JPS60159714A - Laser automatic alignment device - Google Patents

Laser automatic alignment device

Info

Publication number
JPS60159714A
JPS60159714A JP1463684A JP1463684A JPS60159714A JP S60159714 A JPS60159714 A JP S60159714A JP 1463684 A JP1463684 A JP 1463684A JP 1463684 A JP1463684 A JP 1463684A JP S60159714 A JPS60159714 A JP S60159714A
Authority
JP
Japan
Prior art keywords
beam position
optical path
mirror
output
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1463684A
Other languages
Japanese (ja)
Inventor
Atsushi Kono
光野 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP1463684A priority Critical patent/JPS60159714A/en
Publication of JPS60159714A publication Critical patent/JPS60159714A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To align an optical axis momently without deviation of a beam from the visual field by determining driving quantities of two mirror gimbals on a basis of outputs of two beam position detectors in accordance with prescribed operation formulas. CONSTITUTION:Since 4-quadrature detectors or charge coupled devices are used as beam position detectors 7 and 8 and a linearity can be given to relations between beam displacement and outputs of detectors, angular variations theta1 and theta2 of mirror gimbals 3 and 4 are determined unequivocally by operations based on output variations X1 and X2 of detectors 7 and 8. These operations are performed by an arithmetic unit 10 including a microprocessor, etc. As the result, the optical axis is aligned momently without deviation of the beam from the visual field.

Description

【発明の詳細な説明】 (技術分野) 本発明はレーザ自動アラインメント装置に関する。[Detailed description of the invention] (Technical field) The present invention relates to a laser automatic alignment device.

(従来技術) 空間上の任意の1分から成る光路にレーザ元等の光線束
を通過させる場合、一般に光源から前記光路まで光af
f−伝達する手段としてミラーが用いられる。この光源
の位置や光出射角の空間的変動に対しても光が常に光路
の尾領域を通過するように調整する(これを以下アライ
ンメントという)几めには、光源および光路入力端間に
二軸自由度をもつジンバルにミラーを搭載させ几いわゆ
るミラージンバルを少くとも2台持つことが必要条件で
ある。
(Prior art) When a beam of light from a laser source or the like is passed through an optical path consisting of an arbitrary minute in space, generally the light af from the light source to the optical path is
A mirror is used as a means of f-transmission. In order to adjust the light so that it always passes through the tail region of the optical path despite spatial variations in the position of the light source and the light output angle (hereinafter referred to as alignment), there is a A necessary condition is to have at least two so-called mirror gimbals, in which mirrors are mounted on gimbals with axial degrees of freedom.

従来、目視によるアラインメントを行う場合。Traditionally, when alignment is performed visually.

第1図に示すように、第1のミツ−ジンバル3によって
レーザ光源1からのビーム2を光路入力端5に、第2の
ミツ−ジンバル4によってビーム2を出力端6に導く操
作を繰り返しながら、ビームを目標光路に合わせ込んで
いく方法がとられてきた。
As shown in FIG. 1, while repeating the operation of guiding the beam 2 from the laser light source 1 to the optical path input end 5 using the first gimbal 3 and guiding the beam 2 to the output end 6 using the second gimbal 4, , a method has been adopted in which the beam is aligned with the target optical path.

これを自動化する場合、第2図に示すように、光路入力
端5および出力端6でのビーム空間位置を出力し得る二
つのビーム位置検出装置7.8を備え、二つのミラージ
ンバル3,4をモータドライブ化し、ビームスプリッタ
9を介し定ビーム位置検出器7からミラージンバル3へ
、またビーム位置検出器′8からミラージンバル4ヘフ
イードバツクループを形成する手段を備えれば、これが
可能となる。
If this is to be automated, as shown in FIG. This becomes possible by converting it into a motor drive and providing means for forming a feedback loop from the fixed beam position detector 7 to the mirror gimbal 3 via the beam splitter 9, and from the beam position detector '8 to the mirror gimbal 4. .

この従来の自動アラインメント制御卸装置は、前述のと
と<、1台の検出装置に対して1台のミラージンバルの
みを対応させていた。即ち、2対の検出−駆動系はそれ
ぞれ独立に作用していた。このため、基準光路に対して
ビームがずれている状態からアラインメントラ始めたと
き、一般には第1のミラージンバル3で光路入力端5に
ビーム位置を合わせた後、第2のミラージンバル4で光
路出力端6にビーム位置を会わせると、光路入力端5の
ビーム位置がずれ、入出力両端5.6でビーム位置が合
うまで、すなわち基準光路にビームが収束するまで、相
当の時間を要する場合があった。
In this conventional automatic alignment control device, only one mirror gimbal corresponds to one detection device as described above. That is, the two pairs of detection-drive systems operated independently. For this reason, when starting alignment from a state where the beam is misaligned with respect to the reference optical path, generally the first mirror gimbal 3 aligns the beam position with the optical path input end 5, and then the second mirror gimbal 4 adjusts the optical path. When the beam position is aligned with the output end 6, the beam position at the optical path input end 5 shifts, and it takes a considerable amount of time until the beam positions match at both input and output ends 5.6, that is, until the beam converges on the reference optical path. was there.

最悪の場合、第2のミラージンバル4で光路出力端6に
ビニム位置を合わせた後、第1のミラージンバル3で光
路入力端5にビーム位置Ifわせたとき、光路出力端6
におけるビームが視界から外れてしまうという恐れもあ
った。
In the worst case, when the second mirror gimbal 4 aligns the vinyl position with the optical path output end 6, and the first mirror gimbal 3 aligns the beam position If with the optical path input end 5, the optical path output end 6
There was also a fear that the beam would be out of sight.

(発明の目的) 本発明は、以上のような欠点を改善し、ビームが視界か
ら外れる心配のないレーザ自動アラインメント装置を提
供することにある。
(Object of the Invention) An object of the present invention is to improve the above-mentioned drawbacks and provide a laser automatic alignment device in which there is no fear that the beam will deviate from the field of view.

(発明の構成) 本発明は、所定の光路にレーザビームを投入するための
2個のモータドライブ・ミラージンバルと、この光路上
のビーム位置を計測するための2個のビーム位置検出装
置と、このビーム位置検出装置の出力から前記ミラージ
ンバル全駆動する定めのフィードバック出力を決定する
演痺装置と金備えたレーザ自動アラインメント装置置に
おりて、前記2個のビーム位置検出装置の出力から前記
2個のミラージンバルの駆動量をそれぞれ所定の演算式
により決定する手段を設けたことを特徴とするレーザ自
動アラインメント装置にある。
(Structure of the Invention) The present invention includes two motor drive mirror gimbals for injecting a laser beam into a predetermined optical path, two beam position detection devices for measuring the beam position on this optical path, From the output of the beam position detection device, a laser automatic alignment device equipped with a paralysis device and a metal plate determines a predetermined feedback output for fully driving the mirror gimbal from the output of the two beam position detection devices. The automatic laser alignment apparatus is characterized in that it is provided with means for determining the drive amount of each of the mirror gimbals by a predetermined arithmetic expression.

(実施例) 次に図面を参照しながら、′本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第3図は本発明の実施例のレーザ目動アラインメント装
置を示す斜視図である。
FIG. 3 is a perspective view showing a laser movement alignment device according to an embodiment of the present invention.

同図において、第2図と異なる主なところは。The main differences between this figure and Figure 2 are as follows.

以下に示す演算を行なわせるための演算装置1゜が介在
せることである。この演算要−ia′(i−導出するた
めの説明全以下に行う。
An arithmetic unit 1° is provided to perform the following arithmetic operations. The entire explanation for deriving this calculation -ia'(i-) is given below.

アラインメント自動化のためのビーム位置検出装置7.
8に4象限検知器や電荷結合素子(CCD)を用いると
き、ビーム変位と検出装置出力との間の関係には、直線
性が保証できる。この場合問題t−簡素化するため、−
軸のみに着目すると、第1のミラージンバル3の角度変
化θ1に対する入力端ビーム位置検出装置7の出力変化
X11.および出力端ビーム位置検出装置8の出力変化
X21 は次のようにモデル化される。
Beam position detection device for alignment automation7.
When using a four-quadrant detector or a charge-coupled device (CCD), linearity can be guaranteed in the relationship between beam displacement and detector output. In this case problem t - To simplify, -
Focusing only on the axis, the output change X11 of the input end beam position detection device 7 with respect to the angle change θ1 of the first mirror gimbal 3. And the output change X21 of the output end beam position detection device 8 is modeled as follows.

X11=に1θ1 ・・・・・・(1)X21=KII
θl ・・・・・・(2)同様に、第2のミラ−ジンバ
ル40角度変化θ2に対する入力端ビーム位置検出装置
7の出力変化X12.および出力端ビーム立置検出装置
8の出力変化X22 は次の関係をもつ。
X11=1θ1...(1)X21=KII
θl (2) Similarly, the output change X12 of the input end beam position detection device 7 with respect to the angle change θ2 of the second mirror gimbal 40. and the output change X22 of the output end beam vertical detection device 8 have the following relationship.

X11=に3θ2 ・・・・・・(3)Xz2=に4θ
2 ・・・・−・(4)ここで、Kl乃至に4は、検出
系、光学系、駆動係の特性により定まる定数である。こ
れら(1)。
3θ2 to X11 = (3) 4θ to Xz2=
2 (4) Here, Kl to 4 are constants determined by the characteristics of the detection system, optical system, and drive coefficient. These (1).

(2)、 (3)、 14)式の関係より、各ビーム検
出装置7゜8の出力変化Xi、X2は、各ミラージンバ
ル3゜4の角度変化θ1.θ2の線型結合としてあられ
すことができる。
From the relationships in equations (2), (3), and 14, the output changes Xi, X2 of each beam detection device 7°8 are equal to the angular changes θ1.4 of each mirror gimbal 3°4. It can appear as a linear combination of θ2.

すなわち。Namely.

X1=X11+X12=に113 t−)−Ka Ox
 −・−・−(5)X2=X2x+X2z=Kxθ1+
に4θ2・・・・・・(6)これらを角度変化θ1.θ
2につ^て解くと1次のようになる。
X1=X11+X12=113 t-)-Ka Ox
−・−・−(5)X2=X2x+X2z=Kxθ1+
to 4θ2...(6) These are the angle changes θ1. θ
If you solve the 2nd order, you will get the 1st order.

各ビーム位置検出装置7.8の出力変化Xl、 Xzに
よって、前記演算を行い、ミラージンバル3゜4の角度
変化θ1.θ2t−−意に定めることができる。この(
力、(8)式の演算をマイクロプロセッサ等金含む演算
装置10で、2軸に関して適用すれば。
The above calculation is performed based on the output changes Xl, Xz of each beam position detection device 7.8, and the angle change θ1 . θ2t--can be arbitrarily determined. this(
If the calculation of equation (8) is applied to two axes using a calculation device 10 including a microprocessor or the like.

ビーム自動アラインメント装置において、ビームが視界
からはずれることなく、瞬時にして光軸合わせが可能と
なる。
In an automatic beam alignment device, it is possible to instantaneously align the optical axis without the beam deviating from the field of view.

(発明の効果) 以上説明したように、本発明によれば、アラインメント
する光路上のビーム位置全検出する2つのビーム位置検
出装置の出力によって、2つのモータドライブ・ミラー
ジンバル駆動tt−効果的に央定することができるから
、ビームが視界からはずれてしまうという恐れがない等
の効果が得られる。
(Effects of the Invention) As described above, according to the present invention, the outputs of the two beam position detection devices that detect the entire beam position on the optical path to be aligned can effectively drive the two motor drives and mirror gimbals. Since the beam can be centered, there is no fear that the beam will go out of sight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザビームの目視による従来のレーザアライ
ンメントラ示す斜視図、第2図は従来のレーザ自動アラ
インメント装置の構成金示す斜視図、第3図は本発明の
実施例のレーザ自動アラインメント装置を示す斜視図で
ある。なお図において、 1−・・・・・レーザ光源、2・−・・・・レーザビー
ム経路、3・・・・・・第1ミラージンバル、4・・・
・・・第2ミラージンバル、5・・・・・・アラインメ
ント光路入力端%6・・・・・・アラインメント光路出
力端、7・・・・・・光路入力端ビーム位置検出装置、
8・・・・・・光路出力端ビーム位置検出装置、9・・
・・・・光路入力端ビーム位置検出装置用ビームスグリ
ツタ、10・・・・・・演算装置。
Fig. 1 is a perspective view showing a conventional laser alignment machine based on visual observation of a laser beam, Fig. 2 is a perspective view showing the structure of a conventional laser automatic alignment device, and Fig. 3 is a perspective view of a conventional laser automatic alignment device according to an embodiment of the present invention. FIG. In the figure, 1... Laser light source, 2... Laser beam path, 3... First mirror gimbal, 4...
... Second mirror gimbal, 5 ... Alignment optical path input end %6 ... Alignment optical path output end, 7 ... Optical path input end beam position detection device,
8... Optical path output end beam position detection device, 9...
. . . Beam smitter for optical path input end beam position detection device, 10 . . . Arithmetic device.

Claims (1)

【特許請求の範囲】[Claims] 所定の光路にレーザビームを投入する九めの2個のモー
タドライブ・ミツ−ジンバルと、前記光路上のビーム位
置を計測する几めの2個のビーム位置検出装置と、この
ビーム位置検出装置の出力から前記ミラージンバルを駆
動する几めのフィードバック出力を決定する演算装置と
を備えtレーザ自動アラインメント装置において、前記
2115のビーム位置検出装置の出力から前記2個のミ
ラージンバルの駆動量をそれぞれ所定の演算式により決
定する手段を設は几ことを特徴とするレーザ自動アライ
ンメント装置。
Two ninth motor drive gimbals that direct the laser beam onto a predetermined optical path, two precise beam position detection devices that measure the beam position on the optical path, and the beam position detection device. and an arithmetic unit that determines a precise feedback output for driving the mirror gimbal based on the output. In the automatic laser alignment device, the driving amount of each of the two mirror gimbals is determined from the output of the beam position detection device 2115 to a predetermined value. What is claimed is: 1. A laser automatic alignment device, characterized in that it has a means for making a determination based on an arithmetic expression.
JP1463684A 1984-01-30 1984-01-30 Laser automatic alignment device Pending JPS60159714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1463684A JPS60159714A (en) 1984-01-30 1984-01-30 Laser automatic alignment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1463684A JPS60159714A (en) 1984-01-30 1984-01-30 Laser automatic alignment device

Publications (1)

Publication Number Publication Date
JPS60159714A true JPS60159714A (en) 1985-08-21

Family

ID=11866681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1463684A Pending JPS60159714A (en) 1984-01-30 1984-01-30 Laser automatic alignment device

Country Status (1)

Country Link
JP (1) JPS60159714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772475A1 (en) * 1997-12-17 1999-06-18 Cilas METHOD AND DEVICE FOR AUTOMATICALLY CORRECTING POSITIONING ERRORS OF OPTICAL ELEMENTS OF AN OPTICAL CHAIN
US9980789B2 (en) 2014-12-05 2018-05-29 Convergent Dental, Inc. System and methods for alignment of a laser beam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772475A1 (en) * 1997-12-17 1999-06-18 Cilas METHOD AND DEVICE FOR AUTOMATICALLY CORRECTING POSITIONING ERRORS OF OPTICAL ELEMENTS OF AN OPTICAL CHAIN
EP0926529A1 (en) * 1997-12-17 1999-06-30 Compagnie Industrielle Des Lasers Cilas Procedure and apparatus for automatic positionning correction of optical elements in an optical asembly
US6188652B1 (en) 1997-12-17 2001-02-13 Compagnie Industrielle Des Lasers Cilas Method and device for automatically correcting positioning errors of optical elements of an optical system
US9980789B2 (en) 2014-12-05 2018-05-29 Convergent Dental, Inc. System and methods for alignment of a laser beam
US10470843B2 (en) 2014-12-05 2019-11-12 Convergent Dental, Inc. Systems and methods for alignment of a laser beam

Similar Documents

Publication Publication Date Title
CN104122900B (en) Compound axis tracking system based on rotary biprism
GB1470754A (en) Telescope cluster
JPS60159714A (en) Laser automatic alignment device
US4275306A (en) Alignment apparatus
JP2003114105A (en) Construction method for large structure
CN106735995A (en) Automatic seam tracking method and device based on crawl device
JPH01278987A (en) Adjusting device for optical axis
JPS62293212A (en) Optical axis adjusting device
JPH05329674A (en) Method for adjusting optical axis and device therefor
JPS6341814A (en) Method and device for matching optical axes between semiconductor element and optical transmission line
JPS61198158A (en) Automatic laser alignment device
JPH11281875A (en) Device and method for correcting laser optical axis
CN115333633B (en) Beam control method and device in space laser communication tracking process
JP2909090B2 (en) Light beam tracking controller
RU2211462C2 (en) Follow-up optoelectronic system
JPS5930389A (en) Controller of stereoscopic television
KR102070756B1 (en) Multi axis stage
JPH03151794A (en) Stereoscopic television pickup system
JPH03115803A (en) Light beam position detector
CN114721442A (en) Closed-loop tracking method based on axicon photoelectric tracking device
JPS61244027A (en) Correction of origin deviation between stationary stage and rotary stage
JPH04184988A (en) Method for automatically aligning laser oscillation
JPS63229412A (en) Correcting device for optical path position
JPS5926081A (en) Tracking device using light wave
JP2000292541A (en) Optical control device