JPS6016416A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS6016416A
JPS6016416A JP12331883A JP12331883A JPS6016416A JP S6016416 A JPS6016416 A JP S6016416A JP 12331883 A JP12331883 A JP 12331883A JP 12331883 A JP12331883 A JP 12331883A JP S6016416 A JPS6016416 A JP S6016416A
Authority
JP
Japan
Prior art keywords
substrate
temperature
base material
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12331883A
Other languages
Japanese (ja)
Inventor
Hironori Inoue
洋典 井上
Takaya Suzuki
誉也 鈴木
Yutaka Kobayashi
裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12331883A priority Critical patent/JPS6016416A/en
Publication of JPS6016416A publication Critical patent/JPS6016416A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To realize preprocessing of vapor growth process at a low temperature and avoid generation of thermal stress dislocation by intermittently irradiating the surface of base material with electromagnetic wave on the occasion of obtaining a growth layer by placing the base material to be processed in the reaction reservior. CONSTITUTION:A large diameter silicon base material 3 supported by a heating pedestal 2 is accommodated in a quartz reaction reservior 1 and the heating pedestal 2 heats such silicon base material with a high frequency coil 5 provided at the rear side thereof. The heating pedestal 2 is also rotated by the rotating axis 4, the hydrogen gas as the carrier gas is supplied to the reaction reservior 1 from the gas supply nozzle 6 which runs through the heating pedestal 2, and after the surface of base material 3 is purified, the gas is exhausted from the exhaust port 7. With such a structure, an intermittent lamp 81 which is used as the flash lamp is disposed at the external upper part of reservior 1 and the base material 3 is irradiated with the light having strong energy through the irradiation lens 82. Simultaneously, the heating pedestal 2 is also heated, temperature of base material 3 is set to about 950 deg.C which is lower than oridnary temperature and sufficient preprocessing is carried out even under such temperature.

Description

【発明の詳細な説明】 〔発明の利用分野] 本発明は半導体等の処理に使用される気相成長装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a vapor phase growth apparatus used for processing semiconductors and the like.

〔発明の背景〕[Background of the invention]

石英製反応容器内に基本(主に単結晶)を収納し、高温
に加熱しながら原料ガスを供給して基体上に単結晶層を
更に積み上げる所謂気相成長技術は、LSI等の半導体
製造プロセスにおいて広く適用される重要な技術である
。第1図に従来の縦型気相成長装@を示す。石英製反応
容器1内のBiC被覆したグラファイト製加熱台2上に
シリコン単結晶基体3を載置し、軸4により加熱台2を
回転しつつ高周波加熱コイル5で加熱台を誘導加熱し、
シリコン単結晶基体3f:約1zoorの高温度に保持
する。次いでシリコン原料(例えば5ict、等)を水
素をキャリヤガスとして原料ガス供給ノズル6から供給
し、シリコン単結晶基体3上に単結晶層を形成(エピタ
キシャル成長)する。
The so-called vapor phase growth technology, in which a base material (mainly single crystal) is housed in a quartz reaction vessel and is heated to a high temperature while supplying raw material gas to further stack a single crystal layer on the substrate, is used in the manufacturing process of semiconductors such as LSI. It is an important technology that is widely applied in the world. Figure 1 shows a conventional vertical vapor phase growth apparatus. A silicon single crystal substrate 3 is placed on a BiC-coated graphite heating table 2 in a quartz reaction vessel 1, and while the heating table 2 is rotated by a shaft 4, the heating table is induction heated by a high-frequency heating coil 5.
Silicon single crystal substrate 3f: Maintained at a high temperature of about 1 zoor. Next, a silicon raw material (for example, 5 ict, etc.) is supplied from the raw material gas supply nozzle 6 using hydrogen as a carrier gas to form a single crystal layer on the silicon single crystal substrate 3 (epitaxial growth).

かかる構成の気相成長装置においては以下のような問題
がある。即ち、近年LSIの高集積化、高速動作化が推
し進められつつあり、半導体装置の平面、並びに縦方向
寸法は一般と微細構造(サブミクロン)が要求されてい
る。しかしながら、従来の気相成長法(特にエピタキシ
ャル成長)を始めとする高温度の加熱プロセスは、その
工程以前に形成されたpm不純物層やnm不純物層の寸
法及び不純物濃度プロファイルを大幅に変形せしめると
云う問題点を有している。以上の問題の解決方法の一つ
として気相成長工程温度の低温化がある。
A vapor phase growth apparatus having such a configuration has the following problems. That is, in recent years, higher integration and faster operation of LSIs have been promoted, and the planar and vertical dimensions of semiconductor devices are required to have a general and fine structure (submicron). However, high-temperature heating processes such as conventional vapor phase growth methods (especially epitaxial growth) significantly change the dimensions and impurity concentration profiles of the PM and nm impurity layers formed before the process. There are problems. One way to solve the above problems is to lower the temperature of the vapor phase growth process.

従来法の他の問題点は気相成長工程で導入される熱応力
転位にある。即ち、気相成長における基体加熱の方法が
、まず加熱台を加熱し間接的に基体を加熱する方法であ
り、表面を供給ガスによって冷却を受ける基体は第2図
に示すように表裏において必然的に温度差(To>Tt
 ) f生じてしまう。
Another problem with conventional methods is thermal stress dislocations introduced during the vapor growth process. In other words, the method of heating the substrate in vapor phase growth is to first heat the heating table and indirectly heat the substrate. The temperature difference (To>Tt
) f will occur.

このため基体は表裏における熱膨張の差によって図に示
すごとく湾曲し、この湾曲により更に基体面内の周辺部
と中央部において温度の不均一分布(Ts<Ti) t
−生じる。この面内温度の不均一に起因し基体結晶内に
は多数の熱応力転位が導入され、半導体素子の歩留り低
下の大きな原因となっている。
For this reason, the substrate is curved as shown in the figure due to the difference in thermal expansion between the front and back surfaces, and this curvature further leads to non-uniform temperature distribution (Ts<Ti) in the periphery and center of the substrate surface.
- arise. Due to this in-plane temperature non-uniformity, a large number of thermal stress dislocations are introduced into the base crystal, which is a major cause of a decrease in the yield of semiconductor devices.

熱応力転位の問題は近年、LSIのプロセスコスト低減
と歩留り向上を目的とする基体の大口径化(4〜6イン
チ径)が進められる中で益々クローズアップしつつある
。即ち、基体の径が大きくなると基体の湾曲による反り
bldより大きくなる(第2図参照)ことから、基体面
内の半径方向の温度勾配d’1’、”arも大きくなる
。一方、熱応力転位の発生する温度勾配d’l’/dr
の限界は第3図に示すように、基体の径が大きい程小さ
くなることから、結局大口径基体はど熱応力転位は発生
し易い。
In recent years, the problem of thermal stress dislocation has become more and more prominent as the diameter of substrates has been increased (4 to 6 inches) with the aim of reducing process costs and improving yields of LSIs. That is, as the diameter of the base increases, the warpage bld due to curvature of the base becomes larger (see Figure 2), so the temperature gradient d'1',''ar in the radial direction within the plane of the base also increases.On the other hand, thermal stress Temperature gradient where dislocation occurs d'l'/dr
As shown in FIG. 3, the limit becomes smaller as the diameter of the substrate increases, so thermal stress dislocation is more likely to occur in large diameter substrates.

このような熱応力転位導入の問題を低減する方策の一つ
に基体加熱温度の低温化がある。第3図に示したように
基体加熱温度を低温にすると、同一径基体に対する熱応
力転位の発生する温度勾配d’p/drの限界は大幅に
緩和される。
One of the measures to reduce the problem of introducing thermal stress dislocations is to lower the heating temperature of the substrate. As shown in FIG. 3, when the substrate heating temperature is lowered, the limit of the temperature gradient d'p/dr at which thermal stress dislocation occurs for a substrate of the same diameter is significantly relaxed.

以上説明したように従来の気相成長法の問題点を解消す
るには低温化が重要な課題である。しかしながら、単に
加熱温度を低くくすることは、与える熱エネルギーの減
少に伴って成長過程における結晶欠陥の導入や、成長速
度の低下と云う新たな問題を生じてしまう。
As explained above, lowering the temperature is an important issue in solving the problems of conventional vapor phase growth methods. However, simply lowering the heating temperature causes new problems such as the introduction of crystal defects during the growth process and a decrease in the growth rate due to the reduction in the applied thermal energy.

気相成長工程温度の低温化に伴う新たな問題点の解決策
の1つとして、第4図に示す方式がある。
As one solution to the new problems associated with lowering the temperature of the vapor phase growth process, there is a method shown in FIG. 4.

即ち、基体3をグラファイト製の加熱台2に載置し、加
熱炉52によって通常反応温度以下(約100C程度低
い)に加熱する。次いで紫外ランプ8を点灯し基体3表
面を照射しつつ原料ガスを導入口6より供給し気相成長
を行なう。7は排気口である。気相成長では、気相反応
で分解した結晶構成原子が基体表面において熱エネルギ
ーを受けて再配列し、基体と同一面方位を持つ成長at
影形成るわけであるが、第4図の方式では反応温度を低
くシ九ために不足する熱エネルギーを紫外光等の電磁波
を照射することによって補い、良質の結晶性を維持する
ように配慮されている。一方、紫外光の照射は成長速度
に対してもその速度を増大する効果があることも知られ
ている。
That is, the substrate 3 is placed on a heating table 2 made of graphite, and heated in a heating furnace 52 to a temperature below the normal reaction temperature (about 100 C lower). Next, the ultraviolet lamp 8 is turned on to irradiate the surface of the substrate 3 while supplying raw material gas from the inlet 6 to perform vapor phase growth. 7 is an exhaust port. In vapor phase growth, crystal constituent atoms decomposed in a vapor phase reaction receive thermal energy on the substrate surface and rearrange, resulting in growth with the same plane orientation as the substrate.
However, in the method shown in Figure 4, in order to keep the reaction temperature low, the insufficient thermal energy is supplemented by irradiation with electromagnetic waves such as ultraviolet light, and care is taken to maintain good crystallinity. ing. On the other hand, it is also known that irradiation with ultraviolet light has the effect of increasing the growth rate.

しかしながら、第4図の方式によっても現在未だ量産レ
ベルの結晶性改善の効果や成長速にの増大効果は得られ
てず、大幅な加熱温度の低温化は達成されていない。こ
の主な原因は照射光のエネルギー不足にあると考えられ
る。エネルギー不足を補う一つの方策として、光源出力
を大きくする方法がある。しかしながら、単に出力を大
きくするととけ結局基体自体が得るエネルギーが増大し
、温度上昇を引き起すことから低温化の目的に反してし
まう。更にまた、従来市販されている光ぶの出力には限
度があり気相成長の光源としては不十分であるが、この
ことは、前述したように基体の径が益々大口径化する傾
向にある今日致命的な問題である。
However, even with the method shown in FIG. 4, the effect of improving crystallinity or increasing the growth rate at the mass production level has not yet been obtained, and a significant reduction in the heating temperature has not been achieved. The main reason for this is thought to be a lack of energy in the irradiated light. One way to compensate for the energy shortage is to increase the light source output. However, simply increasing the output results in an increase in the energy obtained by the substrate itself, which causes a rise in temperature, which defeats the purpose of lowering the temperature. Furthermore, the output of conventional commercially available light bulbs is limited and is insufficient as a light source for vapor phase growth, but this is due to the tendency for the diameter of the substrate to become larger and larger, as mentioned above. This is a critical problem today.

気相成長工程の低温化が困難な他の理由として、基体表
面清浄化の問題がある。通常気相成長の基体は表面汚染
を除くため、例えば酸洗浄等の前処理の後反応容器中に
収納される。更に、気相成長直前には反応容器内におい
て、水素雰囲気中で高温に加熱し表面の自然酸化膜、有
機物等を分解除去する新開気相エツチングが行なわれる
。気相エツチングをより効果的にするため、水素雰囲気
中に塩化水素等の基体を腐蝕する性質を持つガスを微少
量(〜0.5%)添加する場合もある。
Another reason why it is difficult to lower the temperature of the vapor phase growth process is the problem of cleaning the substrate surface. Usually, a substrate for vapor phase growth is placed in a reaction vessel after a pretreatment such as acid cleaning to remove surface contamination. Further, immediately before the vapor phase growth, a new gas phase etching is performed in the reaction vessel in which the surface is heated to a high temperature in a hydrogen atmosphere to decompose and remove natural oxide films, organic substances, etc. on the surface. In order to make gas phase etching more effective, a very small amount (~0.5%) of a gas such as hydrogen chloride that corrodes the substrate may be added to the hydrogen atmosphere.

このような気相エツチングを行なうことで基体表面が完
全に清浄化され、結晶欠陥や種々の汚染の無い良質の気
相成長層の形成が可能となる。一般に基体表面が清浄な
ほど基体表面で再配列するエネルギーも小さくなり、単
結晶層が形成される基体温度も低くなるとも云われてい
る。このような気相エツチングはエツチング工程におけ
る基体温度が高いほどその効果が大きい。
By performing such vapor phase etching, the surface of the substrate is completely cleaned, making it possible to form a high quality vapor phase growth layer free from crystal defects and various contaminations. Generally, it is said that the cleaner the substrate surface, the lower the energy for rearrangement on the substrate surface, and the lower the substrate temperature at which a single crystal layer is formed. The effect of such vapor phase etching becomes greater as the temperature of the substrate increases during the etching process.

結局、従来法によって気相成長工程温度を低温化するこ
とは良質の気相成長層の形成を困難とならしめる。
As a result, lowering the temperature of the vapor phase growth process using conventional methods makes it difficult to form a high quality vapor phase growth layer.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来の気相成長装置の欠点を解消し、4
インチ径以上の大口径基体に対する気相成長においても
、成長直前の基体清浄化工程を含めた気相成長工程温度
の大幅な低温化が可能な気相成長装置を提供するにある
The purpose of the present invention is to eliminate the drawbacks of conventional vapor phase growth equipment, and to
It is an object of the present invention to provide a vapor phase growth apparatus capable of significantly lowering the temperature of the vapor phase growth process including a substrate cleaning step immediately before growth even in vapor phase growth on a large diameter substrate having an inch diameter or more.

〔発明の概要〕[Summary of the invention]

本発明気相成長装置の特徴とするところは、処理すべき
基体面に電磁波を間欠的に照射する手段を設けた点にあ
る。これによって、気相成長工程及び気相成長工程の前
処理工程の低温化を図ることができる。
The vapor phase growth apparatus of the present invention is characterized by the provision of means for intermittently irradiating the surface of the substrate to be treated with electromagnetic waves. Thereby, the temperature of the vapor phase growth process and the pretreatment process for the vapor phase growth process can be lowered.

本発明気相成長@雪の他の特徴とするところは、前述間
欠照射の間隔を、気相成長中においては少なくとも数原
子層の気相成長層が形成される時間以下に保って照射す
るようにした点にある。
Another feature of the vapor phase growth @ snow of the present invention is that the interval of the intermittent irradiation mentioned above is maintained at less than the time required to form a vapor phase growth layer of at least several atomic layers during the vapor phase growth. That's what I did.

〔発明の実施例〕[Embodiments of the invention]

以下本発明をシリコンの気相成長を例に採って説明する
The present invention will be explained below by taking silicon vapor phase growth as an example.

第5図は本発明の代表的な実施例の概略図を示す。従来
装置との主な相違点は、紫外光光源81として間欠点灯
盤ランプ(フラシュランプ)を用いた点、及び大口径基
体3に対しても強いエネルギーの光を基体全表面に均一
に照射するための照射レンズ82を設けた点にある。
FIG. 5 shows a schematic diagram of an exemplary embodiment of the invention. The main difference from the conventional device is that an intermittent light panel lamp (flash lamp) is used as the ultraviolet light source 81, and strong energy light is evenly irradiated onto the entire surface of the large diameter substrate 3. The point is that an irradiation lens 82 is provided for this purpose.

かかる構成の気相成長装置による成長時の操作について
、シリコンのエピタキシャル成長を例として以下説明す
る。
The operation during growth using the vapor phase growth apparatus having such a configuration will be described below using epitaxial growth of silicon as an example.

大口径(4インチ)のシリコン基体3は石英製反応容器
1内の加熱台2上に置かれ、気相成長層の膜厚均一性を
得るためと温度分布の均一化のため回転軸4によって回
転(約15rP)されている。
A silicon substrate 3 with a large diameter (4 inches) is placed on a heating table 2 in a quartz reaction vessel 1, and is rotated by a rotating shaft 4 in order to obtain a uniform thickness of the vapor-phase growth layer and to make the temperature distribution uniform. It is rotated (approximately 15 rP).

容器1内の窒素置換の後、ガス供給ノズル6から反応の
キャリヤガスとなる水素を約80 t/mの流量で2分
間流し容器1内を水素に置換する。次いで水素流tt−
約40t/―に減らし、加熱コイル5によって加熱台2
を加熱し間接的に基体3を加熱する。この場合、基体3
は従来の成長温度(約1200C)に比べて低い所定温
度(約950C)に加熱されるため基板の径が大きいに
もかかわらず熱応力転位の発生は見られない。また、基
体に形成されている不純物拡散層の加熱による変質は最
少限に抑制される。
After the inside of the container 1 is replaced with nitrogen, hydrogen, which becomes a carrier gas for the reaction, is flowed from the gas supply nozzle 6 at a flow rate of about 80 t/m for 2 minutes to replace the inside of the container 1 with hydrogen. Then hydrogen flow tt-
The heating coil 5 reduces the amount to about 40t/-, and the heating stand 2 is heated by the heating coil 5.
and indirectly heats the base 3. In this case, the base 3
Since the substrate is heated to a predetermined temperature (approximately 950 C) lower than the conventional growth temperature (approximately 1200 C), no thermal stress dislocation is observed despite the large diameter of the substrate. In addition, deterioration of the impurity diffusion layer formed in the substrate due to heating is suppressed to a minimum.

基体3が所定温度に達するとそのまま約10分間保持し
て水素処理し、表面に付着する自然酸化膜、有機物等を
除去する。この時、紫外ランプ81を点灯し基体3表面
に紫外光(波長約400nm以下)を照射する。紫外ラ
ンプ81け本発明に従って約1/100秒間隔で点灯す
るフラッシュ方式のランプであることから照射光強度は
通常の連続点灯式ランプに位べて数桁大きい。このため
、照射レンズ82によって大口径基体3に均一に照射し
ても基体表面の照射光強度は従来方式に比べて2〜3桁
高い。
When the substrate 3 reaches a predetermined temperature, it is maintained as it is for about 10 minutes and subjected to hydrogen treatment to remove natural oxide films, organic substances, etc. adhering to the surface. At this time, the ultraviolet lamp 81 is turned on to irradiate the surface of the substrate 3 with ultraviolet light (wavelength of about 400 nm or less). Since the 81 ultraviolet lamps according to the present invention are flash-type lamps that are turned on at intervals of about 1/100 seconds, the intensity of the irradiated light is several orders of magnitude higher than that of ordinary continuously lit lamps. Therefore, even if the large-diameter substrate 3 is uniformly irradiated with the irradiation lens 82, the intensity of the irradiated light on the substrate surface is two to three orders of magnitude higher than in the conventional method.

第6図はランプの点灯光強度と時間の関係を模式的に示
したものである。光パルスのトータルエネルギーJは約
数ジュールにも達するが照射照時間が非常に短かいt 
(ns)ことから、大口径基体衣LO1i8(ilの照
射強度I (W/crl )は次式(1)より数百W4
−となる。
FIG. 6 schematically shows the relationship between the lighting intensity of the lamp and time. The total energy J of the light pulse reaches about several joules, but the irradiation time is very short.
(ns) Therefore, the irradiation intensity I (W/crl) of the large diameter substrate LO1i8(il) is several hundred W4 from the following equation (1).
− becomes.

強いエネルギーを基体表面に照射すると温度の上昇が懸
念される。しかしながら、照射時間が非常に短かいこと
から温度上昇は最少限度に留り、かつ、温度上昇は基体
表面側の極めて薄い部分のみ限られることから基体の変
質、熱応力転位の発生は生じない。
If strong energy is irradiated onto the surface of the substrate, there is a concern that the temperature will rise. However, since the irradiation time is very short, the temperature rise remains at a minimum, and since the temperature rise is limited to an extremely thin portion on the surface side of the substrate, no deterioration of the substrate or generation of thermal stress dislocation occurs.

水素処理中に間欠照射によって強い紫外エネルギー′f
:基体表面に与えることによって表面が活性化され、表
面の清浄化は水素処理のみの場合に比べて一段と促進さ
れる。
Strong ultraviolet energy'f is generated by intermittent irradiation during hydrogen treatment.
: By applying it to the substrate surface, the surface is activated, and surface cleaning is further promoted compared to when only hydrogen treatment is used.

ところで、気相エツチングによる表面清浄化は同一反応
容器内で行なわれることから、瞬時に浄化達成するなら
ば電磁波照射は一回のパルス照射でも良い。例えば、基
体表面の変質の度合にもよるが、成長時に照射するラン
プと異なる赤外フラッシュランプ等を用い、積極的に表
面近傍の一部ヲ加熱或いは溶解することにより表面浄化
を瞬時に行なう方法がある。
Incidentally, since surface cleaning by vapor phase etching is performed in the same reaction vessel, electromagnetic wave irradiation may be performed in one pulse irradiation if instantaneous cleaning is achieved. For example, depending on the degree of alteration of the substrate surface, there is a method of instantly purifying the surface by actively heating or melting a portion near the surface using an infrared flash lamp, etc., which is different from the lamp used during growth. There is.

5分間の基体表面清浄化処理の後、紫外光を照射したま
ま約1mo1%のシリコン原料(例えば5iCt4)と
、成長層の抵抗感を制噛するだめのドーピングガスを同
時に供給し、気相成長を開始する。この場合の成長速度
は約1μm/RiR程度であり、この成長速度から基体
3上に1原子層形成される時間を算出して見ると、基体
結晶の面方位によっても異なるが約1/100秒程度と
なる。このことから、紫外光が約1/100秒程度の間
欠的な方法で照射されても、少なくとも数原子Mt形成
の度に強力なエネルギーが基体表面に供給され結晶構成
原子の再配列は十分達成される。この結果、低温化によ
る結晶成長エネルギーの不足が補なわれ、結晶欠陥の少
ない良質の気相成長層の形成が可能となる。また、エネ
ルギー密度の高い紫外光の照射によって成長温度を低温
化したにもかかわらず、十分製造レベルの成長速度維持
も達成される。勿論、気相成長工程中においても、成長
温度が低いことから、熱応力転位の発生や基体拡散層の
変質は起らない。
After cleaning the substrate surface for 5 minutes, while irradiating the substrate with ultraviolet light, approximately 1 mo 1% silicon raw material (for example, 5iCt4) and a doping gas to suppress the resistance of the growth layer are simultaneously supplied to perform vapor phase growth. Start. The growth rate in this case is about 1 μm/RiR, and the time it takes to form one atomic layer on the substrate 3 is calculated from this growth rate to be about 1/100 seconds, although it varies depending on the plane orientation of the substrate crystal. It will be about. From this, even if ultraviolet light is irradiated in an intermittent manner of about 1/100 seconds, strong energy is supplied to the substrate surface every time at least a few atoms of Mt are formed, and the rearrangement of the crystal constituent atoms is sufficiently achieved. be done. As a result, the lack of crystal growth energy due to lowering the temperature is compensated for, and it becomes possible to form a high quality vapor phase growth layer with few crystal defects. Further, even though the growth temperature is lowered by irradiation with ultraviolet light with high energy density, the growth rate can be maintained at a sufficient production level. Of course, even during the vapor phase growth process, since the growth temperature is low, thermal stress dislocations and deterioration of the substrate diffusion layer do not occur.

所定の厚さの成長層(エピタキシャル層)を形成した後
、原料ガスの供給を止める。その捷ま1分間保持し残留
する原料ガスをパージした後、紫外ランプ81を消灯し
、次いで加熱装置5の出力を下げ基体温匿を降温する。
After forming a growth layer (epitaxial layer) of a predetermined thickness, the supply of source gas is stopped. After holding the kneading for 1 minute and purging the remaining raw material gas, the ultraviolet lamp 81 is turned off, and then the output of the heating device 5 is lowered to lower the temperature of the substrate.

数分間、水素ガスにより冷却した後、反応容器1内を窒
素ガスにより置換した後、基体3を取り出し気相成長工
程を終えるO 第7図、第8図は5インチ径以上の大口径基体に対し、
気相成長層を形成する場合の装置である。
After cooling with hydrogen gas for several minutes and replacing the inside of the reaction vessel 1 with nitrogen gas, the substrate 3 is taken out and the vapor phase growth process is completed. On the other hand,
This is an apparatus for forming a vapor phase growth layer.

本装置には大口径基板の低温化の達成、及びその結果生
じる生産性低下の問題を解消する工夫がなされている。
This device is designed to reduce the temperature of large-diameter substrates and to solve the problem of reduced productivity as a result.

即ち、基体3の温度勾配d’l’/drを従来方式に位
べてより小さく保つため基体加熱装置51を赤外輻射方
式に改善され、更に、この赤外ランプ51は基体3上面
側にのみ配置されている。この結果、基体加熱は基体3
表面側から直接的に行なわれ、前述した基体表裏の温度
差が軽減される。よって、基体3の湾曲は減少し温度勾
配dT/dri小さく保つことができる。一方、赤外ラ
ンプ51を基体上面側に配置することは紫外光の均一照
射を困難とするが、ランプ配置を円錐又は角錐状とし、
その錐体頂部83を開口し、この部分を通して紫外光を
照射できるように工夫されている。
That is, in order to keep the temperature gradient d'l'/dr of the substrate 3 smaller than in the conventional method, the substrate heating device 51 has been improved to an infrared radiation type, and furthermore, this infrared lamp 51 is installed on the upper surface side of the substrate 3. are placed only. As a result, the substrate heating is
This is done directly from the front side, reducing the temperature difference between the front and back sides of the substrate. Therefore, the curvature of the base body 3 is reduced and the temperature gradient dT/dri can be kept small. On the other hand, arranging the infrared lamp 51 on the upper surface side of the base makes it difficult to uniformly irradiate ultraviolet light, but if the lamp is arranged in a conical or pyramidal shape,
The top part 83 of the cone is opened, and it is devised so that ultraviolet light can be irradiated through this part.

反応容器1に大口径基体3を多数枚チャージしバッチ処
理する方法は、気相成長層を均一に形成する点から、更
に、均一加熱、均一紫外光照射の点からも難点が多いた
め本装置では枚葉処理方式を採用している。この場合ス
ループットの低減を防ぐため本装置ではカセットツウカ
セット方式を採用した。反応容器1の低温部分には基体
3の出し入れを行なう連結部材100,200が設けら
れ、その他端には基体収納カセッ)101,201を収
納する基体収納箱102,202が接続されている。連
結部材100,200の中央部分には開閉可能がゲート
’103,203が設けてあり反応容器1と基体収納箱
102,202は隔離されている。また、収納箱102
,202にはガス供給口104,204から常時水素ガ
スが導入され連結部材100,200に設けられた排気
口105゜205より排出されている。気相成長を終え
水素雰囲気中で冷却された基体3は加熱台2を破線21
まで降下することにより連結部材100゜200位置と
同位置に移動される。次いで、処理済み基体の収納箱2
02側のゲート203が開口され、ローダ206によっ
て基体3は収納箱202に移される。ゲート203を閉
じると同時に処理前基体の収納箱102側のゲート10
3が開口され、ローダ106によって次の基体3が加熱
台2上にセットされる。加熱台2を所定位置に移動し、
加熱ランプ51によって加熱を開始することによって次
の気相成長工程が続けられる。
The method of batch processing by charging a large number of large-diameter substrates 3 into the reaction vessel 1 has many drawbacks in terms of uniformly forming a vapor-phase growth layer, uniform heating, and uniform ultraviolet light irradiation. uses a single-wafer processing method. In this case, in order to prevent a reduction in throughput, this device adopted a cassette-to-cassette method. Connecting members 100, 200 for loading and unloading substrates 3 are provided in the low-temperature portion of the reaction vessel 1, and substrate storage boxes 102, 202 for storing substrate storage cassettes (101, 201) are connected to the other end. Gates 103 and 203, which can be opened and closed, are provided in the central portions of the connecting members 100 and 200, so that the reaction container 1 and the substrate storage boxes 102 and 202 are separated from each other. In addition, the storage box 102
, 202, hydrogen gas is constantly introduced from gas supply ports 104, 204 and is discharged from exhaust ports 105, 205 provided in the connecting members 100, 200. The substrate 3, which has finished vapor phase growth and has been cooled in a hydrogen atmosphere, is connected to the heating table 2 by a broken line 21.
The connecting member is moved to the same position as the 100° and 200° positions. Next, storage box 2 for processed substrates
The gate 203 on the 02 side is opened, and the base 3 is transferred to the storage box 202 by the loader 206. At the same time as closing the gate 203, the gate 10 on the side of the storage box 102 for the substrate to be processed
3 is opened, and the next substrate 3 is set on the heating table 2 by the loader 106. Move the heating table 2 to a predetermined position,
The next vapor phase growth step is continued by starting heating with the heat lamp 51.

以上説明した本装置の枚葉処理方法によれば、反応容器
1の開閉操作を行なわないことから、防爆のための窒素
パージ工程の省略が可能で、処理時間を短縮できスルー
ブツトの向上を図ることができる。
According to the single wafer processing method of the present apparatus described above, since the reaction vessel 1 is not opened and closed, the nitrogen purge step for explosion prevention can be omitted, reducing processing time and improving throughput. I can do it.

本実施例においてはシリコンの単結晶基体上にシリコン
単結晶を形成する、新開シリコンホモエピタキシャル成
長を例として説明したが、ヘテロエピタキシャル成長へ
の適用も当然可能である。
In this embodiment, the newly developed silicon homoepitaxial growth in which a silicon single crystal is formed on a silicon single crystal substrate has been described as an example, but the present invention can of course also be applied to heteroepitaxial growth.

また、単結晶基体上に多結晶層、更には非晶質層を形成
する場合においても、基体単結晶への熱応力転位の導入
の問題、更に基体構造の熱処理過程における変質等の問
題が懸念されるほど高温の反応温度を必要とする場合に
は本発明は有効となる。
Furthermore, when forming a polycrystalline layer or even an amorphous layer on a single-crystal substrate, there are concerns about the introduction of thermal stress dislocations into the substrate single crystal, and further problems such as alteration of the substrate structure during the heat treatment process. The present invention is effective when a reaction temperature as high as that required is required.

更にまた、上述の説明において半導体基体載荷方法は水
子載置を例に説明したが、これに限定されるものではな
い。
Furthermore, in the above description, the semiconductor substrate loading method was explained using water droplet loading as an example, but the present invention is not limited to this.

また、本実施例においては紫外ランプを光源とする例を
上げたが電磁波源としてレーザ光源等効果的なエネルギ
ー密度の電磁波を発生するものを適切に選ぶことは自由
である。
Further, in this embodiment, an example is given in which an ultraviolet lamp is used as a light source, but as the electromagnetic wave source, it is free to appropriately select a source that generates electromagnetic waves with an effective energy density, such as a laser light source.

また、実施例の説明において述べたごとく、気相成長直
前の基体表面清浄化工程と、気相成艮時において照射電
磁波の波長が異なる電磁波源を用いることも自由である
Further, as described in the description of the embodiment, it is also possible to use electromagnetic wave sources with different wavelengths of irradiated electromagnetic waves in the substrate surface cleaning step immediately before vapor phase growth and during vapor phase growth.

また、電磁波照射を基体表面の清浄化工程、及び気相成
長反応の工程いずれか一方に選択することも勿論自由で
ある。
Furthermore, it is of course possible to select electromagnetic wave irradiation for either the cleaning process of the substrate surface or the vapor phase growth reaction process.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明装置によって、6インチ径のp j
jl yリコン基体上に約2μmのnff1、抵抗率1
Ωmの気相成長層の形成を、基体温度950Cで20回
繰υ返し実該したところ、熱応力転位の発生した基体は
見られなかった。また・本基体内に形成されたn型不純
(Sb)柳眉(10μmX10μm×1.8μm深さ、
表面濃度約2X10’譜m−3)の平面寸法の変質は約
0.1μm程度であり従来法に比べて大幅に低減された
。このように本発明によれば、不都合を伴うことなく気
相成長温度の大幅な低減を図ることができる。
By the apparatus of the present invention explained above, p j of 6 inch diameter
jl y nff1 of about 2 μm on the silicon substrate, resistivity 1
When the formation of a vapor phase growth layer of Ωm was repeated 20 times at a substrate temperature of 950C, no substrate was observed in which thermal stress dislocations had occurred. In addition, n-type impurity (Sb) formed within this substrate (10 μm x 10 μm x 1.8 μm depth,
At a surface concentration of about 2 x 10' m-3), the change in planar dimension was about 0.1 μm, which was significantly reduced compared to the conventional method. As described above, according to the present invention, it is possible to significantly reduce the vapor phase growth temperature without causing any inconvenience.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の気相成長装置の概略図、第2図及び第3
図は従来装置の問題点を説明する図、第4図は従来の気
相成長装置の他の例を説明する概略図、第5図は本発明
気相成長装置の一実施例を示す概略断面図、第6図は本
発明に使用する電磁波の波形図、第7図は本発明気相成
長装置の他の実施例の概略断面図、第8図は第7図の斜
視図である。 1・・・反応容器、2・・・加熱台、3・・・基体、5
・・・加熱装置、8・・・紫外ラン六 81−・・間欠
点灯式紫外ランプ。 #I 図 某 3 m 第4 H $5fEJ 1
Figure 1 is a schematic diagram of a conventional vapor phase growth apparatus, Figures 2 and 3
4 is a schematic diagram illustrating another example of the conventional vapor phase growth apparatus. FIG. 5 is a schematic cross-sectional view showing an embodiment of the vapor phase growth apparatus of the present invention. 6 is a waveform diagram of electromagnetic waves used in the present invention, FIG. 7 is a schematic sectional view of another embodiment of the vapor phase growth apparatus of the present invention, and FIG. 8 is a perspective view of FIG. 7. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Heating stand, 3... Substrate, 5
... Heating device, 8... Ultraviolet run 6 81-... Intermittent lighting type ultraviolet lamp. #I Figure Certain 3m 4th H $5fEJ 1

Claims (1)

【特許請求の範囲】 1、反応容器と、 反応容器内に配置され、処理すべき基体を載置する加熱
台と、 反応容器内へ反応ガスを供給し、反応後のガスを排出す
る手段と、 反応容器内の基本表面に電磁波を間欠的に照射する手段
と、 を具備することを特徴とする気相成長装置。 2、特許請求の範囲第1項において、波長400nm以
下の電磁波を使用すること全特徴とする気相成長装置。 3、Bi!i許請求の範囲第1項或いは第2項において
、電磁波の照射間隔が1秒から11500秒の範囲であ
ることを特徴とする気相成長装置。
[Scope of Claims] 1. A reaction vessel, a heating table placed in the reaction vessel on which a substrate to be treated is placed, and means for supplying a reaction gas into the reaction vessel and discharging the gas after the reaction. 1. A vapor phase growth apparatus comprising: , means for intermittently irradiating electromagnetic waves onto a basic surface within a reaction vessel; 2. A vapor phase growth apparatus according to claim 1, characterized in that electromagnetic waves having a wavelength of 400 nm or less are used. 3. Bi! 1. A vapor phase growth apparatus according to claim 1 or 2, characterized in that the irradiation interval of electromagnetic waves is in the range of 1 second to 11,500 seconds.
JP12331883A 1983-07-08 1983-07-08 Vapor growth apparatus Pending JPS6016416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12331883A JPS6016416A (en) 1983-07-08 1983-07-08 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12331883A JPS6016416A (en) 1983-07-08 1983-07-08 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS6016416A true JPS6016416A (en) 1985-01-28

Family

ID=14857582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12331883A Pending JPS6016416A (en) 1983-07-08 1983-07-08 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS6016416A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196526A (en) * 1985-02-26 1986-08-30 Agency Of Ind Science & Technol Photochemical vapor deposition process and apparatus thereof
JPS62193128A (en) * 1986-02-19 1987-08-25 Sony Corp Manufacture of semiconductor device
US4987855A (en) * 1989-11-09 1991-01-29 Santa Barbara Research Center Reactor for laser-assisted chemical vapor deposition
JPH04291916A (en) * 1991-03-20 1992-10-16 Kokusai Electric Co Ltd Method and apparatus for vapor growth
US5504831A (en) * 1993-11-10 1996-04-02 Micron Semiconductor, Inc. System for compensating against wafer edge heat loss in rapid thermal processing
US5705224A (en) * 1991-03-20 1998-01-06 Kokusai Electric Co., Ltd. Vapor depositing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113329A (en) * 1979-02-23 1980-09-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Light dry etching

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113329A (en) * 1979-02-23 1980-09-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Light dry etching

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196526A (en) * 1985-02-26 1986-08-30 Agency Of Ind Science & Technol Photochemical vapor deposition process and apparatus thereof
JPS62193128A (en) * 1986-02-19 1987-08-25 Sony Corp Manufacture of semiconductor device
US4987855A (en) * 1989-11-09 1991-01-29 Santa Barbara Research Center Reactor for laser-assisted chemical vapor deposition
JPH04291916A (en) * 1991-03-20 1992-10-16 Kokusai Electric Co Ltd Method and apparatus for vapor growth
US5705224A (en) * 1991-03-20 1998-01-06 Kokusai Electric Co., Ltd. Vapor depositing method
US5504831A (en) * 1993-11-10 1996-04-02 Micron Semiconductor, Inc. System for compensating against wafer edge heat loss in rapid thermal processing
US5719991A (en) * 1993-11-10 1998-02-17 Micron Technology, Inc. System for compensating against wafer edge heat loss in rapid thermal processing

Similar Documents

Publication Publication Date Title
EP1796149B1 (en) Quartz jig and semiconductor manufacturing equipment
JP3728465B2 (en) Method for forming single crystal diamond film
US8039051B2 (en) Method and apparatus for hydrogenation of thin film silicon on glass
JPS61191015A (en) Semiconductor vapor growth and equipment thereof
US6599815B1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
JP3728467B2 (en) Method for forming single crystal diamond film
JP2011029429A (en) Method for heat treatment of silicon wafer
JPS6016416A (en) Vapor growth apparatus
JP3796030B2 (en) Thin film production equipment
JP3094816B2 (en) Thin film growth method
JPS59121915A (en) Vapor growth device
JP2004260086A (en) Manufacturing method of silicon wafer
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JP2000232066A (en) Manufacture of semiconductor substrate
WO2023214590A1 (en) Method for manufacturing high-quality, low-cost, free-standing gan substrate
JPS60241215A (en) Susceptor for vapor growth
TW202323602A (en) Epitaxy growth method and epitaxy wafer wherein the epitaxial growth equipment comprises a reaction chamber, a base and a heating module
CN115295412A (en) High-temperature rapid heat treatment process and device for silicon carbide device
JP2023165572A (en) Production method of gan self-standing substrate of high quality and low cost
JPH10116795A (en) Equipment for manufacturing semiconductor material
JP2007180417A (en) Semiconductor substrate manufacturing method
JPS62177912A (en) Vapor growth device
JP2001203209A (en) Method for manufacturing semiconductor wafer having epitaxial layer
JP2000208419A (en) Epitaxial growth system
JP2003007634A (en) Method and equipment for heat-treating wafer