JPS6130608B2 - - Google Patents

Info

Publication number
JPS6130608B2
JPS6130608B2 JP54041197A JP4119779A JPS6130608B2 JP S6130608 B2 JPS6130608 B2 JP S6130608B2 JP 54041197 A JP54041197 A JP 54041197A JP 4119779 A JP4119779 A JP 4119779A JP S6130608 B2 JPS6130608 B2 JP S6130608B2
Authority
JP
Japan
Prior art keywords
gas
adsorption tower
vacuum pump
air ejector
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54041197A
Other languages
Japanese (ja)
Other versions
JPS55132618A (en
Inventor
Yoshizo Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4119779A priority Critical patent/JPS55132618A/en
Publication of JPS55132618A publication Critical patent/JPS55132618A/en
Publication of JPS6130608B2 publication Critical patent/JPS6130608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 この発明は固体吸着剤を用いるガス成分分離装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas component separation device using a solid adsorbent.

従来、プロパンガスなどの燃料ガスを不完全燃
焼させて焼鈍炉用炉気ガスとして利用される発熱
形ガスを得るガス発生装置においては、得られた
ガス中の水分や炭酸ガスを除去するため第1図に
示すようなガス成分分離装置を用いていた。図
中、1はガス成分分離装置で、2は発熱形ガス発
生装置よりの管路、3は焼鈍炉等のガス使用側装
置に至る管路である。また4,5は吸着塔で、内
部にモレキユラシーブス、活性アルミナ、シリカ
ゲル等の固体吸着剤が充填されている。6,7,
8は方向切換弁、9は排気管路、10は油回転真
空ポンプ、11は再生流量調節弁である。すなわ
ち、各方向切換弁が実線で示す状態に導通してい
る状態においては、発熱形ガスは管路2から管路
12を経て吸着塔4内に流入し、固体吸着剤によ
り水分および炭酸ガスを吸着除去されたのち、管
路13を経て管路3から外部へ供給される。一方
固体吸着剤が水分、炭酸ガス等を吸着した状態の
吸着塔5については、油回転真空ポンプ10を運
転して管路14,15、排気管路9を経て該吸着
塔5内のガスを吸引して管路16より外部へ放出
し、吸着成分の真空離脱による固体吸着剤の再生
をはかるものである。なお吸着塔4における吸着
処理後のガスの一部は管路17および再生流量調
節弁11を経て吸着塔5に流入し、この流入状態
において吸着塔5内の圧力が所定の圧力に減圧さ
れるよう油回転真空ポンプ10の容量が選択され
ている。固体吸着剤再生後は方向切換弁6,7,
8を切換えて点線で示す導通状態とし、上記と反
対の吸着塔において吸着および再生をおこなうの
である。ところが上記の装置において吸着塔5か
ら油回転真空ポンプ10に吸引されるガス中には
当然水分が含まれているので、この水分により油
回転真空ポンプ10内において気密保持等の重要
な役割を果す潤滑油が汚染され、排気速度や到達
圧力が早期に低下し、ポンプの摺動部分の損耗が
著るしく、潤滑油のひんぱんな交換が必要であつ
た。そこでこの油回転真空ポンプ10のかわりに
液封式真空ポンプを使用することが考えられる
が、このポンプによつて高真空度を得ることは困
難であつた。
Conventionally, in gas generators that incompletely burn fuel gas such as propane gas to obtain exothermic gas that is used as furnace air gas for annealing furnaces, a gas generator is used to remove moisture and carbon dioxide from the resulting gas. A gas component separation device as shown in Figure 1 was used. In the figure, 1 is a gas component separation device, 2 is a pipe line from an exothermic gas generator, and 3 is a pipe line leading to a gas-using device such as an annealing furnace. Further, 4 and 5 are adsorption towers filled with solid adsorbents such as molecular sieves, activated alumina, and silica gel. 6,7,
8 is a directional control valve, 9 is an exhaust pipe, 10 is an oil rotary vacuum pump, and 11 is a regeneration flow rate control valve. That is, when each directional control valve is in the state shown by the solid line, exothermic gas flows from pipe 2 through pipe 12 into adsorption tower 4, and the solid adsorbent removes moisture and carbon dioxide. After being adsorbed and removed, it is supplied to the outside from the pipe line 3 via the pipe line 13. On the other hand, for the adsorption tower 5 in which the solid adsorbent has adsorbed moisture, carbon dioxide, etc., the oil rotary vacuum pump 10 is operated to remove the gas in the adsorption tower 5 through the pipes 14 and 15 and the exhaust pipe 9. The solid adsorbent is sucked and discharged to the outside through the pipe 16, and the solid adsorbent is regenerated by vacuum separation of the adsorbed components. A part of the gas after the adsorption treatment in the adsorption tower 4 flows into the adsorption tower 5 through the pipe 17 and the regeneration flow rate control valve 11, and in this inflow state, the pressure inside the adsorption tower 5 is reduced to a predetermined pressure. The capacity of the oil rotary vacuum pump 10 is selected. After regenerating the solid adsorbent, the directional control valves 6, 7,
8 is switched to the conductive state shown by the dotted line, and adsorption and regeneration are performed in the adsorption tower opposite to the above. However, in the above device, the gas sucked from the adsorption tower 5 into the oil rotary vacuum pump 10 naturally contains moisture, and this moisture plays an important role in maintaining airtightness within the oil rotary vacuum pump 10. The lubricating oil became contaminated, the pumping speed and ultimate pressure decreased prematurely, and the sliding parts of the pump were significantly worn, requiring frequent replacement of the lubricating oil. Therefore, it has been considered to use a liquid ring type vacuum pump instead of this oil rotary vacuum pump 10, but it has been difficult to obtain a high degree of vacuum with this pump.

この発明は上記従来の欠点を解消するもので、
長寿命であり設備費も安価である真空排気装置を
そなえたガス成分分離装置を提供しようとするも
のである。
This invention solves the above-mentioned conventional drawbacks,
The present invention aims to provide a gas component separation device equipped with a vacuum evacuation device that has a long life and is inexpensive in equipment cost.

以下第2図によつてこの発明の一実施例を説明
する。
An embodiment of the present invention will be explained below with reference to FIG.

図中第1図と同一符号を付した部分は第1図と
同一部分を示す。20はガス成分分離装置であ
る。21は空気エゼクタで、その吸込口(二次流
吸込口)22は排気管路9に接続され、その排出
口23は管路24を経て液封式真空ポンプ25の
吸込口に接続されている。また空気エゼクタ21
のノズル26の入口27は、管路28に接続され
た開閉弁29を介して大気中に開放されている。
また30は空気エゼクタバイパス用の管路で、そ
の途中には開閉弁31が設けられている。なお図
中、吸着塔交互切換時に真空状態となつた吸着塔
内を昇圧してから衝撃なしに管路2に接続するた
めの、昇圧回路や排気管路9の途中に設けられる
真空遮断弁などの図示を省略してある。
In the figure, parts given the same reference numerals as in FIG. 1 indicate the same parts as in FIG. 1. 20 is a gas component separation device. 21 is an air ejector, its suction port (secondary flow suction port) 22 is connected to the exhaust pipe line 9, and its discharge port 23 is connected to the suction port of a liquid ring vacuum pump 25 via a pipe line 24. . Also, the air ejector 21
An inlet 27 of the nozzle 26 is opened to the atmosphere via an on-off valve 29 connected to a pipe line 28.
Further, 30 is a conduit for air ejector bypass, and an on-off valve 31 is provided in the middle of the conduit. In addition, in the figure, a vacuum cutoff valve is installed in the middle of the pressure booster circuit and the exhaust pipe 9 to increase the pressure inside the adsorption tower, which is in a vacuum state when the adsorption tower is alternately switched, and then connect it to the pipe 2 without impact. illustration is omitted.

すなわち、吸着塔4による水分、炭酸ガスの吸
着は第1図の従来例と同様にしておこなう。また
吸着塔5内の固体吸着剤の吸着した水分、炭酸ガ
スの真空離脱は、次のようにしておこなう。まず
開閉弁31を開状態、開閉弁29を閉状態として
液封式真空ポンプ25を運転すれば、吸着塔5内
のガスは管路14,15を経て排気管路9の途中
から大部分は抵抗の少ないバイパス用の管路3
0、開閉弁31を流過し、一部は空気エゼクタ2
1内部を流過して液封式真空ポンプ25により吸
引され管路16より外部へ放出される。このとき
吸着塔5内の真空度および排気速度は第3図の曲
線Aに従つて矢印方向に変化する。吸着塔5内の
圧力が所定の圧力P(第3図参照)になつたら、
開閉弁31を閉じ次いで開閉弁29を開ければ、
空気エゼクタ21が動作し、開閉弁29から吸入
された空気が駆動流として作用して排気管路9か
らガスを二次流として吸引し、吸着塔5内の圧力
はさらに低下するのである。このときの吸着塔5
内の圧力は第3図の曲線Bに従つて変化し、液封
式真空ポンプ25のみによる場合は冷却水の温度
にもよるが通常は曲線Cで示すように100Torr前
後の真空度しか得られないところを、固体吸着剤
の真空離脱に必要な40Torr前後の真空度を容易
に得ることができるのである。なお吸着塔5より
吸引されるガス中の水分は液封式真空ポンプ25
の液封リングを形成する冷却水中等に混入してし
まつてポンプ作用には何ら影響をおよぼさない
し、また空気エゼクタも可動部分がないためガス
中の水分による悪影響は受けない。
That is, the adsorption of moisture and carbon dioxide by the adsorption tower 4 is performed in the same manner as in the conventional example shown in FIG. Further, the vacuum separation of moisture and carbon dioxide adsorbed by the solid adsorbent in the adsorption tower 5 is performed as follows. First, if the liquid ring vacuum pump 25 is operated with the on-off valve 31 in the open state and the on-off valve 29 in the closed state, most of the gas in the adsorption tower 5 will be discharged from the middle of the exhaust pipe 9 via the pipes 14 and 15. Bypass conduit 3 with low resistance
0, flows through the on-off valve 31, and a part of the air passes through the air ejector 2
1, is sucked by a liquid ring vacuum pump 25, and is discharged to the outside through a pipe line 16. At this time, the degree of vacuum in the adsorption tower 5 and the evacuation speed change in the direction of the arrow according to curve A in FIG. When the pressure inside the adsorption tower 5 reaches a predetermined pressure P (see Fig. 3),
If you close the on-off valve 31 and then open the on-off valve 29,
The air ejector 21 operates, and the air sucked in from the on-off valve 29 acts as a driving flow to suck gas from the exhaust pipe 9 as a secondary flow, and the pressure inside the adsorption tower 5 is further reduced. Adsorption tower 5 at this time
The internal pressure changes according to curve B in Fig. 3, and if only the liquid ring vacuum pump 25 is used, normally only a degree of vacuum of around 100 Torr can be obtained, as shown by curve C, although it depends on the temperature of the cooling water. It is possible to easily obtain a vacuum level of around 40 Torr, which is necessary for vacuum separation of solid adsorbents, even though this is not possible. The moisture in the gas sucked from the adsorption tower 5 is removed by a liquid ring vacuum pump 25.
Since the air ejector does not have any moving parts, it is not adversely affected by the moisture in the gas.

なお上記実施例ではバイパス用の管路30を設
けたので液封式真空ポンプ25のみによる吸引時
の排気時間短縮をはかることができるが、液封式
真空ポンプ25の容量等によつてはこの管路30
および開閉弁31は省略してもよい。
In the above embodiment, since the bypass line 30 is provided, it is possible to shorten the evacuation time during suction using only the liquid ring vacuum pump 25. However, depending on the capacity of the liquid ring vacuum pump 25, etc. Conduit 30
And the on-off valve 31 may be omitted.

以上は本発明を発熱形ガス中の水分等の分離装
置に適用した場合について説明したが、本発明は
この他にたとえば圧縮空気中の水分を除去するド
ライヤなど固体吸着剤を用いた各種のガス成分分
離装置に適用できるものである。また本発明は3
個以上の吸着塔をそなえ、適宜の順序により吸着
および固体吸着剤の再生をおこなうガス成分分離
装置にも適用できることは明らかである。
The above description has been made of the case where the present invention is applied to a device for separating moisture, etc. in exothermic gas, but the present invention is also applicable to various gases using solid adsorbents, such as a dryer that removes moisture from compressed air. It can be applied to component separation equipment. In addition, the present invention provides 3
It is clear that the present invention can also be applied to a gas component separation apparatus that is equipped with more than one adsorption tower and performs adsorption and regeneration of the solid adsorbent in an appropriate order.

以上説明したようにこの発明は、固体吸着剤の
再生をおこなうべき吸着塔に連通する排気管路に
空気エゼクタを接続しその後段に液封式真空ポン
プを接続したので、液封式真空ポンプによるあら
びき後空気エゼクタによりさらに排気することに
より、液封式真空ポンプのみでは到達困難であつ
た所望の高真空度を容易に得ることができる。ま
た真空排気装置を構成する液封式真空ポンプおよ
び空気エゼクタは、共に吸引ガス中の水分による
影響を受けず、寿命が長く保守が極めて容易であ
るとともに、構造が簡単であるので設備費も安価
で済み、経済的である。
As explained above, in this invention, an air ejector is connected to the exhaust pipe line communicating with the adsorption tower in which the solid adsorbent is to be regenerated, and a liquid ring vacuum pump is connected at the downstream stage. By further evacuating the air using the air ejector after evacuating, it is possible to easily obtain a desired high degree of vacuum, which was difficult to achieve using only a liquid ring vacuum pump. In addition, the liquid ring vacuum pump and air ejector that make up the vacuum evacuation system are not affected by moisture in the suction gas, have a long lifespan, are extremely easy to maintain, and have a simple structure that reduces equipment costs. It is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス成分分離装置の一例を示す
系統図、第2図はこの発明に係るガス成分分離装
置の一実施例を示す系統図、第3図は第2図にお
ける吸着塔5内の圧力の変化状態の一例を示す真
空度−排気速度曲線である。 4……吸着塔、5……吸着塔、6……方向切換
弁、7……方向切換弁、8……方向切換弁、9…
…排気管路、20……ガス成分分離装置、21…
…空気エゼクタ、22……吸込口、23……排出
口、24……管路、25……液封式真空ポンプ、
26……ノズル、27……入口、28……管路、
29……開閉弁。
FIG. 1 is a system diagram showing an example of a conventional gas component separation device, FIG. 2 is a system diagram showing an embodiment of the gas component separation device according to the present invention, and FIG. 3 is a system diagram showing an example of the adsorption tower 5 in FIG. 2 is a degree of vacuum vs. pumping speed curve showing an example of a state of change in pressure. 4... Adsorption tower, 5... Adsorption tower, 6... Directional switching valve, 7... Directional switching valve, 8... Directional switching valve, 9...
...Exhaust pipe line, 20...Gas component separation device, 21...
... air ejector, 22 ... suction port, 23 ... discharge port, 24 ... pipe line, 25 ... liquid ring vacuum pump,
26...nozzle, 27...inlet, 28...pipeline,
29...Opening/closing valve.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に固体吸着剤が充填された複数個の吸着
塔と、上記各吸着塔のうちの1個を選択してその
内部に処理対象ガスを導入する手段と、上記選択
された吸着塔から処理後のガスを外部へ流出させ
る手段と、上記選択された吸着塔以外の吸着塔の
内部に連通する排気管路をそなえたガス成分分離
装置において、上記排気管路に空気エゼクタの吸
込口を接続し、該空気エゼクタの排出口に液封式
真空ポンプの吸込口を接続し、上記空気エゼクタ
のノズルの入口を開閉弁を介して大気中に開放さ
せたことを特徴とするガス成分分離装置。
1. A plurality of adsorption towers each filled with a solid adsorbent, means for selecting one of the adsorption towers and introducing the gas to be treated into the adsorption tower, and a means for introducing the gas to be treated from the selected adsorption tower. In a gas component separation device equipped with a means for discharging the remaining gas to the outside, and an exhaust pipe line communicating with the inside of an adsorption tower other than the selected adsorption tower, the suction port of the air ejector is connected to the exhaust pipe line. A gas component separation device characterized in that a suction port of a liquid ring vacuum pump is connected to the discharge port of the air ejector, and the inlet of the nozzle of the air ejector is opened to the atmosphere via an on-off valve.
JP4119779A 1979-04-04 1979-04-04 Separator for gas component Granted JPS55132618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119779A JPS55132618A (en) 1979-04-04 1979-04-04 Separator for gas component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119779A JPS55132618A (en) 1979-04-04 1979-04-04 Separator for gas component

Publications (2)

Publication Number Publication Date
JPS55132618A JPS55132618A (en) 1980-10-15
JPS6130608B2 true JPS6130608B2 (en) 1986-07-15

Family

ID=12601687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119779A Granted JPS55132618A (en) 1979-04-04 1979-04-04 Separator for gas component

Country Status (1)

Country Link
JP (1) JPS55132618A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758252A (en) * 1987-06-26 1988-07-19 The Boc Group, Inc. Hydrostatic method employing PSA vent gas pressure for vacuum regeneration
FR2626195A1 (en) * 1988-01-21 1989-07-28 Trepaud Pierre PROCESS FOR REGENERATING AN ADSORBENT PRODUCT AND ADSORPTION DRYER USING THE SAME
US4971609A (en) * 1990-02-05 1990-11-20 Pawlos Robert A Portable oxygen concentrator

Also Published As

Publication number Publication date
JPS55132618A (en) 1980-10-15

Similar Documents

Publication Publication Date Title
EP0289446B1 (en) Method for removing a gaseous component from air
KR100346487B1 (en) Pressure swing adsorption gas flow control method and system
US4425142A (en) Pressure swing adsorption cycle for natural gas pretreatment for liquefaction
US5061455A (en) Apparatus for removing carbon dioxide from air
BRPI0616273A2 (en) homogeneous charge compression ignition combustion apparatus and compressor
JPS6130608B2 (en)
JPH0544446A (en) Exhaust gas purifying device for internal combustion engine
JP4796688B2 (en) Rare gas recovery method and rare gas recovery device
JP2009082782A (en) Gas separation system
KR100884273B1 (en) An Adsorbent Regeneration System and Regeneration Method
JPH07754A (en) Extremely low dew point air generator
CN111054191A (en) Compressed air drying device and compressed air supply system
JP4664444B1 (en) Dual vacuum pump device, gas purification system including the same, and control method of dual vacuum pump device
RU2800293C1 (en) Method for purification of polluted air
JP2001310110A (en) Gas concentration device
CN219784285U (en) Waste gas separation device for air purification
SU915919A1 (en) Compressed air drying apparatus
JP4171392B2 (en) Gas separation and recovery method and pressure swing adsorption gas separation and recovery system
JP2022090755A (en) Gas adsorption and separation device
SU386649A1 (en) KNOW
CN110743310A (en) Method and equipment for removing residual oil in oil-containing waste gas
SU1150009A1 (en) Installation for dehumidification and cleaning of gas
JPH03157117A (en) Gas separation device
JP2622969B2 (en) Hollow high-frequency power transmission line automatic gas filling equipment
JPH02218414A (en) Desorption vessel