JPS6341814A - Method and device for matching optical axes between semiconductor element and optical transmission line - Google Patents

Method and device for matching optical axes between semiconductor element and optical transmission line

Info

Publication number
JPS6341814A
JPS6341814A JP18528386A JP18528386A JPS6341814A JP S6341814 A JPS6341814 A JP S6341814A JP 18528386 A JP18528386 A JP 18528386A JP 18528386 A JP18528386 A JP 18528386A JP S6341814 A JPS6341814 A JP S6341814A
Authority
JP
Japan
Prior art keywords
optical
transmission line
semiconductor element
optical transmission
coupling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18528386A
Other languages
Japanese (ja)
Other versions
JP2504747B2 (en
Inventor
Kaoru Yoshino
薫 吉野
Masahiro Ikeda
正宏 池田
Shinji Nagaoka
長岡 新二
Yoshiaki Tachikawa
吉明 立川
Minoru Nomura
稔 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Anritsu Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp, Nippon Telegraph and Telephone Corp filed Critical Anritsu Corp
Priority to JP61185283A priority Critical patent/JP2504747B2/en
Publication of JPS6341814A publication Critical patent/JPS6341814A/en
Application granted granted Critical
Publication of JP2504747B2 publication Critical patent/JP2504747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To attain optical axis matching a having stable optical coupling efficiency by finding out the relation of the optical coupling rate to a relative position between a semiconductor element and an optical transmission line and using a position corresponding to its gravity as an optimum position to execute the optical matching. CONSTITUTION:An arithmetic unit 16 scans an optical axis adjusting device 17 at a fixed internal while oscillating the semiconductor laser element 1 by a fixed output and stores the outputs of a position detector and a photodetector 9 in its memory. In addition, the arithmetic unit 16 calculates a gravity position based upon a specific formula by using the output power of an optical fiber as a positional function on the basis of the stored data and drives the device 17 so that the optical fiber is positioned on the gravity position. The output power of the optical fiber 1 is scanned at a rough interval at first to detect a position on which a signal can be detected and then scanned in the (x)-(z) directions to match the optical axis with a position corresponding to the gravity position of optical coupling rate distribution. Thus, optical axis matching having highly stable optical coupling rate can be attained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は半導体レーザ素子、アバランシホトダイオー
ド(以下rAPD素子」)などの半導体素子と光伝送路
の光軸合せを安定した光学結合率で結合できるようにし
た光軸合せ方法および装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> This invention combines optical axis alignment of a semiconductor device such as a semiconductor laser device or an avalanche photodiode (hereinafter referred to as rAPD device) and an optical transmission line with a stable optical coupling rate. The present invention relates to a method and device for optical axis alignment.

〈発明の技術的背景〉 近年、光ファイバを光伝送路に使用した光通信技術の発
達に伴ない、半導体レーザ素子からの発光を光ファイバ
やセル7オツクレンズ等の光伝送路へ効率よ(伝える必
要があった。このような必要を満たさせろため、従来は
第5図に示すように、半導体レーザ素子1を台2上に固
定し、半導体レーザ素子1から発する光3を光伝送路S
の入力側端面4から入射するように配ユし、マニピュレ
ータ6を操作して光伝送路5をx、X方向に移rIJ調
節し、半導体レーザ素子1と入力端4の光学的位置を変
え光軸合せをしていた。この装置の光伝送路5の出力端
7側には出力光8を受光するための光検知器9を設けて
おき、その出力を観察したがらマニピュレータ6を操作
した光検知器9の最大光出力点に光伝送路5の位置を定
めろように光軸合わせしていた。
<Technical Background of the Invention> In recent years, with the development of optical communication technology that uses optical fibers as optical transmission lines, it has become more and more efficient to transmit light emitted from semiconductor laser elements to optical transmission lines such as optical fibers and cell lenses. In order to satisfy this need, conventionally, as shown in FIG.
The optical transmission line 5 is moved in the x and X directions by operating the manipulator 6, and the optical position of the semiconductor laser element 1 and the input end 4 is changed to change the optical position of the semiconductor laser element 1 and the input end 4. I was doing alignment. A photodetector 9 for receiving output light 8 is provided on the output end 7 side of the optical transmission line 5 of this device, and the maximum light output of the photodetector 9 when the manipulator 6 is operated to observe its output. The optical axis was aligned so that the position of the optical transmission line 5 was determined at the point.

しかし、上述した半導体素子と光伝送路の光軸合わせは
、操作が非常に微妙である上、能率が悪くまた精度も低
いものであった。このため、上述の装置に、第6図のブ
ロック図に示されろサーボ回路を組み合わせて操作して
いた。すなわち、マニピュレータ6をX方向に駆動する
サーボ機構11とX方向に駆動するサーボ機構12とを
備え、光検知器9の最大出力を保持する最大出力保持器
13の保持値と光検知器9の出力とを帰還回路14によ
って比較し、両者の差をゲート回路15の切替えによっ
てサーボ機構11と12へ交互に与え、マニピュレータ
6をコントロールしている。
However, the above-mentioned optical axis alignment between the semiconductor element and the optical transmission line requires a very delicate operation, is inefficient, and has low precision. For this reason, the above-described apparatus has been operated in combination with a servo circuit as shown in the block diagram of FIG. That is, it includes a servo mechanism 11 that drives the manipulator 6 in the X direction and a servo mechanism 12 that drives the manipulator 6 in the The output is compared by the feedback circuit 14, and the difference between the two is alternately applied to the servo mechanisms 11 and 12 by switching the gate circuit 15, thereby controlling the manipulator 6.

したがって、最大出力保持#13の保持値と光検知器9
の出力が一致すると帰還回路14の出力が零となり、サ
ーボ8!構11,12は停止するから自動的に光軸合せ
ができろ。
Therefore, the holding value of maximum output holding #13 and the photodetector 9
When the outputs of servo 8! and 8! match, the output of the feedback circuit 14 becomes zero, and servo 8! Since the structures 11 and 12 are stopped, the optical axes can be aligned automatically.

〈発明が解決しようとする問題点〉 ところが、上述した従来の半導体素子と光伝送路の光軸
合せ方法は 半導体レーザ素子1の光軸方向の垂直断面におけるXp
Y方向の発光強度分布(Ilは第7図に示すようにピー
ク値が複数個ある。それ故、たとえばピークPの値を最
大出力保持器13が保持しているときは第6図のサーボ
回路と組合せた装置においては、ピークPに追従し、ピ
ークP2の位置で停止し、より高い強度のピークP1に
位置調整されないから、光軸合わせは結合効率の低いP
2状悪に合致するように調整されてしまう。
<Problems to be Solved by the Invention> However, the conventional method for aligning the optical axis of the semiconductor element and the optical transmission line described above has
The emission intensity distribution in the Y direction (Il has multiple peak values as shown in FIG. 7. Therefore, for example, when the maximum output holder 13 holds the value of peak P, the servo circuit in FIG. 6 In the device combined with the peak P, it follows the peak P and stops at the peak P2 position, and the position is not adjusted to the higher intensity peak P1, so the optical axis alignment is performed at the peak P with low coupling efficiency.
It will be adjusted to match the two conditions.

この位8!P2は本来の光軸中心に比べて許容量が小さ
く、光学的結合が極めて不安定になりやすい。
This is 8! P2 has a smaller allowable amount than the original optical axis center, and optical coupling tends to become extremely unstable.

一方、半導体素子と光伝送路の光学結合率のピーク位置
は必ずしも光軸中心とは限らない。すなわち、半導体レ
ーザ素子と先端レンズ加工した多モードファイバ間の光
学結合率と光軸ずれ量との関係は第8図に示すように半
導体レーザ素子の発光強度分布の部外やファイバレンズ
の仕上りのばらつき、あるいは僅かな角度ずれ等のなめ
その光学結合率は非対称分布をもつようになる。この場
合において、従来のように光強度のピーク位置に光軸を
合わせろと、光軸ずれ許容量が、本来の光軸中心法の場
合に比べて非常に厳しくなるので、光学結合率の安定性
が悪くなってしまう。
On the other hand, the peak position of the optical coupling ratio between the semiconductor element and the optical transmission line is not necessarily at the center of the optical axis. In other words, as shown in Figure 8, the relationship between the optical coupling rate and the amount of optical axis deviation between the semiconductor laser element and the multimode fiber processed with the tip lens is determined by the outside of the emission intensity distribution of the semiconductor laser element and the finish of the fiber lens. Due to variations or slight angular deviations, the optical coupling rate will have an asymmetric distribution. In this case, if the optical axis is aligned with the peak position of the light intensity as in the conventional method, the optical axis misalignment tolerance will be much stricter than in the original optical axis centering method, so the stability of the optical coupling ratio will be affected. becomes worse.

特に、光伝送路として使用する光ファイバがシングルモ
ード型の場合は、光軸合せ位置精度が、0.1−のオー
ダまで要求されるから、全範囲を走査するのに長時間必
要とする。
In particular, when the optical fiber used as the optical transmission line is a single mode type, the optical axis alignment position accuracy is required to the order of 0.1-, so it takes a long time to scan the entire range.

この発明は、上述した半導体レーザ素子、さらに一般的
に半導体素子と光伝送路の光軸合せにおけろ発光強度分
布のピーク位置に光軸合せを行う従来の半導体素子およ
び光伝送路の間の光軸合せ方法の欠点を除去するために
なされたものであって、半導体素子と光伝送路を安定し
た光学結合効率が得られろように光軸合せする方法を提
供しようとするものである。
This invention relates to the above-mentioned semiconductor laser device, and more generally to the conventional semiconductor laser device and the optical transmission path in which the optical axis is aligned to the peak position of the emission intensity distribution in the optical axis alignment between the semiconductor device and the optical transmission path. This was developed in order to eliminate the drawbacks of optical axis alignment methods, and attempts to provide a method for optical axis alignment such that stable optical coupling efficiency between a semiconductor element and an optical transmission line can be obtained.

また、この発明は半導体素子と光伝送路を安定した光学
結合効率をもつように光軸合せできろ装置を提供しよう
とするものである。
Another object of the present invention is to provide a device capable of aligning optical axes between a semiconductor element and an optical transmission line so as to have stable optical coupling efficiency.

く問題点を解決するための手段〉 以上の目的を達成するため、本発明者等は種々研究を重
ねた結果、半導体素子と光伝送路の光軸合せの際に、光
軸中心から外れたところにでろサブピークに追従するこ
とを回避するため、半導体素子と光伝送路の相対位置の
光学結合率分布を求め、その光学結合率分布の数学的重
心位置に相当する位置を最適位置として光軸合せすれば
、安定な光学結合率をもつ光軸合せができろことを知り
、この発明を完成することができた。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted various studies and found that when aligning the optical axis of the semiconductor element and the optical transmission line, the optical axis deviates from the center. In order to avoid following sub-peaks, the optical coupling rate distribution of the relative positions of the semiconductor element and the optical transmission line is determined, and the optical axis is set at the optimum position corresponding to the mathematical center of gravity of the optical coupling rate distribution. I realized that by combining these two elements, it would be possible to align the optical axes with a stable optical coupling rate, and was able to complete this invention.

すなわち、この発明の一つは半導体素子と光伝送路との
光軸合せに際し、半導体素子と光伝送路の相対位置に対
する光学結合率の関係を求め、その重心に相当する位置
を最適位置として光軸合せすることを特徴とするもので
ある。
That is, one aspect of the present invention is that when aligning the optical axes of the semiconductor element and the optical transmission line, the relationship between the optical coupling rate and the relative position of the semiconductor element and the optical transmission line is determined, and the position corresponding to the center of gravity is set as the optimum position and the optical axis is aligned. It is characterized by alignment.

この発明におけろ半導体素子と光伝送路の相対位置に対
する光学結合率分布の重心に相当する位置は、位置座標
の関数として数学的な重心に相当する座標Rを演算式 ただし、f(r)は光学結合率分布を表わし、光学結合
率分布がピーク位置を中心とし、第1図のごとく対称で
単峰のプロフィルならば、重心はピーク位置と一致し、
複数(例えば二ピーク)ならば第2図のごとく、ニピー
クの対称中心線に位置する。
In this invention, the position corresponding to the center of gravity of the optical coupling rate distribution with respect to the relative position of the semiconductor element and the optical transmission line is determined by calculating the coordinate R corresponding to the mathematical center of gravity as a function of the position coordinates. represents the optical coupling rate distribution, and if the optical coupling rate distribution is centered at the peak position and has a symmetrical and unimodal profile as shown in Figure 1, the center of gravity coincides with the peak position,
If there are multiple peaks (for example, two peaks), they are located on the center line of symmetry of the two peaks, as shown in FIG.

また、この発明のもう一つは半導体素子と光伝送路との
相対位置を自由に変えうろ調整装置と、半導体素子と光
伝送路の相対位置を検出し、相対位置に比例した電気信
号を発生する位置検出器と、上記半導体素子および光伝
送路の相対位1の光学結合率を測定し電気信号に変換す
る光学結合率測定装置と、前記位置検出装置および光学
結合率測定装置から送られる電気信号により、半導体素
子と光伝送路の相対位置の光学結合率分布の重心に相当
する位置を位置座標の関数として数学的な重心に相当す
る値として算出する演算装置と、この演算装置の演算結
果にしたがって、前記調!1裟置を駆動するサーボ機構
とからなることを特徴とする半導体素子と光伝送路の光
軸合せである。
Another aspect of this invention is a scale adjustment device that freely changes the relative position of the semiconductor element and the optical transmission line, and detects the relative position of the semiconductor element and the optical transmission line, and generates an electrical signal proportional to the relative position. a position detector that measures the optical coupling ratio of the relative position 1 of the semiconductor element and the optical transmission line and converts it into an electrical signal; An arithmetic device that uses a signal to calculate a position corresponding to the center of gravity of the optical coupling rate distribution of the relative position of the semiconductor element and the optical transmission line as a value corresponding to the mathematical center of gravity as a function of position coordinates, and a calculation result of this arithmetic device. According to the above tone! The optical axis alignment of a semiconductor element and an optical transmission line is characterized in that it consists of a servo mechanism that drives one device.

く作   用〉 以上のように、この発明の半導体素子と光伝送路の光軸
合せは光学結合率分布の重心位置に相当する位置を最適
位置として位置合わせするから、光軸ずれや光学結合率
分布が単純かつ対称性のよい単峰ピークをもたない非対
称のものであっても、光軸中心位置に安定性の高い光学
結合率をもった光軸合せを行うことができる。
As described above, since the optical axes of the semiconductor element and the optical transmission line of the present invention are aligned using the position corresponding to the center of gravity of the optical coupling ratio distribution as the optimum position, optical axis misalignment and optical coupling ratio Even if the distribution is simple and asymmetrical and does not have a single peak with good symmetry, the optical axis can be aligned at the optical axis center position with a highly stable optical coupling rate.

く実 施 例〉 つぎに、この発明の半導体素子と光伝送路の光軸合せ方
法の実施に使用する装置にもとづいて、その方法を説明
する。
Embodiments Next, a method for aligning the optical axis of a semiconductor element and an optical transmission line according to the present invention will be described based on an apparatus used for carrying out the method.

実  施  例−1 第3図はこの発明の半導体素子と光伝送路の光軸合せ装
置の概略構成を示す要部斜視図であって、1は半導体レ
ーザ素子、5(よ半導体レーザ素子1と対向する入口側
先端をレンズ加工した光ファイバ、9は光ファイバの光
出力パワーを測定する光検知器、17(よパルスモータ
の駆動によって光ファイバ5の位置検出兼光軸TA整装
置、16は光検出器9と位置検出器から構成される装置
検出データを読み取り光軸調整装fi17のyJR整動
作を制加する演算装置である。演算装置16はマイクロ
コンピュータを用い、半導体レーザ素子1を一定出力で
発振させながら、光軸調整装置17を一定間隔で走査さ
せ、その際、位置検出器9と光検出器3の出力を演算装
置16に記憶させろ。記憶させたデータを基にして光フ
ァイバの出力パワーを位置の関数として前述した演算式
(1) にしたがって、重心位置を計算させ、その重心位置に光
ファイバが位置するように光軸調整装ブ17を作動させ
ろ。以上の動作はすべて演算装置16に予め組み込まれ
た内部プログラムにしたがって制御されろ。
Embodiment Example 1 FIG. 3 is a perspective view of essential parts showing a schematic configuration of an optical axis alignment device for a semiconductor device and an optical transmission line according to the present invention, in which 1 is a semiconductor laser device, 5 is a semiconductor laser device 1, and 5 is a semiconductor laser device 1. 9 is a photodetector for measuring the optical output power of the optical fiber; 17 is a device for detecting the position of the optical fiber 5 and aligning the optical axis by driving a pulse motor; This is an arithmetic device that reads device detection data consisting of a detector 9 and a position detector and controls the yJR adjustment operation of the optical axis adjustment device fi17.The arithmetic device 16 uses a microcomputer to control the semiconductor laser element 1 with a constant output While oscillating with Calculate the center of gravity position according to the above-mentioned calculation formula (1) using the output power as a function of position, and operate the optical axis adjustment device 17 so that the optical fiber is located at the calculated center of gravity position.All of the above operations are performed by calculations. It is controlled according to an internal program preinstalled in the device 16.

このような構成によって、測定時間を短縮するため、最
初は粗い間隔で光ファイバ1の出力パワーを走査し、信
号を検出できる位置を探す。次いで、XpYp”軸方向
(7,軸を光軸方向とする。)について細かに走査し、
光学結合率分布の重心位置に相当する位置に光軸を合せ
ればよい。
With this configuration, in order to shorten the measurement time, the output power of the optical fiber 1 is scanned at coarse intervals at first to find a position where a signal can be detected. Next, fine scanning is performed in the XpYp'' axis direction (7, axis is the optical axis direction),
The optical axis may be aligned to a position corresponding to the center of gravity of the optical coupling rate distribution.

このような二段階走査で光軸合せをする方法は、特に光
ファイバ2が許容量の小さいシングルモードファイバの
場合に有効である。
This method of aligning the optical axis using two-step scanning is particularly effective when the optical fiber 2 is a single mode fiber with a small tolerance.

実 施 例−2 第4図は、この発明の半導体素子および光伝送路の光軸
合せ装置の第2の*雄側の概略構成を示す要部斜視図で
あって、1aはアバランシェフォトダイオード(APD
素子)、5は光ファイバ、18は光ファイバに一定の光
パワーを注入する安定光源、17はファイバ位置検出兼
TA整機構、16は演算装置である。
Embodiment 2 FIG. 4 is a perspective view of a main part showing a schematic configuration of the second *male side of the semiconductor element and the optical axis alignment device for the optical transmission line of the present invention, and 1a is an avalanche photodiode ( APD
5 is an optical fiber, 18 is a stable light source that injects a constant optical power into the optical fiber, 17 is a fiber position detection and TA adjustment mechanism, and 16 is an arithmetic unit.

第4図の半導体素子および光伝送路の光軸合せ装置の動
作機構は実施例−1の装置におけろ光検出器9の代りに
APD素子1aを用いろ以外は同様であり、装置として
も殆んどそのまま1吏用できる。
The operating mechanism of the semiconductor device and the optical axis alignment device for the optical transmission line shown in FIG. It can be used almost as is for one person.

したがって、本実施例の装置を用いれば、発光素子でも
受光素子でも、また光ファイバがマルチモードのもので
もあるいはシングルモードのものでも、装置の構成を余
り変えずに、内部プログラムのパラメータを変えるだけ
で、対応できる。
Therefore, if you use the device of this embodiment, you can simply change the parameters of the internal program without changing the configuration of the device, regardless of whether it is a light emitting element or a light receiving element, or whether the optical fiber is multimode or single mode. So, I can handle it.

〈発明の効果〉 以上の説明から明らかなように、この発明の半導体素子
と光伝送路の光軸合せ方法によれば、光軸ずれと光学結
合率の関係が単純な単峰ビークにならない場合でも安定
した光学結合率位置に光軸合せできるので、調整時間の
短線、歩溜りの向上が図れる。
<Effects of the Invention> As is clear from the above explanation, according to the optical axis alignment method of the semiconductor element and optical transmission line of the present invention, when the relationship between the optical axis misalignment and the optical coupling rate does not become a simple single peak peak, However, since the optical axis can be aligned to a stable optical coupling ratio position, adjustment time can be shortened and yields can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ半導体素子を光伝送路の
光学結合率分布が対称で単峰および二峰のプロフィル図
、第3図はこの発明の半導体素子と光伝送路の光軸合せ
装置の第1の実施例の概略構成を示す要部斜視図、第4
図はこの発明の半導体素子と光伝送路の光軸合せ装置の
第2の実施例の概略構成を示す要部斜視図、第5図は従
来の半導体レーザ素子と光伝送路の光軸合せの状況を示
す斜視図、第6図は第5図の光軸合せに組合せろサーボ
回路のブロック図、第7図は半導体レーザ素子の発光強
度分布のピーク値の状態を示す説明図、第8図は光軸ず
れ量と光学結合効率が非対称な分布を有するときの状B
を示す特性図である。 図  面  中、 1・・半導体レーザ素子、 1a・・・APD素子、 5 ・光伝送路、 9−・・光検知器、 16・・・演算装置。 第1図 第2図 第4図 第5図 87″1 第6図 第7図 ■ 第8図 光軸すれ量  5μm/目盛
Figures 1 and 2 are profile diagrams in which the optical coupling rate distribution of the semiconductor element and the optical transmission line is symmetrical, with single and bimodal profiles, respectively, and Figure 3 is the optical axis alignment device for the semiconductor element and the optical transmission line of the present invention. A perspective view of main parts showing the schematic configuration of the first embodiment, the fourth
The figure is a perspective view of a main part showing a schematic configuration of a second embodiment of the optical axis alignment device for a semiconductor element and an optical transmission line according to the present invention, and FIG. FIG. 6 is a block diagram of the servo circuit combined with the optical axis alignment shown in FIG. 5; FIG. 7 is an explanatory diagram showing the state of the peak value of the emission intensity distribution of the semiconductor laser element; FIG. 8 is state B when the optical axis deviation amount and optical coupling efficiency have an asymmetric distribution
FIG. In the drawings, 1: semiconductor laser element, 1a: APD element, 5: optical transmission line, 9: photodetector, 16: arithmetic unit. Figure 1 Figure 2 Figure 4 Figure 5 87''1 Figure 6 Figure 7■ Figure 8 Optical axis deviation 5μm/scale

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子と光伝送路との光軸合せに際し、半導
体素子と光伝送路の相対位置に対する光学結合率の関係
を求めると共に、半導体素子と光伝送路の相対位置に対
する光学結合率分布の重心に相当する位置を最適位置と
して光軸合せすることを特徴とする半導体素子と光伝送
路との光軸合せ方法。
(1) When aligning the optical axes of the semiconductor element and the optical transmission line, find the relationship of the optical coupling rate with respect to the relative position of the semiconductor element and the optical transmission line, and also calculate the optical coupling rate distribution with respect to the relative position of the semiconductor element and the optical transmission line. A method for aligning optical axes between a semiconductor element and an optical transmission line, characterized in that the optical axes are aligned using a position corresponding to the center of gravity as the optimum position.
(2)半導体素子と光伝送路との相対位置を自由に変え
うる調整装置と、半導体素子と光伝送路の相対位置を検
出し、相対位置に比例した電気信号を発生する位置検出
器と、上記半導体素子および光伝送路の相対位置の光学
結合率を測定し電気信号に変換する光学結合率測定装置
と、前記位置検出装置および光学結合率測定装置から送
られる電気信号により半導体素子と光伝送路の相対位置
の光学結合率分布の重心に相当する位置を、位置座標の
関係として数学的な重心に相当する値として算出する演
算装置と、この演算装置の演算結果にしたがって前記調
整装置を駆動するサーボ機構とからなることを特徴とす
る半導体素子と光伝送路の光軸合せ装置。
(2) an adjustment device that can freely change the relative position between the semiconductor element and the optical transmission line; a position detector that detects the relative position of the semiconductor element and the optical transmission line and generates an electrical signal proportional to the relative position; an optical coupling rate measuring device that measures the optical coupling rate of the relative position of the semiconductor element and the optical transmission line and converts it into an electrical signal; and an optical coupling rate measuring device that measures the optical coupling rate of the relative position of the semiconductor element and the optical transmission line, and transmits the optical signal to the semiconductor element using the electrical signal sent from the position detecting device and the optical coupling rate measuring device. an arithmetic device that calculates a position corresponding to the center of gravity of the optical coupling rate distribution of the relative position of the road as a value corresponding to the mathematical center of gravity as a relationship of positional coordinates; and a calculation device that drives the adjustment device in accordance with the arithmetic result of the arithmetic device. 1. An optical axis alignment device for a semiconductor element and an optical transmission line, characterized by comprising a servo mechanism for aligning a semiconductor element and an optical transmission line.
JP61185283A 1986-08-08 1986-08-08 Method and apparatus for aligning optical axis between semiconductor element and optical transmission line Expired - Lifetime JP2504747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185283A JP2504747B2 (en) 1986-08-08 1986-08-08 Method and apparatus for aligning optical axis between semiconductor element and optical transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185283A JP2504747B2 (en) 1986-08-08 1986-08-08 Method and apparatus for aligning optical axis between semiconductor element and optical transmission line

Publications (2)

Publication Number Publication Date
JPS6341814A true JPS6341814A (en) 1988-02-23
JP2504747B2 JP2504747B2 (en) 1996-06-05

Family

ID=16168128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185283A Expired - Lifetime JP2504747B2 (en) 1986-08-08 1986-08-08 Method and apparatus for aligning optical axis between semiconductor element and optical transmission line

Country Status (1)

Country Link
JP (1) JP2504747B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280729A (en) * 1988-05-06 1989-11-10 Matsushita Electric Ind Co Ltd Light wavelength changing device
JPH0894890A (en) * 1994-09-28 1996-04-12 Nec Corp Optical axis alignment method for optical fiber
JPH08262280A (en) * 1995-03-22 1996-10-11 Nec Corp Method for adjusting optical axis of optical fiber
JP2008292994A (en) * 2007-04-23 2008-12-04 Olympus Corp Laser microscope
WO2019012620A1 (en) * 2017-07-12 2019-01-17 三菱電機株式会社 Optical module production method
WO2024171713A1 (en) * 2023-02-16 2024-08-22 ソニーグループ株式会社 Adjustment method, optical module, and measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199549A (en) * 1975-02-28 1976-09-02 Fujitsu Ltd HANDOTAIHATSUKOSOSHITO HIKARIFUAIBANO KETSUGOJOTAINO KENSAHOHO
JPS57147610A (en) * 1981-03-09 1982-09-11 Nippon Sheet Glass Co Ltd Method for alignment between optical axis of bar-shaped lens body and optical axis of optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199549A (en) * 1975-02-28 1976-09-02 Fujitsu Ltd HANDOTAIHATSUKOSOSHITO HIKARIFUAIBANO KETSUGOJOTAINO KENSAHOHO
JPS57147610A (en) * 1981-03-09 1982-09-11 Nippon Sheet Glass Co Ltd Method for alignment between optical axis of bar-shaped lens body and optical axis of optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280729A (en) * 1988-05-06 1989-11-10 Matsushita Electric Ind Co Ltd Light wavelength changing device
JPH0894890A (en) * 1994-09-28 1996-04-12 Nec Corp Optical axis alignment method for optical fiber
JPH08262280A (en) * 1995-03-22 1996-10-11 Nec Corp Method for adjusting optical axis of optical fiber
JP2008292994A (en) * 2007-04-23 2008-12-04 Olympus Corp Laser microscope
WO2019012620A1 (en) * 2017-07-12 2019-01-17 三菱電機株式会社 Optical module production method
WO2024171713A1 (en) * 2023-02-16 2024-08-22 ソニーグループ株式会社 Adjustment method, optical module, and measurement device

Also Published As

Publication number Publication date
JP2504747B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
KR100477803B1 (en) Optical alignment apparatus and method by using visual optical source and image
JP4426292B2 (en) Method and apparatus for detection and control of light beam alignment
CN102445198B (en) Alternating-current frequency stabilization system and method for four-frequency laser gyroscope
CN100470194C (en) Laser automatic collimation system
JPS6341814A (en) Method and device for matching optical axes between semiconductor element and optical transmission line
US4275306A (en) Alignment apparatus
US4278893A (en) Alignment apparatus
JPH10103918A (en) Laser length-measuring apparatus
US11949449B2 (en) Spatial optical transmission apparatus
JPH06265759A (en) Automatic optical axis aligning device
JPH01278987A (en) Adjusting device for optical axis
JPH06281850A (en) Method for adjusting optical axis of optical parts
KR940004348A (en) Assembly device for controlling low connection loss of optical connector and its control method
KR20040009924A (en) Optical axis alignment equipment with vision device
KR20040019516A (en) Optical axis alignment device with distance measurement sensor and optical axis alignment method
JPH04168776A (en) Optical axis alignment device
JPH075032A (en) Estimation apparatus for semiconductor laser
JPH09146004A (en) Optical information detector and mode interference type laser scanning microscope
JPS6293622A (en) Apparatus for measuring semiconductive laser spectrum
CN117792516A (en) Free space optical signal receiving method and device based on multi-core optical fiber
JPH11248955A (en) Optical waveguide, method for aligning lens and optical waveguide, device for aligning lens and optical waveguide, wireless optical communication equipment and recording medium
CN114812534A (en) Device and method for high-precision adjustment and separation of laser beam parallelism
GB2385146A (en) Mask used in alignment of optical fibre and integral waveguide component
JPH06118318A (en) Optical switch device and its aligning method
JP2524275B2 (en) Optical component-optical fiber alignment method and optical component