21). , A plurality of adsorption refrigeration units described above
An adsorption type air conditioner in which the operation steps of (U 1 ) and (U 2 ) are alternately switched between an adsorption step and a regeneration step at predetermined intervals, the outdoor heat exchanger (21) A temperature detecting means (42) for detecting the refrigerant temperature at the outlet, and the adsorbing / refrigerating unit (U 1 ), the higher the refrigerant temperature during the cooling operation and the lower the refrigerant temperature during the heating operation.
Control means for setting the switching time of the operation stroke of (U 2 ) to be long (1
0) and an adsorption type air conditioner.
【請求項3】 作動媒体(W)を封入してなる密閉容器
(1)の中に、該作動媒体(W)の吸着・放出を行う吸着剤
(3)を備えた吸着剤付熱交換器(2),(2)と、該吸着剤
付熱交換器(2)による作動媒体(W)の吸着・放出に伴っ
て該作動媒体(W)との間で熱交換を行なう作動媒体用熱
交換器(5),(5)とを備えた吸着冷凍ユニット(U1
2)を複数基並設する一方、該各吸着冷凍ユニット
(U1),(U2)の各作動媒体用熱交換器(5),(5)を室内熱
交換器(22)と室外熱交換器(21)とに可逆的に接続可
能とするとともに、上記複数基の吸着冷凍ユニット
(U1),(U2)の作動行程を所定間隔毎に吸着行程と再生
行程との間で交互に切り換えるようにした吸着式空気調
和機であって、上記室内熱交換器(22)の出口における
冷媒温度を検出する温度検出手段(43)と、冷房運転時
には該冷媒温度が低いほど、また暖房運転時には該冷媒
温度が高いほど上記各吸着冷凍ユニット(U1),(U2)の
作動行程の切換時間を長く設定する制御手段(10)とを
備えたことを特徴とする吸着式空気調和機。
3. A closed container containing a working medium (W).
An adsorbent that adsorbs / releases the working medium (W) in (1)
(3) Adsorbent-equipped heat exchangers (2), (2), and the working medium (W) accompanying adsorption and release of the working medium (W) by the adsorbent-equipped heat exchanger (2) An adsorption refrigeration unit (U 1 , equipped with a working medium heat exchanger (5), (5) for exchanging heat with
U 2 ), a plurality of U 2 ) are arranged in parallel, and each of the adsorption refrigeration units
The heat exchangers (5) and (5) for working media (U 1 ) and (U 2 ) are reversibly connectable to the indoor heat exchanger (22) and the outdoor heat exchanger (21). , A plurality of adsorption refrigeration units described above
An adsorption type air conditioner in which the operation strokes of (U 1 ) and (U 2 ) are alternately switched between an adsorption stroke and a regeneration stroke at predetermined intervals, the indoor heat exchanger (22) A temperature detecting means (43) for detecting the refrigerant temperature at the outlet, and the lower the refrigerant temperature during the cooling operation and the higher the refrigerant temperature during the heating operation, the higher the refrigerant temperature of the adsorption refrigeration units (U 1 ) and (U 2 ) is. An adsorption air conditioner comprising: a control means (10) for setting a switching time of an operation stroke to be long.
JP29014991A 1991-11-06 1991-11-06 Adsorption type air-conditioner Pending JPH05126432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29014991A JPH05126432A (en) 1991-11-06 1991-11-06 Adsorption type air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29014991A JPH05126432A (en) 1991-11-06 1991-11-06 Adsorption type air-conditioner

Publications (1)

Publication Number Publication Date
JPH05126432A true JPH05126432A (en) 1993-05-21

Family

ID=17752415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29014991A Pending JPH05126432A (en) 1991-11-06 1991-11-06 Adsorption type air-conditioner

Country Status (1)

Country Link
JP (1) JPH05126432A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008580A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Adsorption type heating/hot water supply system
US20100043462A1 (en) * 2008-06-10 2010-02-25 Oxicool, Inc. Air Conditioning System
WO2011016809A1 (en) * 2009-08-06 2011-02-10 Oxicool, Inc. Air conditioning system
CN103673376A (en) * 2013-12-24 2014-03-26 金继伟 Heat conversion device with heating and adsorption heat combined
US9513037B2 (en) 2007-04-30 2016-12-06 Oxicool, Inc. Motor cycle air conditioning system
JP2017094864A (en) * 2015-11-20 2017-06-01 トヨタ自動車株式会社 Vehicular adsorption type air conditioner
KR20170140381A (en) * 2015-04-28 2017-12-20 록키 리서치 System and method for controlling refrigeration cycle
JP2018070038A (en) * 2016-11-01 2018-05-10 トヨタ自動車株式会社 Air conditioner for vehicle having adsorption-type heat pump

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008580A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Adsorption type heating/hot water supply system
US9513037B2 (en) 2007-04-30 2016-12-06 Oxicool, Inc. Motor cycle air conditioning system
US20100043462A1 (en) * 2008-06-10 2010-02-25 Oxicool, Inc. Air Conditioning System
US10240823B2 (en) 2008-06-10 2019-03-26 Oxicool Inc Air conditioning system
WO2011016809A1 (en) * 2009-08-06 2011-02-10 Oxicool, Inc. Air conditioning system
CN103673376A (en) * 2013-12-24 2014-03-26 金继伟 Heat conversion device with heating and adsorption heat combined
CN103673376B (en) * 2013-12-24 2015-07-15 金继伟 Heat conversion device with heating and adsorption heat combined
JP2018515735A (en) * 2015-04-28 2018-06-14 ロッキー・リサーチ System and method for controlling a refrigeration cycle
KR20170140381A (en) * 2015-04-28 2017-12-20 록키 리서치 System and method for controlling refrigeration cycle
US10137762B2 (en) 2015-11-20 2018-11-27 Toyota Jidosha Kabushiki Kaisha Vehicular adsorption type air conditioning device
JP2017094864A (en) * 2015-11-20 2017-06-01 トヨタ自動車株式会社 Vehicular adsorption type air conditioner
DE102016219905B4 (en) * 2015-11-20 2020-07-09 Toyota Jidosha Kabushiki Kaisha Vehicle adsorption air conditioning system
JP2018070038A (en) * 2016-11-01 2018-05-10 トヨタ自動車株式会社 Air conditioner for vehicle having adsorption-type heat pump

Similar Documents

Publication Publication Date Title
Saha et al. Computational analysis of an advanced adsorption-refrigeration cycle
JP4192385B2 (en) Adsorption type refrigerator
WO1995014898A1 (en) Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same
JPH11316061A (en) Air conditioning system and its operation method
JP5575029B2 (en) Desiccant ventilation fan
WO2015125250A1 (en) Air-conditioning device and method for controlling air-conditioning device
JPH05126432A (en) Adsorption type air-conditioner
JP3592374B2 (en) Adsorption type cooling device and method for controlling cooling output thereof
JP2002162130A (en) Air conditioner
JPH11223411A (en) Adsorption heat pump
JP3991700B2 (en) Adsorption refrigeration system
JP4066485B2 (en) Refrigeration equipment
JP3353839B2 (en) Refrigeration output control method of adsorption chiller and adsorption chiller capable of refrigeration output control
JP2005098586A (en) Air conditioner
JP4069691B2 (en) Air conditioner for vehicles
JP4151095B2 (en) Refrigeration equipment
JP3316892B2 (en) Operating method of adsorption refrigeration system
JP2501785Y2 (en) Adsorption refrigerator
JPH11223416A (en) Refrigerating device
JPH05296599A (en) Adsorption type heat accumulator and heat accumulation operating control method
JP2000039224A (en) Air conditioner system
JP3358325B2 (en) Control method of adsorption refrigeration apparatus and adsorption refrigeration apparatus
JPH11190567A (en) Refrigerating unit
JPH0810091B2 (en) Control method of adsorption refrigerator
JPH11190569A (en) Refrigerating unit