JPS6015915A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPS6015915A
JPS6015915A JP58123237A JP12323783A JPS6015915A JP S6015915 A JPS6015915 A JP S6015915A JP 58123237 A JP58123237 A JP 58123237A JP 12323783 A JP12323783 A JP 12323783A JP S6015915 A JPS6015915 A JP S6015915A
Authority
JP
Japan
Prior art keywords
layer
film
substrate
heater
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58123237A
Other languages
Japanese (ja)
Inventor
Koji Kozuka
小塚 弘次
Masao Tamura
田村 誠男
Nobuyoshi Kobayashi
伸好 小林
「たか」野 幸男
Yukio Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58123237A priority Critical patent/JPS6015915A/en
Publication of JPS6015915A publication Critical patent/JPS6015915A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To check condensation of an Si layer and dissolution of an Si substrate, and to obtain the SOI substrate having the still larger area and the flat surface by a method wherein a heat-resistant radiation heat absorbing film W is provided to intercept radiation to the Si layer, and at the same time, radiation heat from a strip heater is absorbed to be transmitted to the Si layer according to conduction. CONSTITUTION:An oxide film 2 is formed on an Si single crystal substrate 1 according to thermal oxidation, then a polycrystalline Si film 3 and an SiO2 film 4 are adhered in order according to the CVD method, and a metal tungsten film 5 is evaporated moreover according to the sputtering method to be annealed in N2 gas. Then the substrate thereof is put on a lamellar graphite heater 7, and the inside of a quartz tube 9 is filled with high pure N2 gas. Then the prescribed voltage is applied to the heater 6 to perform heating according to turning on electricity. After then, the strip heater 6 is transferred at a constant speed, and the polycrystalline Si layer in the sample is recrystallized.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は絶縁物上のSi層を能動領域とする高速高集積
半導体集積回路用基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a substrate for a high-speed, highly integrated semiconductor integrated circuit in which an active region is a Si layer on an insulator.

〔発明の背景〕[Background of the invention]

J、EC8,’ 82.12月、P2812”zone
−melting recnystulliz3tio
n of 8i filmswith amovabl
e−strip −heater oven’MW、G
e1s、MITによれば、S 13 N4 /S i 
02 /S i/s joz /s j基板の層構造を
有する試料を1100〜1300Cに加熱しておき、試
料上部に設けたストリップヒータによりさらに輻射加熱
すると上記層構造中のSi膜が帯状に溶融する。このと
きのストリップヒータを試料面に沿って移動させるとS
i層の溶融帯域も移動し、いわゆる帯溶融法(zOne
−melting method )による結晶成長が
起る。
J, EC8, '82.December, P2812"zone
-melting recnystulliz3tio
n of 8i films with amovabl
e-strip -heater oven'MW,G
According to e1s, MIT, S 13 N4 /S i
02 /S i/s joz /s j A sample having a layered structure of a substrate is heated to 1100 to 1300C, and when further radiant heating is performed using a strip heater installed above the sample, the Si film in the layered structure melts in a band shape. do. When the strip heater is moved along the sample surface, S
The melting zone of the i-layer also moves, resulting in the so-called zone melting method (zOne
-melting method) crystal growth occurs.

この方法の難点は、溶融S1それ自身の大きな表面張力
によシ凝集しやすいことおよび、Si基板自身も融点近
くまで加熱されるため溶融しやすいことである。なお、
この方法では上記凝集を防止するためにSiO2上にさ
らにS l 3N4膜を被着補強しているが、クランク
や変質を起すためあまり有効ではない。
The disadvantages of this method are that the molten S1 itself tends to aggregate due to its large surface tension, and that the Si substrate itself is also easily melted because it is heated close to its melting point. In addition,
In this method, a S 1 3 N 4 film is further adhered and reinforced on the SiO 2 to prevent the above-mentioned agglomeration, but this method is not very effective as it causes cranking and deterioration.

〔発明の目的〕[Purpose of the invention]

本発明は前記従来法の難点であるSi層の凝集および基
板Siの融解を防止し、より大面積かつ平坦なSQ工(
silicon on 1nsulator )基板を
提供することにある。
The present invention prevents the agglomeration of the Si layer and the melting of the Si substrate, which are the drawbacks of the conventional method, and enables a larger area and flat SQ process (
The purpose of the present invention is to provide a silicon on insulator substrate.

〔発明の概要〕[Summary of the invention]

前記従来法の難点は次に述べる事情によシ、きらに顕著
になる。すガわち、固体Siよシ溶融Siの方がよp大
きな輻射熱吸収率をもつため、伺らかの溶融接を起点と
して一度融は初めるとその融けた部分でより多くの輻射
熱を吸収して温度が上昇し、その近傍のSiは融解する
。この融解によシ、さらに吸熱量が増加し融解は加速的
に進行する。特に3i基版を用いたSOI構造において
は、Si基板とSi層とは通常1〜2μm厚の8102
膜で仕切られているだけであるためその温度差は極めて
小さく(〜06llr)、81基板を融かさず54層の
みを溶融再結晶させることはさらに難かしくなる。また
Si層固定用の5jOzjii自身もこの温度上昇によ
り大きく軟化するためSi融液はそれ自身の大きな表面
張力により滴状に凝集してしまう。なお、上記の事柄は
実験によシ確認した本発明の背景となるものである。
The disadvantages of the conventional method become more apparent due to the following circumstances. In other words, molten Si has a much higher radiant heat absorption rate than solid Si, so once melting starts from the welding point, the molten part absorbs more radiant heat. As a result, the temperature rises, and the Si in the vicinity melts. Due to this melting, the amount of heat absorbed further increases, and the melting progresses at an accelerated pace. In particular, in the SOI structure using the 3i substrate, the Si substrate and the Si layer are usually 8102 μm thick.
Since they are only partitioned by a film, the temperature difference is extremely small (~06llr), making it even more difficult to melt and recrystallize only the 54th layer without melting the 81st substrate. Moreover, since the 5jOzjii itself for fixing the Si layer is greatly softened by this temperature rise, the Si melt coagulates into droplets due to its own large surface tension. The above matters are the background of the present invention, which was confirmed through experiments.

以上述べたように、通常の輻射加熱による初期の融解現
象は本質的に正帰還的不安定性を有するから、安定な融
解を行うためには熱伝導による54層の加熱が望ましい
ことになる。そこで、熱輻射をよシ少なく、熱伝導をよ
り多くする加熱法として次のようなものがいくつか考え
られる。すなわち、(1)加熱雰囲気として熱伝導率の
大きいガス(N2 、He)を用いること、(2)移動
スト1)ツブヒータを出来るだけ試料面に近づける(N
z雰囲気なら0.1w以下)こと、(3)試料面に耐熱
性の輻射熱吸収膜(W、MO等)を設け3i層への輻射
を遮断すると同時にストリップヒータ75−らの輻射熱
をまずこの膜ア吸収し、次いで伝導により3i層へ伝え
ることである。
As described above, since the initial melting phenomenon caused by ordinary radiation heating essentially has positive feedback instability, it is desirable to heat the 54 layers by thermal conduction in order to achieve stable melting. Therefore, the following heating methods can be considered to reduce heat radiation and increase heat conduction. In other words, (1) use a gas with high thermal conductivity (N2, He) as the heating atmosphere, (2) moving strike 1) move the tube heater as close to the sample surface as possible (N
(3) A heat-resistant radiant heat absorbing film (W, MO, etc.) is provided on the sample surface to block radiation to the 3i layer, and at the same time, the radiant heat from the strip heater 75 is first absorbed by this film. 3i layer by conduction.

本発明はこれらの例のうち、最も効果的と考えられる3
番目の例を用いる方法である7以下実施例によって本発
明を説明する。
The present invention is applicable to three of these examples, which are considered to be the most effective.
The present invention will be explained by the following seven examples, which are the method using the second example.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明によるSOI基板の層構造断面を示すも
ので、1は3i基板、2および4は5i02膜、3は多
結晶SL膜、5はタングステン膜である。
FIG. 1 shows a cross section of the layer structure of an SOI substrate according to the present invention, in which 1 is a 3i substrate, 2 and 4 are 5i02 films, 3 is a polycrystalline SL film, and 5 is a tungsten film.

第2図は本発明に用いた帯融法によるSOI基板製造装
置の概略である。図中の6は黒鉛スト1ノツプヒータで
発熱部のサイズは1 ran X 2 rtrrn X
 120閣。
FIG. 2 is a schematic diagram of an SOI substrate manufacturing apparatus using the band melting method used in the present invention. 6 in the figure is a graphite strike 1-knob heater, and the size of the heat generating part is 1 ran x 2 rtrrn x
120 temples.

7は板状の黒鉛ヒータで80I基板試料8を載置加熱す
るものである。9は透明石英管、10はストリップヒー
タ移動用のリニアヘッドモータで移動速度は0.30〜
4. Otm / 11ec連続可変である。
7 is a plate-shaped graphite heater on which the 80I substrate sample 8 is placed and heated. 9 is a transparent quartz tube, 10 is a linear head motor for moving the strip heater, and the moving speed is 0.30 ~
4. Otm/11ec continuously variable.

以下に、第1図および第2図を用いて本発明によるSO
I基板製造工程の1災施例を説明する。
Below, using FIG. 1 and FIG. 2, the SO according to the present invention will be described.
An example of a disaster in the I-board manufacturing process will be explained.

まず、75φX0.4n+mt、P型、(1oo)、1
0Ω鋸の鏡面仕上Si単結晶基板上にwetQ2中の熱
酸化により0.6μm厚の酸化膜(sin、)を形成す
る。次いで通常のCVD法(ChemicalVapo
r Deposi tion法)により、多結晶Bs膜
をQ、5 p In 、 81 Q2膜を1.2μmを
順次被着し、通常のスパッタ法によシさらに金属タング
ステン膜を0.1μmの厚さに蒸着しN2ガス中で10
00C−30分間Pニールする。以上により、第1図に
示す断面構造をもつ試料が得られる。
First, 75φX0.4n+mt, P type, (1oo), 1
An oxide film (sin) with a thickness of 0.6 μm is formed on a mirror-finished Si single crystal substrate of a 0Ω saw by thermal oxidation in wet Q2. Next, the usual CVD method (Chemical Vapo
A polycrystalline Bs film of Q, 5 p In, and 81 Q2 films were successively deposited to a thickness of 1.2 µm using a 3-layer deposition method, and a metallic tungsten film was further deposited to a thickness of 0.1 µm using an ordinary sputtering method. Vapor deposited in N2 gas for 10
00C - Neal for 30 minutes. Through the above steps, a sample having the cross-sectional structure shown in FIG. 1 is obtained.

欠Vここの試料を8闇X16mmの大きさに分書uして
そのひとつを第2図に示すように板状黒鉛ヒータ7上に
載置し、石英管9内を高純度N2ガス(99,999%
 )で満たす。次いでヒータに所定の電圧を印加し通電
加熱すると約4分後に所定の一定温度になる。このとき
のストリップヒータ6の温度は1950C,板状ヒータ
は1300tl:’1スト1ノツプヒータと試料の間隙
りは0.6mである。
Divide the sample into 8 mm x 16 mm pieces, place one of them on the plate graphite heater 7 as shown in Fig. 2, and fill the inside of the quartz tube 9 with high-purity N2 gas (99 mm). ,999%
). Next, when a predetermined voltage is applied to the heater and the heater is energized and heated, the predetermined constant temperature is reached after about 4 minutes. At this time, the temperature of the strip heater 6 was 1950 C, and the temperature of the plate heater was 1300 tl: the gap between the 1-stroke 1-knop heater and the sample was 0.6 m.

その後、ストリップヒータ6を一定速度(1鰭/8)で
移動し、試料中の多結晶Si層を再結晶させる。以上の
工程により80I基板を得る。
Thereafter, the strip heater 6 is moved at a constant speed (1 fin/8) to recrystallize the polycrystalline Si layer in the sample. An 80I substrate is obtained through the above steps.

次に上記の工程によって得られたSOI基板の特性を、
同様の工程によって得られたW層を用いない場合の試料
と比較すると第3図(a) 、 (b)および下記第1
表のようになる。
Next, the characteristics of the SOI substrate obtained through the above steps are as follows:
When compared with a sample obtained by a similar process without using a W layer, Figures 3 (a) and (b) and the following Figure 1.
It will look like a table.

第 1 表 □ 第31t(a)および(b)はそれぞれW膜無しおよび
W膜有りの試料の再結晶分布の代表例を示めすもので、
図中の11は均質に再結晶の形成されている部分、12
はSi層が凝集したもの、13はこの凝集によりSi層
の消滅している領域、14は基板Siが溶融再結晶して
いる部分、15はSi層の未溶融領域である。
Table 1 □ No. 31t (a) and (b) show representative examples of recrystallization distribution of samples without W film and with W film, respectively.
11 in the figure is a part where recrystallization is formed homogeneously, 12
13 is a region where the Si layer has disappeared due to the aggregation, 14 is a region where the substrate Si has melted and recrystallized, and 15 is an unmelted region of the Si layer.

この図から明らかなように、W膜有りの試料の方が切質
再結晶層の領域が広く、良好なものは略7mmX10W
Inの大面積のものもあシ例えば1チツプの面積が5n
o++X5mのLSIに十分適用できる。
As is clear from this figure, the area of the truncated recrystallized layer is wider in the sample with the W film, and the good one is approximately 7 mm x 10 W.
For example, the area of 1 chip is 5n.
It is fully applicable to o++X5m LSI.

第1表はW膜無しの試料10枚、W膜有シの試料14枚
を略同−条件で溶融再結晶させたものを、総合的に評価
した結果を示めすもので、W膜有りの方が顕著に改善さ
れていることがわかる。
Table 1 shows the results of a comprehensive evaluation of 10 samples without the W film and 14 samples with the W film, which were melted and recrystallized under approximately the same conditions. It can be seen that there is a marked improvement.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、W膜を設けることによりストリップヒ
ータからの輻射熱を直接Si層に照射させずに加熱でき
るので、Si層の凝集およびSL基板の溶融を防止する
効果がある。
According to the present invention, by providing the W film, it is possible to heat the Si layer without directly irradiating the Si layer with radiant heat from the strip heater, which has the effect of preventing aggregation of the Si layer and melting of the SL substrate.

上記効果はW膜のない場合に比べて、均質再結晶層の面
積において約40倍、Si基板を溶融させないことにお
いて約2倍に改善できることで、実用的大面積のSOI
基板を得るだめの有効な方法となる。
The above effect can be improved by approximately 40 times in the area of the homogeneous recrystallized layer and approximately 2 times in the case of not melting the Si substrate, compared to the case without the W film, making it possible to improve practical large-area SOI.
This is an effective method for obtaining substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による80I基板の断面図、第2図は本
発明に用いたSOI基板製造装置の概略図、第3図(a
)および(b)は上面より児たSOI基板の再結晶分布
図である。
FIG. 1 is a cross-sectional view of an 80I substrate according to the present invention, FIG. 2 is a schematic diagram of an SOI substrate manufacturing apparatus used in the present invention, and FIG.
) and (b) are recrystallization distribution diagrams of the SOI substrate viewed from the top.

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁物上に形成した多結晶i9i層を加熱溶融しこ
れを再結晶化する帯溶融法において、該多結晶Si層を
含む構造をw/SiO2/多結晶S i / 5in2
/ S i基板の多層構造とすることを特徴とする半導
体基板の製造方法。
1. In the zone melting method in which a polycrystalline i9i layer formed on an insulator is heated and melted and recrystallized, the structure including the polycrystalline Si layer is changed to w/SiO2/polycrystalline Si/5in2.
/ A method for manufacturing a semiconductor substrate, characterized in that it has a multilayer structure of an Si substrate.
JP58123237A 1983-07-08 1983-07-08 Manufacture of semiconductor substrate Pending JPS6015915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123237A JPS6015915A (en) 1983-07-08 1983-07-08 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123237A JPS6015915A (en) 1983-07-08 1983-07-08 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS6015915A true JPS6015915A (en) 1985-01-26

Family

ID=14855591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123237A Pending JPS6015915A (en) 1983-07-08 1983-07-08 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS6015915A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206814A (en) * 1986-03-07 1987-09-11 Agency Of Ind Science & Technol Protective film for recrystallizing treatment
JPS62206813A (en) * 1986-03-07 1987-09-11 Agency Of Ind Science & Technol Protective film for recrystallizing treatment
JPS63184319A (en) * 1986-09-18 1988-07-29 Sony Corp Formation of single-crystal thin film
JPS63215035A (en) * 1987-03-04 1988-09-07 Agency Of Ind Science & Technol Protective film for recrystallization treatment
JPS6423521A (en) * 1987-07-20 1989-01-26 Agency Ind Science Techn Protective film for recrystallization treatment
EP0449524A2 (en) * 1990-03-24 1991-10-02 Canon Kabushiki Kaisha Optical annealing method for semiconductor layer and method for producing semiconductor device employing the same semiconductor layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206814A (en) * 1986-03-07 1987-09-11 Agency Of Ind Science & Technol Protective film for recrystallizing treatment
JPS62206813A (en) * 1986-03-07 1987-09-11 Agency Of Ind Science & Technol Protective film for recrystallizing treatment
JPS63184319A (en) * 1986-09-18 1988-07-29 Sony Corp Formation of single-crystal thin film
JPS63215035A (en) * 1987-03-04 1988-09-07 Agency Of Ind Science & Technol Protective film for recrystallization treatment
JPS6423521A (en) * 1987-07-20 1989-01-26 Agency Ind Science Techn Protective film for recrystallization treatment
EP0449524A2 (en) * 1990-03-24 1991-10-02 Canon Kabushiki Kaisha Optical annealing method for semiconductor layer and method for producing semiconductor device employing the same semiconductor layer

Similar Documents

Publication Publication Date Title
JPS6281709A (en) Manufacture of semiconductor device
JPS62181419A (en) Recrystallization method of polycrystalline silicon
JPS6015915A (en) Manufacture of semiconductor substrate
JPH0433327A (en) Forming method of semiconductor ctystallized film
JP2709591B2 (en) Method for manufacturing recrystallized semiconductor thin film
JPH027415A (en) Formation of soi thin film
JPH06132306A (en) Method of manufacturing semiconductor device
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JP2004134773A (en) Method for manufacturing semiconductor device
JPH0556314B2 (en)
JPH06291039A (en) Amorphous-semiconductor formation substrate and manufacture of polycrystalline-semiconductor formation substrate using it
JPS59158514A (en) Manufacture of semiconductor device
JPH11145484A (en) Manufacture of thin-film transistor
JPH03284831A (en) Forming method for semiconductor thin-film
JP2002299239A (en) Semiconductor film manufacturing method
JPS59121829A (en) Fabrication of single crystal silicon thin film
JPS6355925A (en) Recrystallization of semiconductor thin film
JPS60229330A (en) Manufacture of semiconductor device
JPH038101B2 (en)
JPS60240118A (en) Manufacture of si semiconductor
JPS62262415A (en) Formation of semiconductor single crystal
JPS6175513A (en) Manufacture of silicon crystal film
JPS60127745A (en) Semiconductor substrate
JPS60140717A (en) Manufacture of semiconductor thin film crystal layer
JPS60136305A (en) Semiconductor substrate