JPH01278987A - Adjusting device for optical axis - Google Patents

Adjusting device for optical axis

Info

Publication number
JPH01278987A
JPH01278987A JP63106246A JP10624688A JPH01278987A JP H01278987 A JPH01278987 A JP H01278987A JP 63106246 A JP63106246 A JP 63106246A JP 10624688 A JP10624688 A JP 10624688A JP H01278987 A JPH01278987 A JP H01278987A
Authority
JP
Japan
Prior art keywords
optical axis
deflection
angle
optical
position deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63106246A
Other languages
Japanese (ja)
Inventor
Tsukasa Teramura
司 寺村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63106246A priority Critical patent/JPH01278987A/en
Publication of JPH01278987A publication Critical patent/JPH01278987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To adjust an optical axis automatically and in a short time by calculating deflection amt. and direction based on the deviation in a detected optical axial angle and the optical axial position slippage, the optimum set optical axial angle and the optical axial position slippage and correcting the optical axial position slippage. CONSTITUTION:The optimum optical axial angle and the optimum optical axial position slippage are set in advance and in case of slippage being caused on the optical axis, first, the deflection amt. and direction of a 2nd optical axis deflection means 2 are calculated by an optical axial angle correction means 11 based on the deviation in the detected optical axial angle by an optical axial angle detector 6 and optimum optical axial angle, the optical axis is deflected by the 2nd optical axis deflection means 2 and made in parallel to a set optical axis. The deflection amt. and direction of the 1st, 2nd optical axis deflection means 1, 2 are calculated by the optical axial position slippage correction means 11 based on the deviation in the detected optical axial position slippage amt. detected by an optical axial position slippage detector 7 and the optimum optical axial position slippage and made coincident with the position of the set optical axis, by deflecting the optical axis by 1st, 2nd optical axis deflection means 1, 2.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は例えばレーザ光等の光軸の調整を自動的に行な
い得るようにした光軸調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an optical axis adjustment device that can automatically adjust the optical axis of, for example, a laser beam.

(従来の技術) 従来から、例えばレーザ光を増幅器に入射させる場合や
、加工あるいは計測に利用する場゛合には、レーザ光を
正確にターゲットに照射させる、すなわち光軸の調整を
行なう必要がある。そして従来、この先軸調整の作業は
、レーザから入射する光を複数の反射鏡(平面鏡)やプ
リズム等の偏向装置で反射させ、この際に作業員が自ら
偏向装置をそれぞれ回動させることにより、手動で光軸
調整を行なっている。
(Prior Art) Conventionally, for example, when a laser beam is incident on an amplifier, or when used for processing or measurement, it is necessary to accurately irradiate the target with the laser beam, that is, adjust the optical axis. be. Conventionally, this front axis adjustment work involves reflecting the light incident from the laser with a plurality of deflection devices such as mirrors (plane mirrors) or prisms, and at this time, the worker rotates each of the deflection devices himself. The optical axis is adjusted manually.

しかしながら、従来の光軸調整作業は作業員が手動で行
なっていることから、光軸調整を行なう毎にレーザ光の
品質が変化したり、定期的に調整をやり直す必要もある
。また、光軸調整を行なう際には、熟練した作業員がか
なり長い時間をかけて行なっているのが実状である。
However, since the conventional optical axis adjustment work is manually performed by a worker, the quality of the laser beam changes each time the optical axis is adjusted, and it is necessary to periodically re-adjust the optical axis. Furthermore, when adjusting the optical axis, it is a reality that a skilled worker takes a considerable amount of time to adjust the optical axis.

(発明が解決しようとする課題) 以上のように従来では、光軸の調整を熟練した作業員が
手動でかつ長時間かけて行なわなければならないという
問題があった。
(Problems to be Solved by the Invention) As described above, in the past, there was a problem in that the optical axis had to be adjusted manually by a skilled worker over a long period of time.

本発明の目的は、レーザ光等の光軸の調整を簡易な構成
で自動的にかつ短時間で行なうことが可能な光軸調整装
置を提供することにある。
An object of the present invention is to provide an optical axis adjustment device that can automatically adjust the optical axis of a laser beam or the like with a simple configuration and in a short time.

[発明の構成コ (課題を解決するための手段) 上記の目的を達成するために本発明では、レーザ光等の
光軸の調整を自動的に行なう装置を、発光源から入射す
る光を反射する二次元方向に回動自在な第1の光軸偏向
手段と、第1の光軸偏向手段で反射されて入射する光を
反射する二次元方向に回動自在な第2の光軸偏向手段と
、第2の光軸偏向手段で反射された光の光軸角度を検出
する光軸角度検出手段と、第2の光軸偏向手段で反射さ
れた光の光軸平行位置ずれを検出する光軸位置ずれ検出
手段と、光軸角度検出手段からの検出光軸角度と予め設
定された最適光軸角度との偏差に基づいて第2の光軸偏
向手段の偏向量および偏向方向を算出し、かつこれに従
って第2の光軸偏向手段を駆動して光軸の角度補正を行
なう光軸角度補正手段と、光軸位置ずれ検出手段からの
検出光軸位置ずれ量と予め設定された最適光軸位置ずれ
量との偏差に基づいて第1.第2の光軸偏向手段の偏向
量および偏向方向を算出し、かつこれに従って第1.第
2の各光軸偏向手段を駆動して光軸の平行位置ずれ補正
を行なう光軸位置ずれ補正手段とを備えて構成している
[Structure of the Invention (Means for Solving the Problem) In order to achieve the above object, the present invention provides a device that automatically adjusts the optical axis of laser light, etc. by reflecting light incident from a light emitting source. a first optical axis deflection means that is rotatable in a two-dimensional direction, and a second optical axis deflection means that is rotatable in a two-dimensional direction that reflects incident light reflected by the first optical axis deflection means. , an optical axis angle detection means for detecting the optical axis angle of the light reflected by the second optical axis deflection means, and a light for detecting the optical axis parallel positional deviation of the light reflected by the second optical axis deflection means. calculating the deflection amount and deflection direction of the second optical axis deflection means based on the deviation between the optical axis angle detected by the axis position deviation detection means and the optical axis angle detection means and a preset optimum optical axis angle; and an optical axis angle correction means for correcting the angle of the optical axis by driving the second optical axis deflection means in accordance with this, and the detected optical axis position deviation amount from the optical axis position deviation detection means and the preset optimum optical axis. 1. Based on the deviation from the positional deviation amount. The amount of deflection and the direction of deflection of the second optical axis deflecting means are calculated, and the first. and optical axis position deviation correcting means for driving each of the second optical axis deflecting means to correct the parallel position deviation of the optical axes.

(作用) 従って、本発明の光軸調整装置においては、設定すべき
光軸の最適値、すなわち最適光軸角度および最適光軸位
置ずれ量を予め鰻定しておくことにより、光軸にずれが
生じた場合には、まず光軸角度検出手段で検出された検
出光軸角度と最適光軸角度との偏差を基に、光軸角度補
正手段で第2の光軸偏向手段の偏向量および偏向方向が
算出され、これに従って第2の光軸偏向手段で光軸を偏
向することにより、光軸は設定すべき光軸と平行になる
。さらに、光軸位置ずれ検出手段で検出された検出光軸
位置ずれ量と最適光軸位置ずれ量との偏差を基に、光軸
位置ずれ補正手段で第1゜第2の光軸偏向手段の偏向量
および偏向方向が算出され、これに従って第1.第2の
各光軸偏向手段で光軸を偏向することにより、光軸は平
行光軸を保った状態で設定すべき光軸の位置と一致する
(Function) Therefore, in the optical axis adjusting device of the present invention, by predetermining the optimum values of the optical axis to be set, that is, the optimum optical axis angle and the optimum optical axis position deviation amount, the optical axis is adjusted. If this occurs, first, based on the deviation between the detected optical axis angle detected by the optical axis angle detection means and the optimum optical axis angle, the optical axis angle correction means adjusts the deflection amount and the amount of the second optical axis deflection means. The deflection direction is calculated, and the second optical axis deflecting means deflects the optical axis in accordance with the calculated direction, so that the optical axis becomes parallel to the optical axis to be set. Further, based on the deviation between the detected optical axis position deviation amount detected by the optical axis position deviation detection means and the optimum optical axis position deviation amount, the optical axis position deviation correction means is used to adjust the first and second optical axis deflection means. The amount of deflection and the direction of deflection are calculated, and the first. By deflecting the optical axis with each of the second optical axis deflecting means, the optical axis coincides with the position of the optical axis to be set while maintaining the parallel optical axis.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明による光軸調整装置の構成例を示すブ
ロック図である。本実施例の光軸調整装置は第1図に示
す如く、第1のミラー1と、第2のミラー2と、第1の
ビームスプリッタ−3と、集光レンズ4と、第2のビー
ムスプリッタ−5と、光軸角度検出器6と、光軸位置ず
れ検出器7と、第1.第2の増幅器8,9と、アナログ
/デジタル変換器(以下、A/D変換器と称する)10
と、計算機(コンピューター)11と、モーター駆動制
御器12とから構成している。
FIG. 1 is a block diagram showing a configuration example of an optical axis adjustment device according to the present invention. As shown in FIG. 1, the optical axis adjustment device of this embodiment includes a first mirror 1, a second mirror 2, a first beam splitter 3, a condenser lens 4, and a second beam splitter. -5, the optical axis angle detector 6, the optical axis position shift detector 7, and the first. Second amplifiers 8 and 9 and an analog/digital converter (hereinafter referred to as an A/D converter) 10
, a computer 11 , and a motor drive controller 12 .

ここで、第1のミラー1は、発光源である図示しないレ
ーザから入射する光Cを反射するもので、図示の如くX
軸およびY軸用のミラー駆動モータIXおよびIYが取
付けられており、二次元方向(紙面方向9紙面と一垂直
方向)に回動自在となっている。第2のミラー2は、第
1のミラー1で反射されて入射する光Cを反射するもの
で、図示の如くX軸およびY軸用のミラー駆動モータ2
Xおよび2Yが取付けられており、同様に二次元方向に
回動自在となっている。なお、第1のミラー1とミラー
駆動モータLX、IYとにより第1の光軸偏向手段を、
第2のミラー2とミラー駆動モータ2X、2Yとにより
第2の光軸偏向手段をそれぞれ構成している。また、第
1のビームスプリッタ−3は、第2のミラー2で反射さ
れた光Cを分離するものであり、集光レンズ4は第1の
ビームスプリッタ−3で分離された一方の光を集光する
ものであり、第2あビームスプリッタ−5は集光レンズ
4で集光された光を分離するものである。
Here, the first mirror 1 reflects the incident light C from a laser (not shown) that is a light emitting source, and as shown in the figure,
Mirror drive motors IX and IY for the shaft and Y-axis are attached, and are rotatable in two-dimensional directions (direction 9 of the page and direction perpendicular to the page). The second mirror 2 reflects the incident light C that has been reflected by the first mirror 1, and is driven by mirror drive motors 2 for the X and Y axes as shown in the figure.
X and 2Y are attached, and are similarly rotatable in two-dimensional directions. Note that the first optical axis deflecting means is controlled by the first mirror 1 and the mirror drive motors LX and IY.
The second mirror 2 and mirror drive motors 2X and 2Y each constitute a second optical axis deflecting means. Further, the first beam splitter 3 separates the light C reflected by the second mirror 2, and the condenser lens 4 collects one of the lights separated by the first beam splitter 3. The second A-beam splitter 5 separates the light condensed by the condenser lens 4.

なお、第1のビームスプリッタ−3で分離された他方の
光は、レーザ光にて加工処理される図示しない被加工物
のターゲットに照射させるようにしている。
The other light separated by the first beam splitter 3 is irradiated onto a target of a workpiece (not shown) to be processed with the laser beam.

一方、光軸角度検出器6は、第2のビームスプリッタ−
5で分離された一方の光の光軸角度を検出するものであ
る。この光軸角度検出器6は、4個のフォトダイオード
からなり、ポジションセンシティブディテクタ(PSD
)の商品名で市販されている検出器で、第2図に示す如
く集光レンズ4の焦点位置に配設している。すなわち、
光軸角度検出器6上の焦点位置は4個の電流出力端子か
ら計算することができ、最初に設定された光軸からの角
度ずれθによる変位dは、集光レンズ4の焦点距離をf
とした場合、d−f・tanθで示され、θが小さい場
合はd−f・θで示される。また、光軸位置ずれ検出器
7は、第2のビームスプリッタ−5で分離された他方の
光の光軸平行位置ずれを検出するものである。この光軸
位置ずれ検出器7は、4分割したフォトダイオードから
なる検出器で、第2図に示す如く集光レンズ4め焦点位
置とは異なる位置に配設している。すなわち、光軸位置
ずれ検出器7は、最初に設定された光軸との平行位置ず
れを検出するもので、各々4個の検出器の出力が光量に
比例することから、光軸の平行位置ずれを検出すること
ができる。さらに、第1.第2の増幅器8,9は、光軸
角度検出器6゜光軸位置ずれ検出器7からのアナログ信
号をそれぞれ増幅するものである。さらにまた、A/D
変換器10は、第1.第2の増幅器8,9からの出力信
号をデジタル信号に変換するものである。
On the other hand, the optical axis angle detector 6 is connected to the second beam splitter.
The optical axis angle of one of the lights separated by 5 is detected. This optical axis angle detector 6 consists of four photodiodes and is a position sensitive detector (PSD).
This detector is commercially available under the trade name of .) and is placed at the focal point of the condenser lens 4 as shown in FIG. That is,
The focal position on the optical axis angle detector 6 can be calculated from the four current output terminals, and the displacement d due to the angular deviation θ from the initially set optical axis changes the focal length of the condensing lens 4 to f.
When θ is small, it is expressed as d−f·tan θ, and when θ is small, it is expressed as d−f·θ. Further, the optical axis positional deviation detector 7 detects the optical axis parallel positional deviation of the other beam separated by the second beam splitter 5. The optical axis position shift detector 7 is a detector composed of a photodiode divided into four parts, and is disposed at a position different from the focal position of the fourth condenser lens, as shown in FIG. That is, the optical axis position deviation detector 7 detects the parallel position deviation with respect to the initially set optical axis, and since the output of each of the four detectors is proportional to the amount of light, the parallel position of the optical axis can be detected. Misalignment can be detected. Furthermore, the first. The second amplifiers 8 and 9 amplify analog signals from the optical axis angle detector 6° and the optical axis position shift detector 7, respectively. Furthermore, A/D
The converter 10 includes a first . It converts the output signals from the second amplifiers 8 and 9 into digital signals.

一方、計算機11は、A/D変換器10からのデジタル
信号を入力しており、モーター駆動制御器12によりミ
ラー駆動モータIXまたはIY。
On the other hand, the computer 11 inputs the digital signal from the A/D converter 10, and the motor drive controller 12 controls the mirror drive motor IX or IY.

ミラー駆動モータ2Xまたは2Yをそれぞれ駆動するよ
うにしている。すなわち、この計算機11は、次の(a
)および(b)なる機能を有している。
The mirror drive motors 2X and 2Y are respectively driven. That is, this calculator 11 calculates the following (a
) and (b).

(a)光軸角度検出器6からの検出光軸角度と予め設定
された最適光軸角度との偏差に基づいて第2のミラー2
の偏向量および偏向方向を算出し、゛ かつこれに従っ
てミラー駆動モータ2Xまたは2Yを駆動して、光軸の
角度補正を行なう光軸角度補正機能。
(a) The second mirror 2
An optical axis angle correction function that calculates the amount of deflection and the direction of deflection, and drives the mirror drive motor 2X or 2Y accordingly to correct the angle of the optical axis.

(b)光軸位置ずれ検出器7からの検出光軸位置ずれ量
と予め設定された最適光軸位置ずれ量との偏差に基づい
て第1.第2のミラー1,2の偏向量および偏向方向を
算出し、かつこれに従ってミラー駆動モータIXまたは
IYl ミラー駆動モータ2Xまたは2Yを駆動して、
光軸の平行位置ずれ補正を行なう光軸位置ずれ補正機能
(b) Based on the deviation between the detected optical axis position deviation amount from the optical axis position deviation detector 7 and the preset optimum optical axis position deviation amount. Calculating the deflection amount and deflection direction of the second mirrors 1 and 2, and driving the mirror drive motor IX or IYl and the mirror drive motor 2X or 2Y according to the calculated deflection amount and direction,
Optical axis misalignment correction function that corrects parallel misalignment of the optical axis.

次に、以上の如く構成した光軸調整装置の作用について
説明する。
Next, the operation of the optical axis adjusting device configured as above will be explained.

第1図において、図示しないレーザから入射する光Cは
第1のミラー1で反射し、さらに第2のミラー2で反射
して第1のビームスプリッタ−3に導かれる。この第1
のビームスプリッタ−3に入射した光Cは2つに分離さ
れ、一方の光は集光レンズ4で集光して第2のビームス
プリッタ−5に導かれ、また他方の光は図示しない被加
工物のターゲットに照射されている。さらに、第2のビ
ームスプリッタ−5に入射した光は2つに分離され、一
方の光は光軸角度検出器6に導かれ、また他方の光は光
軸位置ずれ検出器7に導かれている。
In FIG. 1, light C incident from a laser (not shown) is reflected by a first mirror 1, further reflected by a second mirror 2, and guided to a first beam splitter 3. This first
The light C incident on the beam splitter 3 is separated into two parts, one of which is focused by a condensing lens 4 and guided to the second beam splitter 5, and the other light is directed to the workpiece (not shown). The object target is being irradiated. Furthermore, the light incident on the second beam splitter 5 is separated into two parts, one of which is guided to an optical axis angle detector 6, and the other light is guided to an optical axis position deviation detector 7. There is.

さて、このような状態において、いま仮に光軸にずれが
生じた場合には、第2のビームスプリッタ−5で分離さ
れた一方の光の光軸角度が光軸角度検出器6で検出され
、また同じく分離された他方の光の光軸平行位置ずれが
光軸位置ずれ検出器7で検出される。そして、これら光
軸角度検出器6および光軸位置ずれ検出器7からの出力
信号は第1および第2の増幅器でそれぞれ増幅され、A
/D変換器10でデジタル信号に変換して計算機11に
入力される。
Now, in such a state, if a deviation occurs in the optical axis, the optical axis angle of one of the lights separated by the second beam splitter 5 is detected by the optical axis angle detector 6, Further, the optical axis positional deviation of the other separated light beam is detected by the optical axis positional deviation detector 7. Then, the output signals from the optical axis angle detector 6 and the optical axis position shift detector 7 are amplified by the first and second amplifiers, respectively.
The signal is converted into a digital signal by the /D converter 10 and input to the computer 11.

一方、計算機11には設定すべき光軸の最適値、すなわ
ち最適光軸角度および最適光軸位置ずれ量が予め設定さ
れている。これにより、計算機11では、まず光軸角度
検出器6で検出された検出光軸角度と最適光軸角度との
偏差(X軸、Y軸成分の角度ずれ)を求め、これを基に
第2のミラー2の偏向量および偏向方向が算出される。
On the other hand, the optimum value of the optical axis to be set, that is, the optimum optical axis angle and the optimum optical axis position shift amount, are preset in the computer 11. As a result, the computer 11 first calculates the deviation between the detected optical axis angle detected by the optical axis angle detector 6 and the optimal optical axis angle (angular deviation of the X-axis and Y-axis components), and based on this, the second The amount and direction of deflection of mirror 2 are calculated.

そして、これに従ってモーター駆動制御器12を通して
ミラー駆動モータ2Xまたは2Yを駆動して、光軸を偏
向(光軸の角度補正を行なう)することにより、光軸は
最初に設定された光軸と平行になる。
Then, by driving the mirror drive motor 2X or 2Y through the motor drive controller 12 in accordance with this and deflecting the optical axis (correcting the angle of the optical axis), the optical axis is made parallel to the initially set optical axis. become.

第3図に、この第2のミラー2の偏向により、最初に設
定された光軸C1と平行となった光軸を03として示し
ている。
In FIG. 3, the optical axis that is parallel to the initially set optical axis C1 due to the deflection of the second mirror 2 is shown as 03.

次に、計算機11では、光軸位置ずれ検出器7°で検出
された検出光軸位置ずれ量、つまり最初に設定された光
軸C1に平行となった光軸C3のずれ二と最適光軸位置
ずれ量との偏差を求め、これを基に第1.第2のミラー
1.2の偏向量および偏向方向が算出される。そして、
これに従ってモーター駆動制御器12を通してミラー駆
動モータIXまたはIYを駆動して第1のミラー1を偏
向させ、同時にミラー駆動モータ2Xまたは2Yを駆動
して同じ量だけ第2のミラー2を偏向させることにより
、光軸C3は平行光軸を保った状態で、最初に設定され
た光軸C1の位置に一致させることができる。なお、第
3図で02は、ずれた光軸を示すものである。以上の作
用をフロー図にて示すと、第4図および第5図のように
なる。
Next, the computer 11 calculates the amount of optical axis position deviation detected by the optical axis position deviation detector 7°, that is, the deviation of the optical axis C3 parallel to the initially set optical axis C1, and the optimum optical axis. The deviation from the positional deviation amount is determined, and based on this, the first. The amount and direction of deflection of the second mirror 1.2 are calculated. and,
Accordingly, drive the mirror drive motor IX or IY through the motor drive controller 12 to deflect the first mirror 1, and simultaneously drive the mirror drive motor 2X or 2Y to deflect the second mirror 2 by the same amount. Accordingly, the optical axis C3 can be aligned with the initially set position of the optical axis C1 while maintaining the parallel optical axis. In addition, 02 in FIG. 3 indicates a shifted optical axis. The above operations are shown in flowcharts as shown in FIGS. 4 and 5.

上述したように、本実施例の光軸調整装置では(レーザ
から被加工物に照射されるレーザ光Cを一定の光軸に保
つための調整を、極めて簡易な構成で自動的に行なうこ
とが可能となる。これにより、従来のように光軸調整を
行なう毎にレーザ光の品質が変化したり、定期的に調整
をやり直すような必要もなくなる。さらに、光軸調整を
自動的に行なうようにしているので、熟練した作業員が
長い時間をかけて調整を行なう必要がなくなり、光軸調
整を極めて短時間で行なうことが可能となる。
As described above, the optical axis adjustment device of this embodiment can automatically perform adjustment to maintain a constant optical axis of the laser beam C irradiated from the laser to the workpiece with an extremely simple configuration. This eliminates the need for the quality of the laser beam to change each time the optical axis is adjusted, and the need to re-adjust it periodically.Furthermore, the optical axis can be adjusted automatically. This eliminates the need for skilled workers to spend a long time making adjustments, making it possible to make optical axis adjustments in an extremely short time.

尚、本発明は上述した実施例に限定されるものではなく
、次のようにしても同様に実施できるものである。
It should be noted that the present invention is not limited to the above-described embodiments, but can be similarly implemented in the following manner.

(a)上記実施例において、光軸角度補正機能。(a) In the above embodiment, the optical axis angle correction function.

光軸位置ずれ補正機能により行なった第1.第2のミラ
ー1.2の偏向調整によってのみでは、必ずしも光軸が
一致しない場合もあるが、かかる場合には微調整フィー
ドバック調整機能を計算機11に持たせて、ミラー駆動
モータLX、  IY。
The first step was performed using the optical axis position deviation correction function. There are cases in which the optical axes do not necessarily match only by adjusting the deflection of the second mirror 1.2, but in such cases, the computer 11 is provided with a fine feedback adjustment function to control the mirror drive motors LX, IY.

2X、2Yの最小分解能で第1.第2のミラー1゜2を
偏向させ、最初に設定された光軸の変位と一致させるよ
うにしてもよい。
1st with minimum resolution of 2X, 2Y. The second mirror 1.degree.2 may be deflected to match the initially set displacement of the optical axis.

(b)上記実施例では、4分割フォトダイオードからな
る光軸位置ずれ検出器7を光軸の平行位置ずれ検出に用
いたが、この種の検出器は光量で検出していることから
、レーザ光が横モードで一様でない場合には、実際のレ
ーザ光の中心と光量の中心とが一致しない場合がある。
(b) In the above embodiment, the optical axis misalignment detector 7 consisting of a four-part photodiode was used to detect the parallel misalignment of the optical axis, but since this type of detector detects based on the amount of light, If the light is not uniform in the transverse mode, the actual center of the laser beam and the center of the amount of light may not match.

よって、このような場合には、CODセンサー等を用い
てレーザ光の輪郭中心をパターン認識により求めること
も可能である。
Therefore, in such a case, it is also possible to find the center of the outline of the laser beam by pattern recognition using a COD sensor or the like.

(c)上記実施例では、光軸偏向手段としてモータ付の
ミラーを用いたが、これに限らず例えばピエゾ素子を用
いた装置や、プリズム等を使用した光軸偏向手段を用い
ることも可能である。
(c) In the above embodiment, a mirror with a motor is used as the optical axis deflection means, but the invention is not limited to this, and it is also possible to use a device using a piezo element, an optical axis deflection means using a prism, etc. be.

(d)上記実施例では、光軸がレーザ光である場合につ
いて述べたが、これに限らずその他の光の場合について
も、本発明を同様に適用することが可能である。
(d) In the above embodiment, the case where the optical axis is a laser beam has been described, but the present invention is not limited to this, and the present invention can be similarly applied to other types of light.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、レーザ光等の光軸
の調整を簡易な構成で自動的にかつ短時間で行なうこと
が一可能な光軸調整装置が提供できる。
As described above, according to the present invention, it is possible to provide an optical axis adjustment device that can automatically adjust the optical axis of a laser beam or the like with a simple configuration and in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光軸調整装置の一実施例を示すブ
ロック図、第2図は同実施例における光軸角度検出器お
よび光軸位置ずれ検出器の詳細を示す図、第3図は同実
施例における作用を説明するための図、第4図および第
5図は同実施例における具体的な作用を説明するための
フロー図である。 1・・・第1のミラー、IX、IY・・・X軸、Y軸用
のミラー駆動モータ、2・・・第2のミラー、2X。 2Y・・・X軸、Y軸用のミラー駆動モータ、3・・・
第1のビームスプリッタ−14・・・集光レンズ、5・
・・第2のビームスプリッタ−16・・・光軸角度検出
器、7・・・光軸位置ずれ検出器、8・・・第1の増幅
器、9・・・第2の増幅器、10・・・A/D変換器、
11・・・計算機、12・・・モーター駆動制御器。 出願人代理人 弁理士 鈴江武彦 第2図 第3図
FIG. 1 is a block diagram showing an embodiment of the optical axis adjustment device according to the present invention, FIG. 2 is a diagram showing details of an optical axis angle detector and an optical axis position deviation detector in the same embodiment, and FIG. FIGS. 4 and 5 are flowcharts for explaining specific operations in the embodiment. 1... First mirror, IX, IY... Mirror drive motor for X axis and Y axis, 2... Second mirror, 2X. 2Y...Mirror drive motor for X-axis and Y-axis, 3...
First beam splitter 14... condensing lens, 5.
...Second beam splitter 16...Optical axis angle detector, 7...Optical axis position shift detector, 8...First amplifier, 9...Second amplifier, 10...・A/D converter,
11... Computer, 12... Motor drive controller. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 レーザ光等の光軸の調整を自動的に行なう装置において
、 発光源から入射する光を反射する二次元方向に回動自在
な第1の光軸偏向手段と、 前記第1の光軸偏向手段で反射されて入射する光を反射
する二次元方向に回動自在な第2の光軸偏向手段と、 前記第2の光軸偏向手段で反射された光の光軸角度を検
出する光軸角度検出手段と、 前記第2の光軸偏向手段で反射された光の光軸平行位置
ずれを検出する光軸位置ずれ検出手段と、前記光軸角度
検出手段からの検出光軸角度と予め設定された最適光軸
角度との偏差に基づいて第2の光軸偏向手段の偏向量お
よび偏向方向を算出し、かつこれに従って前記第2の光
軸偏向手段を駆動して光軸の角度補正を行なう光軸角度
補正手段と、 前記光軸位置ずれ検出手段からの検出光軸位置ずれ量と
予め設定された最適光軸位置ずれ量との偏差に基づいて
第1、第2の光軸偏向手段の偏向量および偏向方向を算
出し、かつこれに従って前記第1、第2の各光軸偏向手
段を駆動して光軸の平行位置ずれ補正を行なう光軸位置
ずれ補正手段と、 を備えて成ることを特徴とする光軸調整装置。
[Scope of Claim] A device for automatically adjusting an optical axis of a laser beam, etc., comprising: a first optical axis deflecting means rotatable in a two-dimensional direction that reflects light incident from a light emitting source; a second optical axis deflection means rotatable in two-dimensional directions that reflects the incident light reflected by the first optical axis deflection means; and an optical axis angle of the light reflected by the second optical axis deflection means. an optical axis angle detection means for detecting the optical axis angle detection means, an optical axis position deviation detection means for detecting the optical axis parallel position deviation of the light reflected by the second optical axis deflection means, and a detection light from the optical axis angle detection means. The deflection amount and deflection direction of the second optical axis deflection means are calculated based on the deviation between the axis angle and the preset optimal optical axis angle, and the second optical axis deflection means is driven according to the deviation to deflect the light. an optical axis angle correction means for correcting the angle of the axis; and a first and second optical axis position deviation amount based on the deviation between the detected optical axis position deviation amount from the optical axis position deviation detection means and a preset optimum optical axis position deviation amount. an optical axis position deviation correction means for calculating the deflection amount and deflection direction of the optical axis deflection means, and driving each of the first and second optical axis deflection means according to the deflection amount and the deflection direction to correct the parallel position deviation of the optical axis; An optical axis adjustment device comprising: .
JP63106246A 1988-04-28 1988-04-28 Adjusting device for optical axis Pending JPH01278987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106246A JPH01278987A (en) 1988-04-28 1988-04-28 Adjusting device for optical axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106246A JPH01278987A (en) 1988-04-28 1988-04-28 Adjusting device for optical axis

Publications (1)

Publication Number Publication Date
JPH01278987A true JPH01278987A (en) 1989-11-09

Family

ID=14428753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106246A Pending JPH01278987A (en) 1988-04-28 1988-04-28 Adjusting device for optical axis

Country Status (1)

Country Link
JP (1) JPH01278987A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029463A1 (en) * 1997-12-09 1999-06-17 Kabushiki Kaisha Toshiba Laser emission head, laser beam transmission device, laser beam transmission device adjustment method and preventive maintenance/repair device of structure in nuclear reactor
JP2001324678A (en) * 2000-03-08 2001-11-22 Nikon Corp Optical path deviation detecting device and confocal microscope
US6881925B1 (en) 1997-12-09 2005-04-19 Kabushiki Kaisha Toshiba Laser emission head, laser beam transmission device, laser beam transmission device adjustment method and preventive maintenance/repair device of structure in nuclear reactor
JP2005332847A (en) * 2004-05-18 2005-12-02 Dainippon Printing Co Ltd Exposure apparatus
JP2008096778A (en) * 2006-10-13 2008-04-24 National Institute Of Advanced Industrial & Technology Two-photon laser microscope with automatic optical-axis adjusting function
US8705006B2 (en) 2006-10-24 2014-04-22 Carl Zeiss Smt Gmbh Method and device for connecting an optical element to a frame
JP2017124413A (en) * 2016-01-13 2017-07-20 株式会社東芝 Laser device and laser irradiation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154389A (en) * 1981-03-19 1982-09-24 Toshiba Corp Laser working device
JPS632581A (en) * 1986-06-19 1988-01-07 Nikon Corp Laser beam adjusting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154389A (en) * 1981-03-19 1982-09-24 Toshiba Corp Laser working device
JPS632581A (en) * 1986-06-19 1988-01-07 Nikon Corp Laser beam adjusting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029463A1 (en) * 1997-12-09 1999-06-17 Kabushiki Kaisha Toshiba Laser emission head, laser beam transmission device, laser beam transmission device adjustment method and preventive maintenance/repair device of structure in nuclear reactor
US6881925B1 (en) 1997-12-09 2005-04-19 Kabushiki Kaisha Toshiba Laser emission head, laser beam transmission device, laser beam transmission device adjustment method and preventive maintenance/repair device of structure in nuclear reactor
JP2001324678A (en) * 2000-03-08 2001-11-22 Nikon Corp Optical path deviation detecting device and confocal microscope
JP2005332847A (en) * 2004-05-18 2005-12-02 Dainippon Printing Co Ltd Exposure apparatus
JP2008096778A (en) * 2006-10-13 2008-04-24 National Institute Of Advanced Industrial & Technology Two-photon laser microscope with automatic optical-axis adjusting function
US8705006B2 (en) 2006-10-24 2014-04-22 Carl Zeiss Smt Gmbh Method and device for connecting an optical element to a frame
US9604299B2 (en) 2006-10-24 2017-03-28 Carl Zeiss Smt Gmbh Method and device for connecting an optical element to a frame
JP2017124413A (en) * 2016-01-13 2017-07-20 株式会社東芝 Laser device and laser irradiation method

Similar Documents

Publication Publication Date Title
US4659916A (en) Arrangement for correcting the position of a laser beam guided by means of an articulated optical system
JP3162458B2 (en) Automatic alignment adjustment device
JPH01278987A (en) Adjusting device for optical axis
EP0869384A1 (en) Mirror angle detector and detection method
US4275306A (en) Alignment apparatus
US4686359A (en) Picture scanning and recording using a photoelectric focusing system
US5442171A (en) Optical system including provisions for correcting scanning beam spot displacements due to changing ambient conditions
JP3088117B2 (en) Laser processing equipment
JPH09103893A (en) Laser beam scanner and laser beam machine
WO2003102860A1 (en) Precision laser scan head
JPH0634918A (en) Optical axis controller
JP2815463B2 (en) Optical measuring device
JPH03115803A (en) Light beam position detector
JPS632581A (en) Laser beam adjusting device
US20030222209A1 (en) Compact, large angle beam stabilization module
JPH0783640A (en) Inclination detector and robot provided with the same detection device
JPH0792420A (en) Optical scanner
JPH03253807A (en) Method for calibrating optical axis
JPH0346582A (en) Laser beam direction controller
JPS61210318A (en) Laser beam scanner
JPS62259191A (en) Scan pattern reader
JP2003215492A (en) Galvanometer controller and laser processing apparatus
JPH04318506A (en) Optical axis adjustment device
JPS62220838A (en) Surface inspecting instrument
JPH06152537A (en) Automatic light beam tracking device