JPS60241215A - Susceptor for vapor growth - Google Patents

Susceptor for vapor growth

Info

Publication number
JPS60241215A
JPS60241215A JP9649884A JP9649884A JPS60241215A JP S60241215 A JPS60241215 A JP S60241215A JP 9649884 A JP9649884 A JP 9649884A JP 9649884 A JP9649884 A JP 9649884A JP S60241215 A JPS60241215 A JP S60241215A
Authority
JP
Japan
Prior art keywords
substrate
susceptor
temperature
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9649884A
Other languages
Japanese (ja)
Inventor
Noboru Akiyama
登 秋山
Hironori Inoue
洋典 井上
Saburo Ogawa
三郎 小川
Takaya Suzuki
誉也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9649884A priority Critical patent/JPS60241215A/en
Publication of JPS60241215A publication Critical patent/JPS60241215A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a defect from occurring in a crystal in a vapor growth of the type for heating the surface of a substrate to be treated by infrared rays by forming the shape of a susceptor for placing the substrate in a protruded shape. CONSTITUTION:The surface of a substrate 3 is heated by infrared rays generated from an infrared ray source 8 provided opposite to the surface to be treated of the substrate 3. In this case, the shape of the placing unit of a susceptor 2 for placing the substrate 3 is formed in a projecting shape. Then, even if the substrate 3 is warped by heating in a projecting shape, the sealability between the substrate 3 and the susceptor 2 can be maintained. Thus, there is not a considerable difference of the temperature between the center and the periphery of the substrate 3, and the temperature distribution in the plate becomes uniform, and a dislocation due to thermal stress does not take place. Thus, it can prevent a defect from occurring in the crystal.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体の気相成長用サセプタに関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a susceptor for vapor phase growth of semiconductors.

〔発明の背景〕[Background of the invention]

石英製反応容器内に基体(主に単結晶)紫収納し、高温
に加熱しながら原料ガスを供給して基体上に単結晶1m
k更に積み上げる、いわゆる、気相成長技術は、LSI
等の半導体製造プロセスにおいて広く適用される重要な
技術である。第1図に従来の横型気相成長装置ケ示す。
A substrate (mainly a single crystal) is stored in a quartz reaction vessel, and a 1 m long single crystal is placed on the substrate by supplying raw material gas while heating it to a high temperature.
The so-called vapor phase growth technology that further builds up the LSI
It is an important technology that is widely applied in semiconductor manufacturing processes such as FIG. 1 shows a conventional horizontal vapor phase growth apparatus.

石英製容器l内のSiC被覆したグラファイト製サセプ
タ2上にシリコン単結晶基体3を載置し、高周波加熱コ
イル7でサセプタ2ヶ誘導加熱し、シリコン単結晶基体
3を約1100tll’の高温に保持する。次いで、シ
リコン原料(例えば、8 i H2C4等)?水素?キ
ャリヤガスとしてガス導入管5から供給し、シリコン単
結晶基体3上に単結晶層全形成(エピタキシャル成長)
する。
A silicon single crystal substrate 3 is placed on a graphite susceptor 2 coated with SiC in a quartz container l, and the two susceptors are induction heated with a high frequency heating coil 7, and the silicon single crystal substrate 3 is maintained at a high temperature of about 1100 tll'. do. Next, silicon raw material (e.g., 8 i H2C4, etc.)? hydrogen? Supplied as a carrier gas from the gas introduction pipe 5, the entire single crystal layer is formed on the silicon single crystal substrate 3 (epitaxial growth).
do.

この気相成長装置では以下のような問題点がめる。即ち
、近年、LSIの高集積化・高速動作化と共に、プロセ
スコストの低減と歩留り向上のために、基体の大口径化
(4〜6インチ径以上)が進められている。このため、
無欠陥で質の良い気相成長層r大面積で得ることが要求
されている。
This vapor phase growth apparatus has the following problems. That is, in recent years, along with higher integration and faster operation of LSIs, the diameter of the substrate has been increased (4 to 6 inches or more) in order to reduce process costs and improve yield. For this reason,
It is required to obtain a defect-free, high-quality vapor-phase grown layer over a large area.

しかし、第2図に示す型のサセプタ2?用いて4インチ
径以上の基体に気相?成長させると、第4図に示すよう
に、基体が凹型に大きくそる。そのため、基体表面の温
度分布が不均一となり、熱応力転位が発生する。この現
象は、第1図に示した従来の気相成長装置では、捷ず、
サセプタ2が加熱され、次に、サセプタからの熱伝導及
び放射により、間接的に基体3が加熱される。一方、表
面は供給ガスによって冷却されるため、基体には第4図
に示すように必然的に表裏で温度差(T、〉To)が生
じる。そして、表裏における熱膨張の差によって基体は
図に示すように湾曲し、この湾曲により、更に、基体面
内の周辺部と中央部で温度の不均一分布(T2 < T
l ) k生じる。この面内温度の不均一に起因し、基
体結晶内には多数の熱応力転位が導入される。
However, a susceptor 2 of the type shown in FIG. Is the gas phase applied to a substrate with a diameter of 4 inches or more? When grown, the substrate warps greatly into a concave shape, as shown in FIG. Therefore, the temperature distribution on the surface of the substrate becomes non-uniform, and thermal stress dislocation occurs. This phenomenon cannot be solved in the conventional vapor phase growth apparatus shown in Fig. 1.
The susceptor 2 is heated, and then the substrate 3 is indirectly heated by heat conduction and radiation from the susceptor. On the other hand, since the surface is cooled by the supplied gas, a temperature difference (T, >To) inevitably occurs between the front and back sides of the substrate, as shown in FIG. The substrate curves as shown in the figure due to the difference in thermal expansion between the front and back surfaces, and this curvature further causes uneven temperature distribution (T2 < T
l) k occurs. Due to this in-plane temperature non-uniformity, a large number of thermal stress dislocations are introduced into the base crystal.

このような結晶欠陥は素子特性に致命的なダメージケ与
え、結果として歩留りの低下?招く。
Do such crystal defects cause fatal damage to device characteristics and result in a decrease in yield? invite

この問題?解決する一つの方法として、サセプタに第3
図に示すような凹型のザグリ?設けることが試みられて
いる(特開昭5O−12971)。
this problem? One way to solve this problem is to add a third susceptor to the susceptor.
A concave counterbore like the one shown in the picture? An attempt has been made to provide one (Japanese Unexamined Patent Publication No. 50-12971).

この方法を用いると表裏のif差により基体が凹型にそ
った場合でも、基体表面の温度分布はtlぼ均一に保た
れ、例えば、4インチ径の基体ケ用いる場合には、tl
は完全に熱応力転位の発生ケ防ぐことができる。
If this method is used, even if the substrate curves in a concave shape due to the difference in if between the front and back sides, the temperature distribution on the substrate surface will be kept uniform around tl. For example, when using a substrate with a diameter of 4 inches, tl
can completely prevent the occurrence of thermal stress dislocations.

ところが、第5図に示すように、基体の径が大きい程基
体の湾曲による反り量も大きく、この方法にも限界が生
じる。すなわち、6インチ径の基体上に気相成長ケする
と、はぼ半数以上の基体に対し熱応力転位の発生が見ら
れ、再現性にとぼしく歩留りも悪い事が分った。これは
第6(9)に示すように、基体の径が大きい程基体面内
の半径方向温度勾配が小さい値で熱応力転位が発生する
ことにも起因する。
However, as shown in FIG. 5, the larger the diameter of the base, the greater the amount of warpage due to curvature of the base, and this method also has its limits. That is, when vapor phase growth was performed on a substrate having a diameter of 6 inches, thermal stress dislocation was observed in more than half of the substrates, and it was found that the reproducibility was poor and the yield was poor. This is also due to the fact that the larger the diameter of the substrate, the smaller the radial temperature gradient within the surface of the substrate, and thermal stress dislocation occurs, as shown in No. 6 (9).

この問題点の解決方法の一つとして、赤外線による基体
の加熱ケ利用した気相成長方法が提案され用いられてい
る。この方法では第7図に示すように基体3と対向して
赤外線光源8?設け、発生する赤外線により基体金加熱
し気相成長ケ行なう。
As one method for solving this problem, a vapor phase growth method utilizing heating of the substrate using infrared rays has been proposed and used. In this method, as shown in FIG. 7, an infrared light source 8? The substrate gold is heated by the generated infrared rays, and vapor phase growth is performed.

この方法?用いると、赤外線(波長1〜4μm)はSI
ケ透過し、サセプタまで達するので、基体が加熱される
と共に、サセプタも加熱される。その結果、基体は裏面
からも暖められ、表裏の温度差が従来法に比べ小さくな
ることから熱応力転位ケ防止できる。
This method? When used, infrared rays (wavelength 1-4 μm) are SI
The light passes through the air and reaches the susceptor, so that the substrate is heated and the susceptor is also heated. As a result, the substrate is heated from the back side as well, and the temperature difference between the front and back sides is smaller than in the conventional method, so thermal stress dislocation can be prevented.

この方法では、平坦なサセプタ金剛いて4インチ径のS
iクエハ上に、熱応力転位を生じることなく気相成長ケ
することができる。しかし、5〜6インチ径基体上にこ
の方法で気相成長ケ行なったところ熱応力転位が多発し
たこの原因?考えてみる。Siにおける赤外線の吸収係
数は温度に大きく依存し、例えば、波長4μmの赤外線
の吸収係数は、室mで約2 X 10−”cm−’ 、
 400 Cテ約3cm−’、 1000 CTTa2
00’cm−’ Toル。第8図に示すように、ウェハ
温度がi o oocの時(透過光強度/入射光強度)
はウニ凸表面から深さ500μmのところで#1ぼ0と
なる。Siウェハの厚さは4インチ径で約500pmあ
り、大口径基体はど取り扱いの都合上基体の厚さは厚い
In this method, a flat susceptor with a diameter of 4 inches is used.
Vapor phase growth can be performed on the i-Quafer without causing thermal stress dislocation. However, when vapor phase growth was performed using this method on a substrate with a diameter of 5 to 6 inches, thermal stress dislocations occurred frequently.What is the reason for this? I'll think about it. The absorption coefficient of infrared rays in Si greatly depends on temperature. For example, the absorption coefficient of infrared rays with a wavelength of 4 μm is approximately 2 × 10 cm in room m,
400 Cte approx. 3cm-', 1000 CTTa2
00'cm-' Tol. As shown in Figure 8, when the wafer temperature is i o ooc (transmitted light intensity/incident light intensity)
#1 becomes 0 at a depth of 500 μm from the sea urchin convex surface. The thickness of the Si wafer is approximately 500 pm with a diameter of 4 inches, and the thickness of the substrate is thick due to the convenience of handling large diameter substrates.

このため、エピタキシャル成長層するような高温では基
体の表面付近で赤外線がtlとんど吸収されてしまい、
必ずしも十分にサセプタが加熱されているとは言えず、
基体茫非常にゆっくりと昇温させないと第9図に示すよ
うな、基体3ケ凸型に反らせる表裏の温度差(To>T
l)が生じる。基体が一度凸型に反ると、基体からサセ
プタへの熱伝導が基体中央部で特に悪くなり、基体中央
部の表面温度To kさらに高くしてしまう。この理由
で、基体の反りは大きくなり、基体面内の中央部と周辺
部において温度の不均一分布(To>’rt)が生じて
熱応力転位が発生する。基体tゆっくりと昇温すれば、
表裏の温度差も小さくなり、熱応力転位の発生も少なく
なる。しかし、この方法では非常に時間?要し、スルー
プットが悪くなり得策ではない。
For this reason, at high temperatures such as when epitaxially growing layers, most of the infrared rays are absorbed near the surface of the substrate.
It cannot be said that the susceptor is necessarily heated sufficiently.
If the temperature of the substrate is not raised very slowly, the temperature difference between the front and back surfaces (To>T) will cause the substrate to warp into a three-convex shape as shown in
l) occurs. Once the base is warped into a convex shape, heat conduction from the base to the susceptor becomes particularly poor at the center of the base, further increasing the surface temperature Tok at the center of the base. For this reason, the warpage of the substrate becomes large, and a non-uniform distribution of temperature (To>'rt) occurs in the center and peripheral areas within the plane of the substrate, causing thermal stress dislocation. If the temperature of the substrate t is slowly raised,
The temperature difference between the front and back surfaces is also reduced, and the occurrence of thermal stress dislocations is also reduced. But is this method very time consuming? This is not a good idea as the throughput will deteriorate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、6インチ径以上の大口径基体に対する
気相成長においても結晶欠陥の発生?防ぎ、高品質の気
相成長層を得ること紫可能とする気相成長用サセプタr
提供するにある。
The purpose of the present invention is to prevent crystal defects from occurring even during vapor phase growth on large diameter substrates of 6 inches or more. A susceptor for vapor phase growth that prevents and makes it possible to obtain a high quality vapor phase growth layer.
It is on offer.

〔発明の概要〕[Summary of the invention]

本発明の気相成長用サセプタの特徴は、赤外線により処
理すべき基体面r加熱する方式の気相成長において、基
体を載置するサセプタの形状?凸型にした点にある。
The susceptor for vapor phase growth of the present invention is characterized by the shape of the susceptor on which the substrate is placed in vapor phase growth in which the surface of the substrate to be treated is heated by infrared rays. It is a convex point.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明tシリコン気相成長方法を例にとつて説明
する。
Hereinafter, the silicon vapor phase growth method of the present invention will be explained as an example.

第1O図は本発明の実施例の概略図を示す。従来の赤外
線加熱?用いた気相成長方法との主な相異点は、基体3
茫載置するサセプタ2の形状を凸型にした点にある。第
11図は、第1θ図のサセプタ2ケ拡大して示したもの
であり、基体3を置く載置部9は凸型の形状を持つ。載
置部9の形状及び凸部の高さは、処理する基体の口径、
厚さ、熱膨張係数、処理温度等から熱力学的に計算して
める。また、基体3は固定部lOによりサセプタ2上に
安定に保たれる。固定部lOか基体3の全周にある必要
はなく、基体の周囲に最低3ケ所めれば基体は安定に保
たれる。
FIG. 1O shows a schematic diagram of an embodiment of the invention. Traditional infrared heating? The main difference with the vapor phase growth method used is that the substrate 3
The susceptor 2 on which it is placed has a convex shape. FIG. 11 is an enlarged view of the two susceptors shown in FIG. 1θ, and the mounting portion 9 on which the base body 3 is placed has a convex shape. The shape of the mounting portion 9 and the height of the convex portion are determined by the diameter of the substrate to be processed,
It is calculated thermodynamically from the thickness, coefficient of thermal expansion, processing temperature, etc. Further, the base body 3 is stably maintained on the susceptor 2 by the fixing part 1O. The fixing portions 10 do not need to be located all around the base 3; if they are placed at least three locations around the base, the base will be kept stable.

かかるサセプタ2上いた場合の気相成長t1シリコンの
エピタキシャル成長r例として以下説明するO 大口径(6インチ径)のシリコン基体3を石英製反応容
器l内に設けられたサセプタ2の載置部9上に置く。載
置部clot、曲率半径的48mの曲面からなる凸型の
形状ケしている(凸部の頂点までの高さは約70μm)
。容器1内の窒素置換の後、ガス導入管5から反応のキ
ャリヤガスとなる水素を約sot/=の流量で二分間流
し、容器l内ケ水素に置換する。次いで水素流量ケ約4
01/iに減らし、赤外線ランプ(赤外線源8)を点灯
し基体?加熱する。基体は約5分間で所定温度(約xx
ooC)に加熱される。この時、基体温度約500〜6
00Cfで赤外線はSi基体中を良く透過する。このた
め、サセプタも同時に加熱されて基体3の表裏であまり
温度差が生じないために基体3は反らない。また、所定
温度付近になると赤外線Visi基体中でほとんど吸収
される。
Vapor phase growth when placed on such a susceptor 2 t1 Epitaxial growth of silicon r As an example, O will be described below. Placement part 9 of the susceptor 2 in which a large diameter (6 inch diameter) silicon substrate 3 is placed in a quartz reaction vessel l put on top. The mounting part clot has a convex shape consisting of a curved surface with a radius of curvature of 48 m (height to the top of the convex part is approximately 70 μm).
. After replacing the inside of the container 1 with nitrogen, hydrogen, which will serve as a carrier gas for the reaction, is flowed through the gas introduction pipe 5 at a flow rate of about sot/= for 2 minutes to replace hydrogen in the container 1. Next, the hydrogen flow rate is about 4
Reduce the temperature to 01/i, turn on the infrared lamp (infrared source 8), and check if the base Heat. The substrate is heated to a predetermined temperature (approximately xx
ooC). At this time, the substrate temperature is approximately 500 to 6
At 00Cf, infrared rays are well transmitted through the Si substrate. Therefore, the susceptor is also heated at the same time and there is not much temperature difference between the front and back sides of the base 3, so the base 3 does not warp. Further, when the temperature is around a predetermined temperature, most of the infrared rays are absorbed in the Visi substrate.

その結果、基体の表裏で温度差が生じ、基体は凸型に反
り始める。ところが第1θ図の(b)に示すように、本
発明のサセプタでは基体が凸型に反っても基体とサセプ
タの密着が保たれる。このため基体の中央部と周辺部の
温度はめまり差がなく、面内の温度分布は均一となり熱
応力転位は発生しない。
As a result, a temperature difference occurs between the front and back sides of the substrate, and the substrate begins to warp into a convex shape. However, as shown in FIG. 1θ (b), in the susceptor of the present invention, even if the base is warped in a convex shape, the close contact between the base and the susceptor is maintained. Therefore, there is no difference in temperature between the central part and the peripheral part of the substrate, and the in-plane temperature distribution is uniform, and thermal stress dislocation does not occur.

基体3が所定温度に達すると、そのまま約10分間保持
して水素処理し、表面に付着する自然酸化膜、有機物等
ケ除去する。
When the substrate 3 reaches a predetermined temperature, it is maintained as it is for about 10 minutes and subjected to hydrogen treatment to remove natural oxide films, organic substances, etc. adhering to the surface.

第12図は、本発明のサセプタ及び第2図に示した従来
の平坦型サセプタ音用いて所定温度まで昇温した時の、
基体30面内温度分布ケ比較したものである。本発明を
用いると基体の面内温度分布は均一に保たれる。
FIG. 12 shows the susceptor of the present invention and the conventional flat susceptor shown in FIG. 2 when the temperature is raised to a predetermined temperature.
The temperature distribution within the plane of the substrate 30 is compared. By using the present invention, the in-plane temperature distribution of the substrate can be maintained uniform.

5分間の基体表面清浄化処理の後、約1 m04%のシ
リコン原料(例えば、 S i H2Ct2 )と、成
長層の抵抗重金制御するためのドーピングガスLm時に
供給し、気相成長ケ開始する。この場合の成長速度は約
0.8μm /IM8程度でるり、基体面内の温度分布
が均一なため、膜厚分布±3チ、抵抗率分布±5%で結
晶欠陥が無い良質の気相成長膜が形成される。
After cleaning the substrate surface for 5 minutes, about 1 m04% of silicon raw material (for example, SiH2Ct2) and a doping gas Lm for controlling the heavy metal resistance of the growth layer are supplied, and vapor phase growth is started. In this case, the growth rate is approximately 0.8 μm/IM8, and since the temperature distribution within the substrate surface is uniform, the film thickness distribution is ±3 inches, the resistivity distribution is ±5%, and high quality vapor phase growth is achieved with no crystal defects. A film is formed.

所定の厚さの成長層(エピタキシャル1it)k形成し
た後、原料ガスの供給?止める。そのまま1分間保持し
残留する原料ガスをパージした後、赤′ 外線ランプの
出力?下げ基体温度?降温する。降′ 温の際も基体面
内の温度分布は均一に保たれ、熱応力転位は発生しない
。このため、基体の温度が室温まで戻った際に、高温で
凸状にそっていた基体は、元の平坦な状態に戻る。数分
間、水素ガスにより冷却した後、反応容器l内ケ窒素ガ
スにより置換してから基体3?を取り出し気相成長工程
を終える。
After forming a growth layer (epitaxial 1it) with a predetermined thickness, supply of raw material gas? stop. After holding it for 1 minute and purging the remaining raw material gas, the output of the red external lamp? Lower body temperature? The temperature drops. Even when the temperature decreases, the temperature distribution within the substrate plane remains uniform, and thermal stress dislocations do not occur. Therefore, when the temperature of the substrate returns to room temperature, the substrate, which was warped in a convex shape due to the high temperature, returns to its original flat state. After cooling with hydrogen gas for several minutes, the inside of the reaction vessel was replaced with nitrogen gas, and then the substrate 3? is taken out and the vapor phase growth process is completed.

本実施例によれば、短時間で昇温・降温を行なっても基
体面内の温度分布が均一に保たれる。このため大口径基
体とに結晶欠陥のない良質の気相成長層全再現性良く形
成でき、短時間の昇降温が可能なのでスループットも向
上する。
According to this embodiment, even if the temperature is raised or lowered in a short period of time, the temperature distribution within the substrate surface is maintained uniform. Therefore, it is possible to form a high-quality vapor-grown layer without crystal defects on a large-diameter substrate with good reproducibility, and because the temperature can be raised and lowered in a short time, throughput is also improved.

本実施例では横型気相成長装置?用いた気相成長を例と
して説明したが、第13図の(a)に示す縦型気相成長
装置や、第13図の(b)に示す枚葉処理装置、及びバ
レル型装置を用いた気相成長への適用も轟然可能である
In this example, is a horizontal vapor phase growth apparatus? The explanation was given using the vapor phase growth method used as an example, but the vertical vapor growth device shown in FIG. 13(a), the single wafer processing device shown in FIG. 13(b), and the barrel type device were also used. Application to vapor phase growth is also possible.

また、上述の説明でシリコン単結晶基体上にシリコン単
結晶を形成する、いわゆる、シリコンホモエピタキシャ
ル成長r例として説明したが、ヘテロエピタキシャル成
長への適用吃当然可能でめる。また、単結晶基体上に多
結晶層や非晶質層ケ形成する場合にも、基体単結晶への
熱応力転位の導入が懸念されるほど高温の反応温度?必
要とする場合には本発明は有効となる。
In addition, although the above explanation has been given as an example of so-called silicon homoepitaxial growth in which a silicon single crystal is formed on a silicon single crystal substrate, it is naturally possible to apply the present invention to heteroepitaxial growth. Also, when forming a polycrystalline layer or an amorphous layer on a single crystal substrate, the reaction temperature is so high that there is concern about the introduction of thermal stress dislocations into the substrate single crystal. The present invention is effective when necessary.

6インチ径のP型シリコン基体上に約2μmのn型、抵
抗率1Ωmの気相成長層の形成r5基体温度1100t
Z’で20回繰り返し実験したところ、熱応力転位が発
生した基体は見られなかった。
Formation of an approximately 2 μm n-type vapor phase growth layer with a resistivity of 1 Ωm on a 6-inch diameter P-type silicon substrate r5 Substrate temperature 1100 t
When the experiment was repeated 20 times at Z', no substrate in which thermal stress dislocation had occurred was observed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、大口径基体上に結晶欠陥のない良質の
気相成長層?再現性良く形成でき、短時間の昇降温か可
能なのでスルーグツトも向上する。
According to the present invention, a high-quality vapor-grown layer without crystal defects can be formed on a large-diameter substrate? It can be formed with good reproducibility and can be heated and cooled in a short time, improving throughput.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の気相成長装置の概略図、82図ないし第
6図は従来サセプタ及び改良型サセプタの問題点の説明
圀、第7図は第1図に示したものと別タイプの、従来の
気相成長装置の概略図、第8図及び第9図は第7図に示
す装置において従来サセプタケ使用した場合の問題点の
説明図、第1O図及び第11図は本発明サセプタ及びそ
れtサセプタ?用いた場合の効果金示す図、第13図の
(a)及び(b)は本発明?適用できる他のタイプの気
相成長装置の概略図である。 l・・・反応容器、2・・・サセプタ、3・・・基体、
4・・・ガス制御系、5・・・ガス導入管、6川ガス排
気管、7・・・高周波コイル、8・・・赤外線源、9・
・・載蓋部、嚢1 圀 情2 図 第3図 第4 日 鰻ぢ酌 つrへの表裏1漬りi差〔・C〕 タCし ム シコ 第9口 第3 口 ウニ爪表面や・らのFI11!υ−J 第9(イ) 懐10口 111鎚 (bン 第12図 第13 図
Fig. 1 is a schematic diagram of a conventional vapor phase growth apparatus, Figs. A schematic diagram of a conventional vapor phase growth apparatus, FIGS. 8 and 9 are explanatory diagrams of problems when using a conventional susceptor in the apparatus shown in FIG. 7, and FIGS. T susceptor? Is (a) and (b) of Fig. 13, a diagram showing the effect when used, the invention? FIG. 2 is a schematic diagram of another type of vapor phase growth apparatus that is applicable. l... Reaction container, 2... Susceptor, 3... Substrate,
4... Gas control system, 5... Gas introduction pipe, 6 River gas exhaust pipe, 7... High frequency coil, 8... Infrared source, 9...
・・Lid part, Sac 1 Situation 2 Figure 3 Figure 4 Difference between the front and back sides of the Japanese eel [・C] Ta C Shiko No. 9 Mouth No. 3 Mouth sea urchin claw surface・Rano FI11! υ-J No. 9 (a) 10 pockets, 111 hammers (Fig. 12, Fig. 13)

Claims (1)

【特許請求の範囲】 1、処理すべき基体面と対向して設けられた赤外線源か
ら発生する赤外線にエリ基体面ケ加熱する気相成長装置
において、 前記基体を載置するサセプタの載置部の形状ケ凸型とす
ることヶ特徴とする気相成長用サセプタ。
[Scope of Claims] 1. In a vapor phase growth apparatus that heats the surface of a substrate by infrared rays generated from an infrared source provided opposite to the surface of the substrate to be processed, the mounting portion of a susceptor on which the substrate is placed; A susceptor for vapor phase growth characterized by a convex shape.
JP9649884A 1984-05-16 1984-05-16 Susceptor for vapor growth Pending JPS60241215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9649884A JPS60241215A (en) 1984-05-16 1984-05-16 Susceptor for vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9649884A JPS60241215A (en) 1984-05-16 1984-05-16 Susceptor for vapor growth

Publications (1)

Publication Number Publication Date
JPS60241215A true JPS60241215A (en) 1985-11-30

Family

ID=14166755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9649884A Pending JPS60241215A (en) 1984-05-16 1984-05-16 Susceptor for vapor growth

Country Status (1)

Country Link
JP (1) JPS60241215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060117A (en) * 2004-08-23 2006-03-02 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP2011018876A (en) * 2009-06-09 2011-01-27 Ricoh Co Ltd Method for manufacturing surface-emitting laser device, optical scanner, image forming apparatus, and oxidation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060117A (en) * 2004-08-23 2006-03-02 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP2011018876A (en) * 2009-06-09 2011-01-27 Ricoh Co Ltd Method for manufacturing surface-emitting laser device, optical scanner, image forming apparatus, and oxidation apparatus

Similar Documents

Publication Publication Date Title
US8372298B2 (en) Method for producing epitaxially coated silicon wafers
JPS59190300A (en) Method and apparatus for production of semiconductor
US4780174A (en) Dislocation-free epitaxial growth in radio-frequency heating reactor
JPS6272595A (en) Silicon semiconductor substrate material and manufacture
US5578521A (en) Semiconductor device with vaporphase grown epitaxial
JP3796030B2 (en) Thin film production equipment
JP2006298722A (en) Method for manufacturing single crystal silicon carbide substrate
JP3206375B2 (en) Method for manufacturing single crystal thin film
JPS60241215A (en) Susceptor for vapor growth
JP2003218031A (en) Method of manufacturing semiconductor wafer
JPS6016416A (en) Vapor growth apparatus
US20220316090A1 (en) Method for growing epitaxial layer on wafer
JPS5932123A (en) Vapor growth method
JPS59121915A (en) Vapor growth device
WO2023214590A1 (en) Method for manufacturing high-quality, low-cost, free-standing gan substrate
JPH04186824A (en) Semiconductor substrate and manufacture thereof
JP2944426B2 (en) Molecular beam epitaxy equipment
JP2010056129A (en) Substrate used for crystal growth of nitride-based compound semiconductor, and method for crystal growth of nitride-based compound semiconductor
JPH01144620A (en) Semiconductor growth device
JP3198971B2 (en) Molecular beam epitaxy equipment
JPS62279625A (en) Epitaxial growth method
JP2003246699A (en) SEMICONDUCTOR WAFER OF SiC SINGLE CRYSTAL AND METHOD OF PRODUCING THE SAME
JP2023165572A (en) Production method of gan self-standing substrate of high quality and low cost
JPS63216330A (en) Method of suppressing creation of slip line and dislocation
TW202323602A (en) Epitaxy growth method and epitaxy wafer wherein the epitaxial growth equipment comprises a reaction chamber, a base and a heating module