CN104122900B - Composite axis tracking system based on rotating biprisms - Google Patents

Composite axis tracking system based on rotating biprisms Download PDF

Info

Publication number
CN104122900B
CN104122900B CN201410370054.7A CN201410370054A CN104122900B CN 104122900 B CN104122900 B CN 104122900B CN 201410370054 A CN201410370054 A CN 201410370054A CN 104122900 B CN104122900 B CN 104122900B
Authority
CN
China
Prior art keywords
prism
tracking
target
fast
rotating double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410370054.7A
Other languages
Chinese (zh)
Other versions
CN104122900A (en
Inventor
彭起
李锦英
王中科
任戈
陈科
付承毓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN201410370054.7A priority Critical patent/CN104122900B/en
Publication of CN104122900A publication Critical patent/CN104122900A/en
Application granted granted Critical
Publication of CN104122900B publication Critical patent/CN104122900B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Position Or Direction (AREA)
  • Studio Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明提供了一种基于旋转双棱镜的复合轴跟踪系统,可以实现对快速运动目标的高精度跟踪,该装置包括旋转双棱镜跟踪控制装置、成像组件、快速反射镜跟踪装置和探测器,该系统通过控制旋转双棱镜实现运动目标的快速跟踪,目标进入成像组件后被成像到探测器上,根据目标在探测器上的脱靶量控制快速反射镜偏转,将目标稳定闭环到探测中心,从而实现对快速运动目标的高精度跟踪。

The invention provides a compound axis tracking system based on a rotating double prism, which can realize high-precision tracking of a fast moving target. The device includes a rotating double prism tracking control device, an imaging component, a fast mirror tracking device and a detector. The system realizes the fast tracking of the moving target by controlling the rotating double prism. After the target enters the imaging component, it is imaged on the detector. The deflection of the fast mirror is controlled according to the amount of the target missing on the detector, and the target is stably closed-looped to the detection center, thereby realizing High-precision tracking of fast-moving targets.

Description

一种基于旋转双棱镜的复合轴跟踪系统A Composite Axis Tracking System Based on Rotating Biprism

技术领域technical field

本发明属于光电跟踪领域,涉及一种光电跟踪装置与控制方法,具体涉及一种基于旋转双棱镜的复合轴跟踪系统。The invention belongs to the field of photoelectric tracking, and relates to a photoelectric tracking device and a control method, in particular to a compound axis tracking system based on a rotating double prism.

背景技术Background technique

旋转双棱镜结构既适用于激光束的扫描,也可用于快速目标的跟踪。旋转双棱镜结构(Risley棱镜)通过旋转共轴的两个楔形棱镜达到控制光束偏转的目的,具有结构紧凑、转动惯量低、响应迅速的特点。在已有专利(参见云茂金、祖继峰等的专利:CN1256609C与专利:CN2655268)中提出采用该结构进行光束扫描,对基于旋转双棱镜的扫描装置和扫描算法进行了研究,杜俊峰等的快速反射镜专利(CN101482643B)提供一种在小角度范围快速跟踪目标的装置,但其跟踪区域非常小。The rotating double prism structure is not only suitable for scanning the laser beam, but also can be used for fast target tracking. The rotating double prism structure (Risley prism) achieves the purpose of controlling the beam deflection by rotating two coaxial wedge prisms. It has the characteristics of compact structure, low moment of inertia and rapid response. In existing patents (see patents of Yun Maojin, Zu Jifeng, etc.: CN1256609C and patent: CN2655268), it is proposed to use this structure for beam scanning, and the scanning device and scanning algorithm based on the rotating double prism have been studied. Du Junfeng et al. The fast mirror patent (CN101482643B) provides a device for fast tracking of a target in a small angle range, but its tracking area is very small.

一些跟踪应用中要求跟踪机构能够在一定范围内实现目标的全场跟踪,但实际的旋转双棱镜系统难以避免地存在指向盲区。理论上,只有当两棱镜的顶角、折射系数完全相同且理想装调时,组建的系统才可实现目标跟踪的全场覆盖。而在实际系统中,棱镜的结构参数、折射系数不可避免地与标称值或理论值存在偏差,并且当系统工作在变化的气候条件下时,棱镜参数也将随之改变而产生误差,同时棱镜系统装配时,棱镜、旋转轴倾斜将导致对准误差;由于这些加工误差、装配误差及热学性能变化等因素的影响,两棱镜的光束偏转角难以完全抵消,经过棱镜偏折后的出射光束不能指向系统中心轴附近的空间区域,即产生指向盲区,如图1所示。盲区大小取决于棱镜的加工精度和装调精度,中心轴附近的指向盲区范围可达几到几百微弧度。旋转双棱镜装置在跟踪大角度范围内的目标时,其跟踪精度受到位置传感器精度等的限制,其精度往往在毫弧度量级,很难达到微弧度,甚至亚微弧度量级。Some tracking applications require the tracking mechanism to be able to track the target within a certain range, but the actual rotating dual prism system inevitably has pointing blind spots. Theoretically, only when the apex angles and refractive indices of the two prisms are exactly the same and are ideally adjusted, the system can achieve full field coverage of target tracking. However, in the actual system, the structural parameters and refractive index of the prism inevitably deviate from the nominal value or theoretical value, and when the system works under changing climatic conditions, the prism parameters will also change accordingly, resulting in errors, and at the same time When the prism system is assembled, the tilt of the prism and the rotation axis will cause alignment errors; due to the influence of these factors such as processing errors, assembly errors and thermal performance changes, the beam deflection angles of the two prisms are difficult to completely offset, and the outgoing beam deflected by the prism It cannot point to the space area near the central axis of the system, that is, a pointing blind area is generated, as shown in Figure 1. The size of the blind zone depends on the machining accuracy and assembly accuracy of the prism, and the pointing blind zone near the central axis can range from several to hundreds of microradians. When the rotating double prism device tracks the target in a large angle range, its tracking accuracy is limited by the accuracy of the position sensor.

目前文献中有用三个旋转棱镜解决跟踪盲区的问题,但三棱镜跟踪装置中每一个棱镜旋转角度的解有无穷多个,控制系统非常复杂,并且跟踪精度也非常有限,跟踪精度约0.1毫弧度,很难达到微弧度量级。At present, there are three rotating prisms used in the literature to solve the problem of tracking blind spots, but there are infinitely many solutions for the rotation angle of each prism in the three-prism tracking device, the control system is very complicated, and the tracking accuracy is also very limited. The tracking accuracy is about 0.1 milliradians. It is difficult to reach the microradiance level.

发明内容Contents of the invention

本发明的目的是克服现有技术的不足,解决旋转双棱镜用于全视场区域内快速目标高精度跟踪的技术问题,提供一种可以用于快速目标高精度跟踪的方法。The purpose of the present invention is to overcome the deficiencies of the prior art, solve the technical problem that the rotating double prism is used for fast target high-precision tracking in the whole field of view, and provide a method that can be used for fast target high-precision tracking.

本发明的技术解决方案是:一种基于旋转双棱镜的复合轴跟踪系统,其特征在于:由旋转双棱镜组件、成像组、快速反射镜跟踪装置、探测器和控制器组成;旋转双棱镜组件包括第一棱镜、第二棱镜、第一电机和第二电机;其中,旋转双棱镜实现对运动目标的第一级跟踪,快速反射镜跟踪装置实现对目标的第二级跟踪。The technical solution of the present invention is: a compound axis tracking system based on a rotating double prism, characterized in that it is composed of a rotating double prism assembly, an imaging group, a fast mirror tracking device, a detector and a controller; the rotating double prism assembly It includes a first prism, a second prism, a first motor and a second motor; wherein, the rotating double prism realizes the first-level tracking of the moving target, and the fast mirror tracking device realizes the second-level tracking of the target.

进一步的,旋转双棱镜实现对运动目标的粗跟踪,快速反射镜跟踪装置实现对目标的精密跟踪。Furthermore, the rotating double prism realizes the rough tracking of the moving target, and the fast mirror tracking device realizes the precise tracking of the target.

进一步的,所述的旋转双棱镜的复合轴跟踪系统,其跟踪工作流程包括以下步骤:Further, the tracking workflow of the compound axis tracking system of the rotating double prism includes the following steps:

步骤1)、判断目标是否处于棱镜工作盲区,在工作盲区,则执行第4步,不在工作盲区,则执行第2步;Step 1), judge whether the target is in the working blind area of the prism, if it is in the working blind area, then execute step 4, if it is not in the working blind area, then execute step 2;

步骤2)、根据目标引导数据、第一棱镜的方位角θ1和第二棱镜的方位角度θ2由控制器计算第一棱镜和第二棱镜的转角Δθ1,Δθ2Step 2), according to the target guidance data, the azimuth angle θ 1 of the first prism and the azimuth angle θ 2 of the second prism, calculate the rotation angle Δθ 1 of the first prism and the second prism by the controller, Δθ 2 ;

步骤3)、控制器根据第一棱镜和第二棱镜的转角Δθ1、Δθ2计算第一电机和第二电机的控制量V1,V2使得第一棱镜和第二棱镜分别转动Δθ1和Δθ2,将目标光线偏折到成像组的视场中心区域;Step 3), the controller calculates the control amount V 1 of the first motor and the second motor according to the rotation angles Δθ 1 and Δθ 2 of the first prism and the second prism, and V 2 makes the first prism and the second prism rotate by Δθ 1 and Δθ respectively Δθ 2 , deflect the target light to the central area of the field of view of the imaging group;

步骤4)、成像组将目标光线成像探测器上,控制器计算目标的脱靶量Δx和Δy;Step 4), the imaging group images the target light onto the detector, and the controller calculates the off-target amounts Δx and Δy of the target;

步骤5)、控制器利用目标的脱靶量Δx和Δy计算出快速反射镜跟踪装置的控制量Vx、VyStep 5), the controller calculates the control quantities V x and V y of the fast mirror tracking device by using the target miss distance Δx and Δy;

步骤6)、快速反射镜跟踪装置根据其控制量Vx、Vy将目标稳定闭环到探测器的视场中心,从而实现对目标的高精度闭环跟踪。Step 6), the fast mirror tracking device stably closes the target to the center of the field of view of the detector according to its control quantities V x , V y , thereby realizing high-precision closed-loop tracking of the target.

进一步的,目标引导数据包括方位角和俯仰角。Further, the target guidance data includes azimuth and elevation.

本发明原理在于:Principle of the invention is:

系统组成框图如图2所示,首先组成复合轴跟踪系统的主要部件有旋转双棱镜组件(包括棱镜1、棱镜2、电机3和电机4等)、成像组5、快速反射镜跟踪装置6、探测器7和控制器8。旋转双棱镜实现对运动目标的第一级粗跟踪,快速反射镜跟踪装置实现对目标的第二级精密跟踪。图3中最大区域是旋转双棱镜的跟踪范围(±10°~±80°),中心绿色区域是其跟踪盲区,在此区域内,旋转双棱镜无法跟踪目标;中心白色区域是探测器7探测范围,同时也是快速反射镜跟踪装置6的跟踪范围,白色区域完全覆盖绿色区域。The block diagram of the system is shown in Figure 2. First, the main components of the compound axis tracking system are the rotating double prism assembly (including prism 1, prism 2, motor 3 and motor 4, etc.), imaging group 5, fast mirror tracking device 6, Detector 7 and controller 8. The rotating double prism realizes the first-level rough tracking of the moving target, and the fast mirror tracking device realizes the second-level precise tracking of the target. The largest area in Figure 3 is the tracking range of the rotating biprism (±10°~±80°), the central green area is its tracking blind area, in this area, the rotating biprism cannot track the target; the central white area is the detector 7 detection The range is also the tracking range of the fast mirror tracking device 6, and the white area completely covers the green area.

完成目标的高精度跟踪过程如下:The high-precision tracking process to complete the target is as follows:

1)判断目标位置是否在旋转双棱镜盲区外,如果在盲区外执行第2步,如果在盲区内执行第5步;1) Determine whether the target position is outside the blind area of the rotating biprism, if it is outside the blind area, execute step 2, if it is inside the blind area, execute step 5;

2)由目标的方位角Θt和俯仰角Φt,计算使目标成像在探测器的视场中心附近时两个棱镜(棱镜1、棱镜2)所需要的旋转角度Δθ1、Δθ22) By the azimuth angle Θ t and the pitch angle Φ t of the target, calculate the required rotation angles Δθ 1 , Δθ 2 of the two prisms (prism 1, prism 2) when the target imaging is near the center of the field of view of the detector;

3)控制器驱动两个电机(电机3、电机4)将两个棱镜分别旋转到所需的位置,将目标初步引导到探测器的视场中心附近;3) The controller drives two motors (motor 3, motor 4) to rotate the two prisms to the required positions respectively, and initially guides the target near the center of the field of view of the detector;

4)根据探测器上目标的脱靶量控制快速反射镜跟踪装置,将目标稳定闭环到探测器中心;4) Control the fast mirror tracking device according to the off-target amount of the target on the detector, and stabilize the closed-loop target to the center of the detector;

5)如果目标位置在旋转双棱镜盲区内,旋转双棱镜控制量不变,直接根据目标在探测器上的脱靶量控制快速反射镜跟踪装置,将目标稳定闭环到探测器中心。5) If the target position is in the blind area of the rotating double prism, the control amount of the rotating double prism remains unchanged, and the fast mirror tracking device is directly controlled according to the amount of the target missing on the detector, and the target is stably closed-looped to the center of the detector.

本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:

1)、本发明提出的“基于旋转双棱镜的复合轴跟踪系统”与“传统的框架式跟踪架复合轴跟踪系统”相比,其结构紧凑、体积小、转动惯量低、响应非常迅速,并且控制带宽很高,能实现对运动目标的快速高精度跟踪;1), compared with the "composite axis tracking system based on rotating double prism" proposed by the present invention, it has a compact structure, small volume, low moment of inertia, and very rapid response, and The control bandwidth is very high, which can realize fast and high-precision tracking of moving targets;

2)、本发明提出的“基于旋转双棱镜的复合轴跟踪系统”与普通的“旋转双棱镜跟踪系统”相比,其跟踪精度很高,并且没有跟踪盲区。2) Compared with the ordinary "rotating double prism tracking system", the "composite axis tracking system based on rotating double prism" proposed by the present invention has high tracking accuracy and no tracking blind area.

附图说明Description of drawings

图1为棱镜跟踪装置的视场分布示意图;Fig. 1 is a schematic diagram of field of view distribution of a prism tracking device;

图2为旋转双棱镜复合轴跟踪系统的组成原理示意图;1为棱镜,2为棱镜,3为电机,4为电机,5为成像组,6为快速反射镜跟踪装置,7为探测器,8为控制器;Figure 2 is a schematic diagram of the composition principle of the rotating double prism composite axis tracking system; 1 is a prism, 2 is a prism, 3 is a motor, 4 is a motor, 5 is an imaging group, 6 is a fast mirror tracking device, 7 is a detector, 8 for the controller;

图3为旋转双棱镜复合轴跟踪系统的视场分布示意图。Fig. 3 is a schematic diagram of the field of view distribution of the rotating double prism composite axis tracking system.

具体实施方式detailed description

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

首先结合图2介绍基于旋转双棱镜的复合轴跟踪系统。组成该系统的主要部件有棱镜1、棱镜2、电机3、电机4、成像组5、快速反射镜跟踪装置6、探测器7、控制器8。Firstly, the composite axis tracking system based on the rotating double prism is introduced in conjunction with Fig. 2 . The main components that make up the system are prism 1, prism 2, motor 3, motor 4, imaging group 5, fast mirror tracking device 6, detector 7, and controller 8.

其中棱镜1和棱镜2相同,都是消色差棱镜(可工作在可见光、中波和长波红外波段),棱镜1和棱镜2组合后的光线偏折角度范围约±10°~±80°,其盲区约±0.1°~±1.0°。Among them, prism 1 and prism 2 are the same, both are achromatic prisms (can work in the visible light, medium wave and long wave infrared bands), the light deflection angle range of the combination of prism 1 and prism 2 is about ±10°~±80°, and The blind zone is about ±0.1°~±1.0°.

电机3和电机4为力矩电机,二者的转子分别与第一棱镜和第二棱镜直接相连,可360°连续旋转,具有响应快、刚度高的特点,直接快速驱动棱镜1和棱镜2到指定方位角。Motor 3 and motor 4 are torque motors, and their rotors are directly connected to the first prism and the second prism respectively, and can rotate continuously at 360°. azimuth.

成像组5将棱镜1与棱镜2偏折后的目标光线成像到探测器7,探测器视场较小,约为(±0.2°~±1.5°),其视场角大于棱镜盲区,探测脱7的靶量用于控制快速反射镜跟踪装置6。快速反射镜跟踪装置6(可参考专利CN101482643B或PI公司相关FSM产品)可提供两维小角度偏转,快速跟踪运动目标,其偏转角度与探测器7的视场相匹配,根据控制器8所给控制量将运动目标闭环到探测器7的视场中心,其闭环精度约0.1~3μrad。The imaging group 5 images the target light deflected by the prism 1 and the prism 2 to the detector 7. The field of view of the detector is small, about (±0.2°~±1.5°), and its field of view is larger than the blind area of the prism. The target amount of 7 is used to control the fast mirror tracking device 6. The fast mirror tracking device 6 (referring to patent CN101482643B or related FSM products of PI Company) can provide two-dimensional small-angle deflection to quickly track a moving target, and its deflection angle matches the field of view of the detector 7. The control amount closes the moving target to the center of the field of view of the detector 7, and the precision of the closed loop is about 0.1-3 μrad.

由于探测器本身视场有限(±0.2°~±1.5°),需要给定目标位置的引导数据后,按以下步骤完成目标的高精度跟踪过程:Due to the limited field of view of the detector itself (±0.2°~±1.5°), after the guidance data of the target position needs to be given, follow the steps below to complete the high-precision tracking process of the target:

1)判断目标是否处于棱镜工作盲区,在工作盲区,则执行第4步,不在工作盲区,则执行第2步;1) Determine whether the target is in the working blind area of the prism, if it is in the working blind area, then execute step 4, if it is not in the working blind area, then execute step 2;

2)根据目标引导数据(方位角Θt和俯仰角Φt)、棱镜1的方位角θ1和棱镜2的方位角度θ2由控制器8计算棱镜1和棱镜2的转角Δθ1、Δθ22) Calculate the rotation angles Δθ 1 and Δθ 2 of the prism 1 and the prism 2 by the controller 8 according to the target guidance data (azimuth θ t and pitch angle Φ t ), the azimuth θ 1 of the prism 1 and the azimuth θ 2 of the prism 2 ;

3)控制器8根据棱镜1和棱镜2的转角Δθ1、Δθ2计算电机3和电机4的控制量V1、V2,使得棱镜1和棱镜2分别转动Δθ1和Δθ2,将目标光线偏折到成像组5的视场中心区域,棱镜组的跟踪精度约5~30″;3) The controller 8 calculates the control quantities V 1 and V 2 of the motor 3 and the motor 4 according to the rotation angles Δθ 1 and Δθ 2 of the prism 1 and the prism 2, so that the prism 1 and the prism 2 rotate Δθ 1 and Δθ 2 respectively, and the target light Deflection to the central area of the field of view of the imaging group 5, the tracking accuracy of the prism group is about 5-30″;

4)成像组5将目标光线成像探测器7上,控制器8计算出目标的脱靶量Δx和Δy;4) The imaging group 5 images the target light onto the detector 7, and the controller 8 calculates the target off-target amounts Δx and Δy;

5)控制器8利用目标的脱靶量和计算出快速反射镜跟踪装置6的控制量Vx、Vy5) The controller 8 calculates the control quantities V x , V y of the fast mirror tracking device 6 by using the miss amount of the target;

6)快速反射镜跟踪装置6根据其控制量Vx、Vy将目标稳定闭环到探测器7的视场中心,快速反射镜跟踪装置6的跟踪精度约0.1~3μrad。6) The fast mirror tracking device 6 stably closes the target to the center of the field of view of the detector 7 according to its control variables V x and V y . The tracking accuracy of the fast mirror tracking device 6 is about 0.1-3 μrad.

总之,基于旋转双棱镜的复合轴跟踪系统利用棱镜跟踪装置和快速反射镜跟踪装置实现了对运动目标的大角度范围高精度跟踪。In a word, the compound axis tracking system based on the rotating double prism utilizes the prism tracking device and the fast mirror tracking device to realize the high-precision tracking of the moving target in a large angle range.

以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭示的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内。The above is only a specific implementation mode in the present invention, but the protection scope of the present invention is not limited thereto. Anyone familiar with the technology can understand the conceived transformation or replacement within the technical scope disclosed in the present invention. All should be covered within the scope of the present invention.

Claims (1)

1.一种基于旋转双棱镜的复合轴跟踪系统,其特征在于:由旋转双棱镜组件、成像组(5)、快速反射镜跟踪装置(6)、探测器(7)和控制器(8)组成;旋转双棱镜组件包括第一棱镜(1)、第二棱镜(2)、第一电机(3)和第二电机(4);其中,旋转双棱镜实现对运动目标的粗跟踪,快速反射镜跟踪装置实现对目标的精跟踪;1. A compound shaft tracking system based on a rotating double prism, characterized in that: by a rotating double prism assembly, an imaging group (5), a fast mirror tracking device (6), a detector (7) and a controller (8) Composition; the rotating double prism assembly includes a first prism (1), a second prism (2), a first motor (3) and a second motor (4); wherein, the rotating double prism realizes rough tracking of a moving target, fast reflection The mirror tracking device realizes the precise tracking of the target; 旋转双棱镜实现对运动目标的第一级跟踪,快速反射镜跟踪装置实现对目标的第二级跟踪;The rotating double prism realizes the first-level tracking of the moving target, and the fast mirror tracking device realizes the second-level tracking of the target; 其跟踪工作流程包括以下步骤:Its tracking workflow includes the following steps: 步骤1)、判断目标是否处于棱镜工作盲区,在工作盲区,则执行第4步,不在工作盲区,则执行第2步;Step 1), judge whether the target is in the working blind area of the prism, if it is in the working blind area, then execute step 4, if it is not in the working blind area, then execute step 2; 步骤2)、根据目标引导数据、第一棱镜(1)的方位角θ1和第二棱镜(2)的方位角度θ2由控制器(8)计算第一棱镜(1)和第二棱镜(2)的转角Δθ1,Δθ2Step 2 ), calculate the first prism ( 1 ) and the second prism ( 2) The rotation angle Δθ 1 , Δθ 2 ; 步骤3)、控制器(8)根据第一棱镜(1)和第二棱镜(2)的转角Δθ1、Δθ2计算第一电机(3)和第二电机(4)的控制量V1,V2使得第一棱镜(1)和第二棱镜(2)分别转动Δθ1和Δθ2,将目标光线偏折到成像组(5)的视场中心区域;Step 3), the controller (8) calculates the control amount V 1 of the first motor (3) and the second motor (4) according to the rotation angles Δθ 1 and Δθ 2 of the first prism (1) and the second prism (2), V 2 causes the first prism (1) and the second prism (2) to rotate Δθ 1 and Δθ 2 respectively, deflecting the target light to the central area of the field of view of the imaging group (5); 步骤4)、成像组(5)将目标光线成像探测器(7)上,控制器(8)计算目标的脱靶量Δx和Δy;Step 4), the imaging group (5) images the target light onto the detector (7), and the controller (8) calculates the off-target amounts Δx and Δy of the target; 步骤5)、控制器(8)利用目标的脱靶量Δx和Δy计算出快速反射镜跟踪装置(6)的控制量Vx、VyStep 5), the controller (8) calculates the control quantities V x , V y of the fast mirror tracking device (6) by using the target miss volume Δx and Δy; 步骤6)、快速反射镜跟踪装置(6)根据其控制量Vx、Vy将目标稳定闭环到探测器(7)的视场中心,从而实现对目标的高精度闭环跟踪,跟踪精度0.1~3μrad;Step 6), the fast mirror tracking device (6) stably closes the target to the center of the field of view of the detector (7) according to its control quantities V x and V y , thereby realizing high-precision closed-loop tracking of the target, with a tracking accuracy of 0.1- 3μrad; 该基于旋转双棱镜的复合轴跟踪系统结构紧凑、体积小、转动惯量低、响应非常迅速,并且控制带宽很高,能实现对运动目标的快速高精度跟踪;跟踪精度很高,并且没有跟踪盲区。The composite axis tracking system based on the rotating double prism has compact structure, small size, low moment of inertia, very fast response, and high control bandwidth, which can realize fast and high-precision tracking of moving targets; the tracking accuracy is very high, and there is no tracking blind zone .
CN201410370054.7A 2014-07-30 2014-07-30 Composite axis tracking system based on rotating biprisms Active CN104122900B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410370054.7A CN104122900B (en) 2014-07-30 2014-07-30 Composite axis tracking system based on rotating biprisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410370054.7A CN104122900B (en) 2014-07-30 2014-07-30 Composite axis tracking system based on rotating biprisms

Publications (2)

Publication Number Publication Date
CN104122900A CN104122900A (en) 2014-10-29
CN104122900B true CN104122900B (en) 2017-01-25

Family

ID=51768353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410370054.7A Active CN104122900B (en) 2014-07-30 2014-07-30 Composite axis tracking system based on rotating biprisms

Country Status (1)

Country Link
CN (1) CN104122900B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104793334B (en) * 2015-04-02 2017-03-01 同济大学 A kind of coarse-fine coupling optical scanning means of cascade
CN105955281B (en) * 2016-04-27 2018-08-28 西安应用光学研究所 A kind of Risley prism system control methods applied to Airborne IR assisting navigation
CN106020241B (en) * 2016-05-30 2018-11-30 中国科学院光电技术研究所 Rotary biprism imaging alignment method
CN108333747A (en) * 2018-03-28 2018-07-27 中国科学院西安光学精密机械研究所 A mirror system is swept to lightweight for expanding visual field
CN108387905B (en) * 2018-04-27 2023-08-29 长沙学院 Lifting jet fire truck, ranging system and ranging method thereof
CN108919841B (en) * 2018-08-24 2022-03-08 湖北三江航天红峰控制有限公司 Composite shaft control method and system of photoelectric tracking system
CN109656150B (en) * 2018-12-14 2021-12-21 天津津航技术物理研究所 High-precision deviation control method of composite shaft control system based on matlab
CN109819235A (en) * 2018-12-18 2019-05-28 同济大学 An Axial Distribution Perception Integrated Imaging Method with Tracking Function
CN110207723B (en) * 2019-06-16 2023-05-23 西安应用光学研究所 Control precision testing method for photoelectric tracker composite axis control system
CN110572616A (en) * 2019-09-17 2019-12-13 四川大学 An Adaptive Zoom Panoramic Surveillance System Based on Adaptive Prism
CN113253265B (en) * 2020-12-16 2024-03-29 航天科工微电子系统研究院有限公司 Tomographic imaging method based on TIR prism steering common aperture emission
CN112630773A (en) * 2020-12-16 2021-04-09 航天科工微电子系统研究院有限公司 Photoelectric tracking and control equipment based on common-frame radar composite detection
CN112346485B (en) * 2020-12-24 2021-05-25 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) Photoelectric tracking control method, system, electronic equipment and storage medium
CN112799227A (en) * 2021-01-29 2021-05-14 哈尔滨新光光电科技股份有限公司 An Image-Side Scanning Optical System Based on Rotating Double Wedges
CN113189873B (en) * 2021-04-21 2022-08-02 中国科学院光电技术研究所 Rapid high-precision calculation method for rotating biprism based on symmetric error fitting
CN113237439B (en) * 2021-04-30 2022-07-15 长春理工大学 Decoupling tracking method of periscopic laser communication terminal
CN113359871B (en) * 2021-06-29 2022-08-23 中国科学院光电技术研究所 Fixed-point closed-loop method based on double-prism rotating device
CN114625179B (en) * 2022-03-14 2023-05-26 中国科学院光电技术研究所 Method for quickly and smoothly tracking target by rotating biprism
CN114967767A (en) * 2022-05-10 2022-08-30 同济大学 Coarse and fine tracking device and method for composite axis based on combined rotating mirror

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1622600A (en) * 2003-11-26 2005-06-01 中国科学院沈阳自动化研究所 Method and device for improving data rate of video tracking system
CN101482643A (en) * 2009-02-23 2009-07-15 中国科学院光电技术研究所 Two-dimensional large aperture fast control mirror
WO2011071015A1 (en) * 2009-12-11 2011-06-16 株式会社日立製作所 Electron beam biprism device and electron beam device
CN102368162A (en) * 2011-10-26 2012-03-07 中国科学院光电技术研究所 A Large Angle Fast Mirror Tracking System
CN103631276A (en) * 2013-12-08 2014-03-12 中国科学院光电技术研究所 Tracking device based on rotating double prisms and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1622600A (en) * 2003-11-26 2005-06-01 中国科学院沈阳自动化研究所 Method and device for improving data rate of video tracking system
CN101482643A (en) * 2009-02-23 2009-07-15 中国科学院光电技术研究所 Two-dimensional large aperture fast control mirror
WO2011071015A1 (en) * 2009-12-11 2011-06-16 株式会社日立製作所 Electron beam biprism device and electron beam device
CN102368162A (en) * 2011-10-26 2012-03-07 中国科学院光电技术研究所 A Large Angle Fast Mirror Tracking System
CN103631276A (en) * 2013-12-08 2014-03-12 中国科学院光电技术研究所 Tracking device based on rotating double prisms and control method thereof

Also Published As

Publication number Publication date
CN104122900A (en) 2014-10-29

Similar Documents

Publication Publication Date Title
CN104122900B (en) Composite axis tracking system based on rotating biprisms
US7746449B2 (en) Light detection and ranging system
US8503046B2 (en) Rotating prism scanning device and method for scanning
CN103791860B (en) The tiny angle measurement device and method of view-based access control model detection technique
CN102368162B (en) Large-angle quick reflector tracking system
CN103631276B (en) Control method of tracking device based on rotating biprism
JP2013505452A (en) Laser aiming mechanism
CN112713935B (en) Free space optical communication scanning and tracking method, system, device and medium
CN109884791B (en) Rapid high-precision scanning method based on rotating biprism
CN102193182B (en) Moveable reflector laser collimator, moveable reflector target surface sensor and laser collimating method thereof
CN108919841A (en) A kind of compound heavy metal method and system of photoelectric follow-up
CN106802672B (en) A Real-time Closed-Loop Tracking Method Based on Rotating Biprism
CN103033923B (en) Tilt correction system based on beacon light detection
CN109633895B (en) Scanning method of coarse and fine two-stage scanning device for secondary light beams of cascaded prism
Meng et al. An active method for coupling laser with a high-finesse fabry–pérot cavity in ultra-stable lasers
CN102095389A (en) Device and method for measuring reference of azimuth axis based on periscope type laser communication terminal
CN204188808U (en) A kind of overlength distance Space Object Detection device
CN104393932A (en) Real-time correction method for optical axis of telescope of quantum communication ground station
RU2631491C2 (en) Architecture of module t3
CN216595732U (en) Laser dynamic tracking scanning system
CN206740962U (en) A kind of two-dimensional infrared optical radar critical optical compensates component
Liu et al. High-speed target tracking control system based on short-time rotational reflection imaging
CN113359871A (en) Fixed-point closed-loop method based on double-prism rotating device
CN114625179B (en) Method for quickly and smoothly tracking target by rotating biprism
CN104216090A (en) Resonant lens compensated area array CCD step staring optical system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant