JP2010056129A - Substrate used for crystal growth of nitride-based compound semiconductor, and method for crystal growth of nitride-based compound semiconductor - Google Patents

Substrate used for crystal growth of nitride-based compound semiconductor, and method for crystal growth of nitride-based compound semiconductor Download PDF

Info

Publication number
JP2010056129A
JP2010056129A JP2008216606A JP2008216606A JP2010056129A JP 2010056129 A JP2010056129 A JP 2010056129A JP 2008216606 A JP2008216606 A JP 2008216606A JP 2008216606 A JP2008216606 A JP 2008216606A JP 2010056129 A JP2010056129 A JP 2010056129A
Authority
JP
Japan
Prior art keywords
crystal growth
nitride
compound semiconductor
substrate
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008216606A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oda
康裕 小田
Takashi Kobayashi
隆 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008216606A priority Critical patent/JP2010056129A/en
Publication of JP2010056129A publication Critical patent/JP2010056129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate used for crystal growth of a nitride-based compound semiconductor, which can make the crystal quality of the target nitride-based compound semiconductor uniform in a surface of a substrate by reducing generation of a distribution of growth temperature in the surface of the substrate; and to provide a method for crystal growth of the nitride-based compound semiconductor. <P>SOLUTION: The substrate used for crystal growth of the nitride-based compound semiconductor is characterized by having an infrared absorption layer 2, e.g. a carbon film on a surface of a substrate 1 for crystal formation, e.g. an Si(111) substrate on the opposite side to a side where crystal growth is made. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は窒化物系化合物半導体の結晶成長に用いる基板および窒化物系化合物半導体の結晶成長方法に関する。   The present invention relates to a substrate used for crystal growth of a nitride compound semiconductor and a crystal growth method for a nitride compound semiconductor.

窒化物系化合物半導体(GaN、AlN、InN、BN、およびそれらの混晶)は、一般的に結晶成長法として用いられているMOCVD法において良好な結晶品質を得るために、1000℃前後の高い温度雰囲気下で結晶成長を行う必要がある。この際の加熱は、結晶成長に用いる基板を、支持部材であるカーボンサセプタなどに載せ、このカーボンサセプタを抵抗ヒーターや誘導加熱等により加熱して、そこから基板に熱を伝えることによって行う。この方法では、以下に示す理由から結晶成長用基板内の温度分布が不均一になる。   Nitride-based compound semiconductors (GaN, AlN, InN, BN, and mixed crystals thereof) are as high as about 1000 ° C. in order to obtain good crystal quality in the MOCVD method generally used as a crystal growth method. It is necessary to perform crystal growth in a temperature atmosphere. The heating at this time is performed by placing a substrate used for crystal growth on a carbon susceptor or the like as a supporting member, heating the carbon susceptor by a resistance heater, induction heating, or the like, and transferring heat from there to the substrate. In this method, the temperature distribution in the crystal growth substrate becomes non-uniform for the following reasons.

第1に、加熱雰囲気は、水素や窒素などで反応炉内にガス流を作り、還元性もしくは不活性とすることが圧倒的に多い。このとき、基板表面と裏面とでは熱エネルギーの収支が異なっており、裏面側はサセプタからの加熱と基板表面への熱伝導、表面側は裏面からの熱伝導と雰囲気ガスへの熱伝導が生じるため、裏面よりも表面の温度が低いという温度勾配が発生する。窒化物系化合物半導体の結晶成長に用いる基板としてよく用いられている基板(サファイア、SiC、Si、GaNなど)は、温度に対して正の熱膨張率を持つため、裏面側が表面側よりも膨張して基板が凹状に反ってしまう。このとき、基板外周部は中心部と比べてサセプタから浮き上がる。   First, the heating atmosphere is overwhelmingly often made reducible or inert by creating a gas flow in the reaction furnace with hydrogen, nitrogen, or the like. At this time, the balance of thermal energy differs between the substrate surface and the back surface. Heating from the susceptor and heat conduction to the substrate surface occur on the back surface side, and heat conduction from the back surface and heat conduction to the ambient gas occurs on the surface side. Therefore, a temperature gradient occurs in which the surface temperature is lower than the back surface. Substrates (sapphire, SiC, Si, GaN, etc.) often used as crystal substrates for nitride-based compound semiconductors have a positive coefficient of thermal expansion with respect to temperature, so the back side expands more than the front side. Then, the substrate warps in a concave shape. At this time, the outer peripheral portion of the substrate is lifted from the susceptor compared to the central portion.

第2に、加熱された結晶成長用基板上に窒化物系化合物半導体の結晶成長を開始すると、上記温度勾配によるものだけではなく、基板と窒化物系化合物半導体との格子定数、熱膨張係数の差に応じて新たな応力が基板に加わり始める。Si基板上GaN成長においては、GaN層の結晶成長が進行していくにつれて基板が凸状に反っていく。このとき、基板中心部は外周部と比べてサセプタから浮き上がる。   Second, when crystal growth of the nitride compound semiconductor is started on the heated crystal growth substrate, not only the temperature gradient but also the lattice constant and the thermal expansion coefficient of the substrate and the nitride compound semiconductor. Depending on the difference, new stress begins to be applied to the substrate. In the GaN growth on the Si substrate, the substrate warps in a convex shape as the crystal growth of the GaN layer proceeds. At this time, the central portion of the substrate is lifted from the susceptor compared to the outer peripheral portion.

基板裏面とサセプタが密着しているときに比べて、浮き上がった部分はサセプタからの熱伝導が直接行われず、密着している部分からの熱伝導か、もしくはサセプタからの輻射と隙間に存在する気体を介しての熱伝導により加熱されることになり、密着している部位よりも温度が下がってくる(例えば、下記非特許文献1の図2に、基板の反りと温度差との関係がまとめられている)。特に、窒化物系化合物半導体の成長温度域では、それが顕著に現れてくる。   Compared to when the backside of the substrate and the susceptor are in close contact, the floating part does not conduct heat directly from the susceptor, either from the close contact, or the gas present in the gap with the radiation from the susceptor. Will be heated by heat conduction through the substrate, and the temperature will be lower than that of the close contact portion (for example, FIG. 2 of Non-Patent Document 1 below summarizes the relationship between the warpage of the substrate and the temperature difference). Is). In particular, it appears remarkably in the growth temperature range of nitride-based compound semiconductors.

このとき、基板側が輻射、すなわちサセプタからの赤外線を効率よく吸収できるのであれば、浮き上がった部分の温度低下を最小にとどめることも可能であるが、特にSi基板は赤外線を吸収せずに透過ないし反射してしまい、反りの影響は大きくなる。   At this time, if the substrate side can efficiently absorb the radiation, that is, the infrared rays from the susceptor, it is possible to minimize the temperature drop of the floating portion. In particular, the Si substrate does not transmit the infrared rays without absorbing the infrared rays. Reflected and the effect of warpage is increased.

窒化物系化合物半導体に限らず、一般に半導体の結晶成長温度と結晶品質(転位密度、バックグラウンドキャリア濃度、非発光再結合中心の存在など)とは密接な関係にあることが知られているので、基板内の熱分布の均一性を向上させることは、均一な結晶品質をもった半導体層を基板上に形成するために重要なこととなる。   Not only nitride compound semiconductors but generally semiconductor crystal growth temperature and crystal quality (dislocation density, background carrier concentration, existence of non-radiative recombination centers, etc.) are known to be closely related. Improving the uniformity of the heat distribution in the substrate is important for forming a semiconductor layer having a uniform crystal quality on the substrate.

基板の反りという問題に対して、下記特許文献1に記載のように、シリコン基板と目的とする窒化物系半導体との間に歪みを緩和する層を挿入することで、反りによって基板上に結晶成長した窒化物系化合物半導体にクラックが入るのを防ぐ技術は考案されている。しかし、これは、結晶成長が終了して室温まで冷却したときの反りに重点を置いたものであり、結晶成長中の基板がフラットに保たれて熱分布が均一になっているわけではなかった。
特許第3352712号公報 “Growth of blue GaN LED structures on 150-mm Si(111)”, A. Dadgar et al., J. Crystal Growth Vol. 297 (2006), pp. 279-282.
With respect to the problem of warping of the substrate, as described in Patent Document 1 below, by inserting a layer that relieves strain between the silicon substrate and the target nitride-based semiconductor, the crystal on the substrate is warped by warping. Techniques have been devised to prevent cracks in the grown nitride compound semiconductor. However, this focused on the warpage when the crystal growth was completed and cooled to room temperature, and the substrate during crystal growth was kept flat and the heat distribution was not uniform. .
Japanese Patent No. 3352712 “Growth of blue GaN LED structures on 150-mm Si (111)”, A. Dadgar et al., J. Crystal Growth Vol. 297 (2006), pp. 279-282.

本発明は上記の問題に鑑みてなされたものであり、本発明が解決しようとする課題は、窒化物系化合物半導体を形成する際に基板が反ることにより、基板の面内において成長温度に分布が生じるのを緩和し、目的とする窒化物系化合物半導体の結晶品質を面内で均一化できる、窒化物系化合物半導体の結晶成長に用いる基板および窒化物系化合物半導体の結晶成長方法を提供することである。   The present invention has been made in view of the above problems, and the problem to be solved by the present invention is that the substrate is warped when the nitride compound semiconductor is formed, so that the growth temperature is increased in the plane of the substrate. Provided are a substrate used for crystal growth of a nitride compound semiconductor and a method for crystal growth of a nitride compound semiconductor that can alleviate the distribution and make the crystal quality of the desired nitride compound semiconductor in-plane uniform. It is to be.

本発明においては、上記課題を解決するために、請求項1に記載のように、
窒化物系化合物半導体の結晶成長に用いる基板であって、結晶形成用基板の結晶成長が起こる側とは反対側の面に赤外線吸収層を有することを特徴とする窒化物系化合物半導体の結晶成長に用いる基板を構成する。
In the present invention, in order to solve the above problem, as described in claim 1,
A nitride compound semiconductor crystal growth characterized in that it has an infrared absorption layer on a surface opposite to the crystal growth side of the crystal forming substrate, which is used for crystal growth of the nitride compound semiconductor. The board | substrate used for is comprised.

また、本発明においては、請求項2に記載のように、
請求項1に記載の窒化物系化合物半導体の結晶成長に用いる基板において、該基板が、該基板の結晶成長が起こる側の面を上面として台座に載置され、該台座からの伝熱により加熱されて、前記上面で窒化物系化合物半導体の結晶成長が起こる際に、前記上面の温度が、前記赤外線吸収層が無い場合よりも高くなることを特徴とする窒化物系化合物半導体の結晶成長に用いる基板を構成する。
In the present invention, as described in claim 2,
The substrate used for crystal growth of the nitride-based compound semiconductor according to claim 1, wherein the substrate is placed on a pedestal with a surface on the side where crystal growth occurs of the substrate as an upper surface, and is heated by heat transfer from the pedestal. When the crystal growth of the nitride compound semiconductor occurs on the upper surface, the temperature of the upper surface is higher than that in the case where the infrared absorption layer is not provided. Configure the substrate to be used.

また、本発明においては、請求項3に記載のように、
請求項1または2に記載の窒化物系化合物半導体の結晶成長に用いる基板において、前記赤外線吸収層が炭素膜であることを特徴とする窒化物系化合物半導体の結晶成長に用いる基板を構成する。
In the present invention, as described in claim 3,
3. The substrate used for crystal growth of a nitride-based compound semiconductor according to claim 1 or 2, wherein the infrared absorption layer is a carbon film.

また、本発明においては、請求項4に記載のように、
請求項3に記載の窒化物系化合物半導体の結晶成長に用いる基板において、前記炭素膜の厚さが100nm以上5μm以下であることを特徴とする窒化物系化合物半導体の結晶成長に用いる基板を構成する。
In the present invention, as described in claim 4,
4. The substrate used for crystal growth of a nitride-based compound semiconductor according to claim 3, wherein the carbon film has a thickness of 100 nm to 5 μm. To do.

また、本発明においては、請求項5に記載のように、
請求項1ないし4のいずれかに記載の窒化物系化合物半導体の結晶成長に用いる基板において、前記結晶形成用基板がシリコン基板であり、その面方位が(111)またはそれと等価な面方位であることを特徴とする窒化物系化合物半導体の結晶成長に用いる基板を構成する。
In the present invention, as described in claim 5,
5. The substrate used for crystal growth of a nitride-based compound semiconductor according to claim 1, wherein the crystal forming substrate is a silicon substrate, and a plane orientation thereof is (111) or an equivalent plane orientation. A substrate used for crystal growth of a nitride-based compound semiconductor is characterized.

また、本発明においては、請求項6に記載のように、
窒化物系化合物半導体の結晶成長方法であって、請求項1ないし5のいずれかに記載の窒化物系化合物半導体の結晶成長に用いる基板を、該基板の結晶成長が起こる側の面を上面として台座に載置し、該台座からの伝熱により加熱して、前記上面に窒化物系化合物半導体を結晶成長させることを特徴とする窒化物系化合物半導体の結晶成長方法を構成する。
In the present invention, as described in claim 6,
A method for crystal growth of a nitride-based compound semiconductor, wherein the substrate used for crystal growth of the nitride-based compound semiconductor according to any one of claims 1 to 5 is used with a surface of the substrate where crystal growth occurs as an upper surface. The nitride-based compound semiconductor crystal growth method is characterized in that the nitride-based compound semiconductor is crystal-grown on the upper surface by being placed on a pedestal and heated by heat transfer from the pedestal.

結晶成長用基板の裏面に赤外線を効率よく吸収できる層をあらかじめ形成し、その基板を用いることによって、基板の面内において成長温度に分布が生じるのを緩和し、目的とする窒化物系化合物半導体の結晶品質を面内で均一化できる、窒化物系化合物半導体の結晶成長に用いる基板および窒化物系化合物半導体の結晶成長方法を提供することが可能となる。   A layer capable of efficiently absorbing infrared rays is formed in advance on the back side of the substrate for crystal growth, and by using the substrate, the distribution of the growth temperature in the plane of the substrate is mitigated, and the desired nitride compound semiconductor It is possible to provide a substrate used for crystal growth of a nitride-based compound semiconductor and a method for crystal growth of the nitride-based compound semiconductor, in which the crystal quality can be made uniform in-plane.

図1に、本発明に係る、窒化物系化合物半導体の結晶成長に用いる基板の基本構成を示す。結晶形成用基板1は、通常、結晶成長を実際に行う表面(図1においては上面)を可能な限り原子レベルで鏡面加工し、裏面は目的に応じて鏡面ないしアズカットエッチングしたものを使用する。   FIG. 1 shows a basic structure of a substrate used for crystal growth of a nitride compound semiconductor according to the present invention. The substrate 1 for crystal formation usually uses a surface on which crystal growth is actually carried out (upper surface in FIG. 1) as mirror-finished as possible at the atomic level, and the rear surface is mirror-finished or as-cut etched depending on the purpose. .

本発明においては、上記加工に加えて、基板裏面側に赤外線を効率よく吸収する赤外線吸収層2を事前に形成しておく。この結晶形成用基板1裏面に密着した赤外線吸収層2が、基板を載せている台座(サセプタ)から放射される赤外線を吸収し、結晶形成用基板1を熱伝導で加熱することにより、仮に基板が結晶成長中に歪みで反っても、サセプタに接触してサセプタから直接熱伝導で加熱されている部分と、反りによってサセプタから浮き上がってしまった部分とでの温度差が小さくなる。この様子を図2に、模式的に示す。   In the present invention, in addition to the above processing, an infrared absorption layer 2 that efficiently absorbs infrared rays is formed in advance on the back side of the substrate. The infrared absorbing layer 2 in close contact with the back surface of the crystal forming substrate 1 absorbs infrared rays emitted from a pedestal (susceptor) on which the substrate is placed, and the crystal forming substrate 1 is heated by heat conduction, thereby temporarily Even when warped due to strain during crystal growth, the temperature difference between the part that is in contact with the susceptor and heated directly from the susceptor by heat conduction and the part that has been lifted from the susceptor due to warping becomes small. This is schematically shown in FIG.

赤外線吸収層2は、赤外線を効率よく吸収するので、上記のように基板内温度均一性を向上させるとともに、窒化物系化合物半導体の結晶成長が起こる基板上面の温度を、赤外線吸収層2が無い場合よりも高める。このような温度上昇が大きいほど、それと並行して、基板内温度均一性が向上する。   Since the infrared absorbing layer 2 efficiently absorbs infrared rays, the temperature inside the substrate is improved as described above, and the temperature of the upper surface of the substrate where crystal growth of the nitride compound semiconductor occurs is not caused by the infrared absorbing layer 2. Higher than the case. In parallel with this, the temperature uniformity within the substrate improves as the temperature rise increases.

高周波用電子デバイスへの応用を考慮に入れた場合、上記赤外線吸収層2が寄生容量成分としてデバイス特性を劣化させる要因になる可能性がある場合、また、光デバイスも含め、裏面側に電極形成をする心要がある場合は、赤外線吸収層2によって電極形成が困難になる場合があるため、必要に応じて、研磨や洗浄などで、結晶成長後の赤外線吸収層2を除去する。従って、赤外線吸収層2は、容易に除去されるものであることが望ましい。   When application to high-frequency electronic devices is taken into consideration, the infrared absorption layer 2 may be a factor that degrades device characteristics as a parasitic capacitance component, and electrodes are formed on the back side including optical devices. In the case where it is important to form the electrode, the infrared absorption layer 2 may make it difficult to form an electrode. Therefore, the infrared absorption layer 2 after crystal growth is removed by polishing or washing as necessary. Therefore, it is desirable that the infrared absorption layer 2 be easily removed.

また、さらに、窒化物系化合物半導体が、一般に、高温で結晶成長を行うことも考慮すると、赤外線吸収層2の材料としては、高温でも熱拡散や変質を起こしにくい耐熱材料であることが望ましい。   Furthermore, considering that the nitride-based compound semiconductor generally undergoes crystal growth at a high temperature, the material of the infrared absorption layer 2 is preferably a heat-resistant material that hardly causes thermal diffusion or alteration even at a high temperature.

以上を考慮すると、赤外線吸収層2の材料としては炭素が、赤外吸収係数が大きいことなどからも好適な材料となる。炭素は、真空蒸着法やスピンコート法などにより結晶形成用基板1裏面に付着させることが可能であり、また、必要に応じて、酸素雰囲気下での灰化処理や四塩化炭素などでの洗浄により除去可能である。特に、Si基板を用いる場合においては、表面処理にフッ酸系の薬品を用いることが多いが、炭素はフッ酸で侵されない事も都合がよい。   Considering the above, as a material for the infrared absorption layer 2, carbon is a suitable material because of its large infrared absorption coefficient. Carbon can be attached to the rear surface of the crystal forming substrate 1 by vacuum deposition or spin coating, and, if necessary, ashing in an oxygen atmosphere or cleaning with carbon tetrachloride or the like. Can be removed. In particular, when a Si substrate is used, hydrofluoric acid-based chemicals are often used for surface treatment, but it is also convenient that carbon is not attacked by hydrofluoric acid.

上記方法においては、特に膜厚によって赤外線吸収量が異なるため、少なくとも100nm以上の炭素膜を堆積することが望ましい。また、炭素膜の除去が容易であるように、炭素膜の厚さは5μm以下であることが望ましい。   In the above method, since the amount of infrared absorption varies depending on the film thickness, it is desirable to deposit a carbon film of at least 100 nm or more. Further, it is desirable that the thickness of the carbon film is 5 μm or less so that the carbon film can be easily removed.

本発明は、窒化物系化合物半導体の結晶成長に用いる基板全てにおいて適用可能であるが、特に、結晶形成用基板1が、赤外線に対して透明なシリコン基板である場合において有効である。   The present invention can be applied to all substrates used for crystal growth of nitride-based compound semiconductors, but is particularly effective when the crystal forming substrate 1 is a silicon substrate transparent to infrared rays.

[実施の形態例]
本発明の実施の形態例として、図3に示すように、結晶形成用基板1としてSi(111)基板を用いているが、本発明はこれに限定されることなく適用可能である。
[Example of embodiment]
As an embodiment of the present invention, a Si (111) substrate is used as the crystal forming substrate 1 as shown in FIG. 3, but the present invention is not limited to this and can be applied.

結晶形成用基板1であるSi(111)基板をRCA法もしくはフッ酸溶液で洗浄し、清浄表面を得る。   The Si (111) substrate, which is the crystal forming substrate 1, is washed with the RCA method or a hydrofluoric acid solution to obtain a clean surface.

次に、ECRスパッタ法により、カーボン(炭素)をSi(111)基板の裏面側に200nm以上堆積して、炭素膜である赤外線吸収層2を形成する。この後、再度フッ酸溶液で洗浄し、Si(111)基板の表側の清浄表面を回復させる。MOCVD装置に前記加工済み基板を装填し、水素雰囲気下で昇温してサーマルクリーニングを行う。   Next, 200 nm or more of carbon (carbon) is deposited on the back side of the Si (111) substrate by ECR sputtering to form the infrared absorption layer 2 that is a carbon film. Thereafter, the surface is cleaned again with a hydrofluoric acid solution to recover the clean surface on the front side of the Si (111) substrate. The processed substrate is loaded into the MOCVD apparatus, and the temperature is raised in a hydrogen atmosphere to perform thermal cleaning.

クリーニング後、目的とする窒化物系化合物半導体層を形成する。すなわち、上記の基板を、結晶成長が起こる側の面を上面として台座(サセプタ)に載置し、該台座からの伝熱により加熱して、前記上面に窒化物系化合物半導体を結晶成長させる。   After the cleaning, a target nitride compound semiconductor layer is formed. That is, the above substrate is placed on a pedestal (susceptor) with the surface on which crystal growth occurs as the upper surface, and heated by heat transfer from the pedestal to grow a nitride-based compound semiconductor on the upper surface.

窒化物系化合物半導体層の成長には、V族原料の窒素原子の供給に優れる有機金属気相エピタキシ(MOVPE)法が好適であるが、本発明の趣旨に反しない限りは分子線エピタキシ(MBE)法やハロゲン化気相エピタキシ(HVPE)法などの結晶成長法を用いてもかまわない。   For the growth of the nitride-based compound semiconductor layer, a metal organic vapor phase epitaxy (MOVPE) method, which is excellent in supplying nitrogen atoms as a group V raw material, is preferable. ) Method or a crystal growth method such as halogenated vapor phase epitaxy (HVPE) method may be used.

一例として、3インチSi(111)基板上に目的とするGaN層を2μm堆積しようとした場合、本発明を適用せずに堆積しようとすると、GaN層の成長が進むにつれて基板中心部分の温度が周辺部分の温度より30℃以上低くなってくる。これに対して、本発明を適用して同膜厚のGaN層を成長した場合、温度差は10℃未満にまで小さくなる。   As an example, when a 2 μm target GaN layer is to be deposited on a 3 inch Si (111) substrate, if the deposition is attempted without applying the present invention, the temperature at the center of the substrate increases as the growth of the GaN layer proceeds. It will be 30 ° C lower than the temperature in the surrounding area. On the other hand, when a GaN layer having the same thickness is grown by applying the present invention, the temperature difference is reduced to less than 10 ° C.

結晶成長終了後、四塩化炭素による洗浄か、もしくはアッシング処理を基板裏面に対して行い、赤外線吸収層2として堆積してあったカーボンを除去する。   After the completion of crystal growth, cleaning with carbon tetrachloride or ashing is performed on the back surface of the substrate to remove carbon deposited as the infrared absorption layer 2.

本発明に係る、窒化物系化合物半導体の結晶成長に用いる基板の基本構成を示す図である。It is a figure which shows the basic composition of the board | substrate used for the crystal growth of the nitride type compound semiconductor based on this invention. 本発明に係る、窒化物系化合物半導体の結晶成長に用いる基板を用い、実際に結晶成長を行った際に基板が歪みで反った場合を示す模式図である。It is a schematic diagram which shows the case where the board | substrate used for the crystal growth of the nitride type compound semiconductor based on this invention and the board | substrate warped by distortion when actually performing crystal growth. 結晶形成用基板裏面に赤外線吸収層として炭素を蒸着し、目的とする窒化物系化合物半導体を結晶成長した時の構造を示す図である。It is a figure which shows the structure when vapor-depositing carbon as an infrared rays absorption layer on the back surface of a crystal forming substrate, and carrying out the crystal growth of the target nitride type compound semiconductor.

符号の説明Explanation of symbols

1:結晶形成用基板、2:赤外線吸収層。   1: Crystal-forming substrate, 2: Infrared absorbing layer.

Claims (6)

窒化物系化合物半導体の結晶成長に用いる基板であって、結晶形成用基板の結晶成長が起こる側とは反対側の面に赤外線吸収層を有することを特徴とする窒化物系化合物半導体の結晶成長に用いる基板。   A nitride compound semiconductor crystal growth characterized in that it has an infrared absorption layer on a surface opposite to the crystal growth side of the crystal forming substrate, which is used for crystal growth of the nitride compound semiconductor. Substrate used for 請求項1に記載の窒化物系化合物半導体の結晶成長に用いる基板において、
該基板が、該基板の結晶成長が起こる側の面を上面として台座に載置され、該台座からの伝熱により加熱されて、前記上面で窒化物系化合物半導体の結晶成長が起こる際に、前記上面の温度が、前記赤外線吸収層が無い場合よりも高くなることを特徴とする窒化物系化合物半導体の結晶成長に用いる基板。
The substrate used for crystal growth of the nitride-based compound semiconductor according to claim 1,
When the substrate is placed on the pedestal with the surface on the side where crystal growth of the substrate occurs as an upper surface, heated by heat transfer from the pedestal, and crystal growth of the nitride compound semiconductor occurs on the upper surface, A substrate used for crystal growth of a nitride-based compound semiconductor, characterized in that the temperature of the upper surface is higher than that without the infrared absorption layer.
請求項1または2に記載の窒化物系化合物半導体の結晶成長に用いる基板において、
前記赤外線吸収層が炭素膜であることを特徴とする窒化物系化合物半導体の結晶成長に用いる基板。
The substrate used for crystal growth of the nitride-based compound semiconductor according to claim 1 or 2,
A substrate used for crystal growth of a nitride-based compound semiconductor, wherein the infrared absorption layer is a carbon film.
請求項3に記載の窒化物系化合物半導体の結晶成長に用いる基板において、
前記炭素膜の厚さが100nm以上5μm以下であることを特徴とする窒化物系化合物半導体の結晶成長に用いる基板。
The substrate used for crystal growth of the nitride-based compound semiconductor according to claim 3,
A substrate used for crystal growth of a nitride-based compound semiconductor, wherein the carbon film has a thickness of 100 nm to 5 μm.
請求項1ないし4のいずれかに記載の窒化物系化合物半導体の結晶成長に用いる基板において、
前記結晶形成用基板がシリコン基板であり、その面方位が(111)またはそれと等価な面方位であることを特徴とする窒化物系化合物半導体の結晶成長に用いる基板。
The substrate used for crystal growth of the nitride-based compound semiconductor according to any one of claims 1 to 4,
A substrate used for crystal growth of a nitride-based compound semiconductor, wherein the crystal-forming substrate is a silicon substrate and the plane orientation is (111) or an equivalent plane orientation.
窒化物系化合物半導体の結晶成長方法であって、請求項1ないし5のいずれかに記載の窒化物系化合物半導体の結晶成長に用いる基板を、該基板の結晶成長が起こる側の面を上面として台座に載置し、該台座からの伝熱により加熱して、前記上面に窒化物系化合物半導体を結晶成長させることを特徴とする窒化物系化合物半導体の結晶成長方法。   A method for crystal growth of a nitride-based compound semiconductor, wherein the substrate used for crystal growth of the nitride-based compound semiconductor according to any one of claims 1 to 5 is used with a surface of the substrate where crystal growth occurs as an upper surface. A crystal growth method for a nitride compound semiconductor, comprising: placing on a pedestal, heating by heat transfer from the pedestal, and growing a nitride compound semiconductor on the upper surface.
JP2008216606A 2008-08-26 2008-08-26 Substrate used for crystal growth of nitride-based compound semiconductor, and method for crystal growth of nitride-based compound semiconductor Pending JP2010056129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216606A JP2010056129A (en) 2008-08-26 2008-08-26 Substrate used for crystal growth of nitride-based compound semiconductor, and method for crystal growth of nitride-based compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216606A JP2010056129A (en) 2008-08-26 2008-08-26 Substrate used for crystal growth of nitride-based compound semiconductor, and method for crystal growth of nitride-based compound semiconductor

Publications (1)

Publication Number Publication Date
JP2010056129A true JP2010056129A (en) 2010-03-11

Family

ID=42071767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216606A Pending JP2010056129A (en) 2008-08-26 2008-08-26 Substrate used for crystal growth of nitride-based compound semiconductor, and method for crystal growth of nitride-based compound semiconductor

Country Status (1)

Country Link
JP (1) JP2010056129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103308A (en) * 2018-09-18 2018-12-28 佛山市国星半导体技术有限公司 A kind of LED wafer and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025200A (en) * 1996-07-11 1998-01-27 Nippon Sanso Kk Film-forming substrate and electric element
JPH1070313A (en) * 1996-08-27 1998-03-10 Toshiba Corp Substrate for vapor phase growth and its heating
JP2005252248A (en) * 2004-02-05 2005-09-15 Nokodai Tlo Kk Method for growing aluminum nitride epitaxial layer and vapor growth apparatus
JP2006290676A (en) * 2005-04-11 2006-10-26 Hitachi Cable Ltd Group iii-v nitride semiconductor substrate and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025200A (en) * 1996-07-11 1998-01-27 Nippon Sanso Kk Film-forming substrate and electric element
JPH1070313A (en) * 1996-08-27 1998-03-10 Toshiba Corp Substrate for vapor phase growth and its heating
JP2005252248A (en) * 2004-02-05 2005-09-15 Nokodai Tlo Kk Method for growing aluminum nitride epitaxial layer and vapor growth apparatus
JP2006290676A (en) * 2005-04-11 2006-10-26 Hitachi Cable Ltd Group iii-v nitride semiconductor substrate and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103308A (en) * 2018-09-18 2018-12-28 佛山市国星半导体技术有限公司 A kind of LED wafer and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5444460B2 (en) Epitaxial film forming method, vacuum processing apparatus, semiconductor light emitting element manufacturing method, semiconductor light emitting element, and illumination device
JP6419194B2 (en) Method for forming a device quality gallium nitride layer on a silicon substrate
JP6425835B2 (en) Method of manufacturing a diamond-semiconductor composite substrate
KR100969812B1 (en) Manufacturing Method of Gallium Nitride Single Crystalline Substrate Using Self-Split
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP5377212B2 (en) Method for producing single crystal diamond substrate
CN106783998A (en) A kind of GaN high electron mobility transistor based on diamond substrate and preparation method thereof
WO2019128524A1 (en) Method for eliminating wafer warpage and composite substrate
JP5819978B2 (en) Film forming method, vacuum processing apparatus, semiconductor light emitting element manufacturing method, semiconductor light emitting element, and illumination device
JP2000357663A (en) Method of manufacturing iii nitride base compound semiconductor substrate
CN104508795A (en) Method for depositing a group III nitride semiconductor film
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2006062931A (en) Sapphire substrate and its heat treatment method, and method of crystal growth
JP4374986B2 (en) Method for manufacturing silicon carbide substrate
JP2003218031A (en) Method of manufacturing semiconductor wafer
JP2008091615A (en) Processed treatment substrate, its manufacturing method, and its processing method
JP2010056129A (en) Substrate used for crystal growth of nitride-based compound semiconductor, and method for crystal growth of nitride-based compound semiconductor
JP2008028007A (en) Method for improving crystal quality of group iii nitride crystal
JP2003128499A (en) Method for producing nitride crystal substrate and nitride crystal substrate
JP2005064336A (en) Method for manufacturing group iii nitride compound semiconductor substrate
JP5459257B2 (en) Manufacturing method of silicon epitaxial wafer
JP2005005723A (en) Method for manufacturing nitride semiconductor epitaxial wafer and nitride semiconductor epitaxial wafer
TW201338199A (en) Manufacturing method for nitride semiconductor
JP2005032803A (en) Semiconductor manufacturing method and semiconductor wafer
JP2013256440A (en) Method of manufacturing gallium nitride substrate, and gallium nitride substrate manufactured by method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120530

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731