JPS59121829A - Fabrication of single crystal silicon thin film - Google Patents

Fabrication of single crystal silicon thin film

Info

Publication number
JPS59121829A
JPS59121829A JP57227589A JP22758982A JPS59121829A JP S59121829 A JPS59121829 A JP S59121829A JP 57227589 A JP57227589 A JP 57227589A JP 22758982 A JP22758982 A JP 22758982A JP S59121829 A JPS59121829 A JP S59121829A
Authority
JP
Japan
Prior art keywords
substrate
thin film
film
heater
silicon thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57227589A
Other languages
Japanese (ja)
Inventor
Kohei Higuchi
行平 樋口
Shuichi Saito
修一 斉藤
Hidekazu Okabayashi
岡林 秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57227589A priority Critical patent/JPS59121829A/en
Publication of JPS59121829A publication Critical patent/JPS59121829A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline

Abstract

PURPOSE:To obtain large single crystal silicon thin film of good quality on an amorphous insulating film without deterioration of characteristics of elements of the lower layer by the method wherein a substrate provided with polycrystalline or amorphous silicon thin film is heated at specified temperature by heater annealing method to be recrystallized and after holding at specified temperature for specified time, the substrate is slowly cooled down to a room temperature. CONSTITUTION:A thermal oxide film 102 of 1mum thick, a polycrystalline silicon film 103 of 1mum thick and a CVD oxide film 104 of 1mum thick are laminated on a silicon substrate 101 and forming of single crystal is performed by using a heater annealing device. 201 shows a first heater for heating the substrate and 202 shows a second heater moving 5mm. distance from surface of the substrate. After recrystallization with heating the substrate at 600-800 deg.C, e.g. 700 deg.C, the substrate is held at 600-800 deg.C, e.g. 700 deg.C fo about 10min and then it is slowly cooled spending more than 10min. As a result, there is no crack to be seen and a single crystal silicon thin film of good quality can be obtained. Also in case of that boron or arsenic is previously implanted in the lower silicon for the fabrication of this thin film, there is almost no change of the profile after forming the film and characteristics of elements formed in the lower layer do not change.

Description

【発明の詳細な説明】 本発明は、アモルファス絶縁膜上に大面積でかつ良質の
単結晶シリコン薄膜の新規な製造方法を提供するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel method for producing a large-area, high-quality single-crystal silicon thin film on an amorphous insulating film.

集積回路等の半導体装置の高密度化のために能動素子を
積層し、素子の三次元化を計ろうとする試与が活発にな
されている。能動系子の積層化の際、問題となるのは、
下層の能動系子と電気的な絶縁膜を介して、その上に能
動系子のだめの半導体薄膜を形成する必要があることで
ある。この半導体薄膜としてアモルファス絶縁膜や多[
7晶半専体の利用も考えられるが、単結晶半導体である
ことが素子の特性上、あるいは再現性等の観点からも最
も望ましいことは百9丑でもない。また下層に形成され
た素子の特性を変化さぜないためには、単結晶半導体薄
膜を形成する除の熱処理工程が低温、短時間であること
が望ましい。これは主として、下層に形成されたドーパ
ント注入あるいけ拡充層のプロファイルが熱処理工程で
変化するためリコンをレーザ光や1子ビームによるビー
ムアニ−ル法やあるいはヒータアニール法等によって表
面多結晶シリコン層を溶融し、同化再結晶化する技術が
広く知られている。前者のビームアニール法による場合
、基板加熱温度が600°C8度でかつ表面シリコン層
の溶融時間も高々数10 m5ecであるため、下層に
形成された索子の特性を変化させることなく、単結晶シ
リコン薄膜を形成することができる利点があるが、ビー
ム径が小さいため大面積の単結晶シリコン薄膜を再現性
良く得ることが困難であるという欠点をもつ。即ち、ビ
ーム径が/J・さいため、照射部分を少しずつ重ね合わ
せ単結晶部分を拡げていくという方法をとるために、重
ね合わせの部分で多結晶化が生じてしまう。一方ヒータ
アニール、去では、1982年発行のMaterlaI
s Letters a 第1巻第1号でHlJ 。
BACKGROUND ART In order to increase the density of semiconductor devices such as integrated circuits, active efforts are being made to stack active elements and make the elements three-dimensional. When stacking active devices, the problem is:
It is necessary to form a semiconductor thin film for the active device on the lower active device via an electrical insulating film. This semiconductor thin film may be an amorphous insulating film or a multilayer film.
Although it is conceivable to use semi-exclusive 7-crystal semiconductors, single crystal semiconductors are most desirable from the viewpoint of device characteristics and reproducibility. In addition, in order not to change the characteristics of the elements formed in the underlying layer, it is desirable that the heat treatment step for forming the single crystal semiconductor thin film be performed at a low temperature and for a short time. This is mainly due to the fact that the profile of the dopant implantation or expansion layer formed in the lower layer changes during the heat treatment process. Techniques for melting, assimilation and recrystallization are widely known. In the case of the former beam annealing method, the substrate heating temperature is 600°C and the melting time of the surface silicon layer is at most several tens of m5ec. Although it has the advantage of being able to form a silicon thin film, it has the disadvantage that it is difficult to obtain a large-area single-crystal silicon thin film with good reproducibility because the beam diameter is small. That is, since the beam diameter is /J· small, the method of overlapping the irradiated portions little by little and expanding the single crystal portion results in polycrystalization in the overlapping portion. On the other hand, after heater annealing, Materla I published in 1982
s Letters a Volume 1 No. 1 HlJ.

LEAMY等が述べているように、基板を1100°C
i6 1350°CK加熱し、棒状のヒータを基板表面
から0.5m+mから1n程度離して移動させ、表面シ
リコン層を溶融し、固化再結晶する方法でろるが、利点
があるが、一方基板を1100°Cから1350°C程
度に加熱しているため、下層に作られた能動素子の特性
が変化してしまうという欠点がある。
As stated by LEAMY et al., the substrate was heated to 1100°C.
i6 There is an advantage to heating the substrate at 1350°CK, moving a rod-shaped heater 0.5m+m to 1n away from the substrate surface, melting the surface silicon layer, and solidifying and recrystallizing it. Since it is heated from .degree. C. to about 1350.degree. C., it has the disadvantage that the characteristics of the active elements formed in the underlying layer change.

本発明はアモルファス絶縁膜上に良質で大面積の単結晶
シリコン薄膜を下層の索子特性を劣化させることなく製
造する方法を提供することを目的とするものである。
An object of the present invention is to provide a method for manufacturing a high-quality, large-area single-crystal silicon thin film on an amorphous insulating film without deteriorating the underlying layer properties.

本発明によれば少なくともその表面の一部がアモルファ
ス絶縁膜でおおわれた基板上に形成された多結晶あるい
は非晶質シリコン薄膜を備えた基板を第1のヒーターで
600’Cから800°Cに加熱した状態で基板表面か
ら離して設けた、棒状の第2のヒータを移動させつつ、
加熱して前記多結晶あるいは非晶質シリコン薄膜を加熱
溶融して再結晶化し、その恢、基板表面を第2のヒータ
が通シ過ぎた後も少なくとも10分間基板1M虻t−6
009Cかl:1)800°Cに保持し、その後10分
以上かけて室温まで保冷することを特徴とする単結晶シ
リコン薄膜の製造方法が得られる、2 本発明による方法は不発曲者が見出した次のLうな実験
事実に基づくものである。第1図に模式的に示したよう
にシリコン基板101 上に1μm厚の熱酸化膜102
.1μm厚の多結晶シリコン膜103.1μm厚のCV
D  酸化104を積層した試料、である。第1表に示
すように4通りの基板加熱条件:を選んだ。即ち条件A
は、基板加熱1100°C再結晶終了後2〜3分で室温
に戻す。条件Bは、基門槻熱11000C再結晶終了後
11000Cで約10分間保持し、10分以上をかけて
徐冷、条件Cは、基板加熱700’C,再結晶終了後、
2〜3分で室温に戻す。条件りは基板加熱700°C再
結晶終了後、約10分間700°Cで試料を保持し、1
0分以上かけて徐冷、である。
According to the present invention, a substrate having a polycrystalline or amorphous silicon thin film formed on a substrate whose surface is at least partially covered with an amorphous insulating film is heated from 600°C to 800°C using a first heater. While moving a rod-shaped second heater provided away from the substrate surface in a heated state,
The polycrystalline or amorphous silicon thin film is melted and recrystallized by heating, and the substrate is heated for at least 10 minutes after the second heater passes over the substrate surface.
009C: 1) A method for producing a single crystal silicon thin film characterized by holding the film at 800°C and then cooling it to room temperature over a period of 10 minutes or more is obtained; 2) The method according to the present invention It is based on the following experimental facts. As schematically shown in FIG. 1, a thermal oxide film 102 with a thickness of 1 μm is formed on a silicon substrate 101.
.. 1 μm thick polycrystalline silicon film 103.1 μm thick CV
D This is a sample in which oxide 104 is laminated. As shown in Table 1, four substrate heating conditions were selected. That is, condition A
After heating the substrate at 1100°C, the temperature is returned to room temperature in 2 to 3 minutes after completion of recrystallization. Condition B is Mototsuki heating at 11,000 C. After recrystallization, the temperature is maintained at 11,000 C for about 10 minutes, and cooling is continued over 10 minutes. Condition C is substrate heating at 700' C. After recrystallization, the substrate is heated to 700 C.
Return to room temperature in 2-3 minutes. The conditions were: After heating the substrate to 700°C, after recrystallization, the sample was held at 700°C for about 10 minutes.
Cool slowly for 0 minutes or more.

第1表 各条件で行なった結果の5eccoエツチ後の試料表面
の光学顕微鏡写真を第3図(a+、(bl、Ic+、I
d+に示す。倍率はすべて100倍でるる。第3図から
明らかなように基板加熱が1100°Cのものは、樹枝
状の結晶粒界が存在してしるのに対し、条件(c)の基
板加熱700°Cで行なった試料では、いわゆる、クラ
ンクと呼ばれる表面シリコン膜にひび割れが入っている
。また条件(Dlで基板加熱7000C,その後徐冷し
た試料に於いては、クラックもみられない、良質の単粘
晶シリコン薄膜が得られた。更にン薄膜形成後もプロフ
ァイルの変化は殆んどなく1、下層に作られた素子の特
性が変化することはない。
Table 1 Optical micrographs of the sample surface after 5ecco etching under various conditions are shown in Figure 3 (a+, (bl, Ic+, I
Shown in d+. All magnifications are 100x. As is clear from Fig. 3, dendritic grain boundaries exist in the case where the substrate was heated to 1100°C, whereas in the sample heated at 700°C under condition (c), There are cracks in the surface silicon film called the crank. In addition, in the sample where the substrate was heated to 7000C with Dl and then slowly cooled, a good quality single-viscosity silicon thin film with no cracks was obtained.Furthermore, there was almost no change in the profile even after the thin film was formed. 1. The characteristics of the underlying elements do not change.

なお、シリコン表面上の醒化Mを一部露出して、種結晶
として用いた場合は、面内での方位もう1の効果が得ら
れた。筐た再結晶化させるシリコン]簿膜は多結晶シリ
コンに限らず非晶質シリコンで′も(よい。
In addition, when a part of the crystalline M on the silicon surface was exposed and used as a seed crystal, another effect of in-plane orientation was obtained. [Silicon to be recrystallized] The film is not limited to polycrystalline silicon, but can also be amorphous silicon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、試料の模式的断面図で、第2図は、ヒータア
ニール装置の概観図である。第3図(a)(b)(C1
(d)は各々、第1表に示す条件(5)(Bl (C1
■)でアニールした恢、表面酸化膜を除去後5ecco
エッチした試料表面の光学顕微鏡写真である。 図中 101:シリコン基板   102:熱酸化膜103:
多結晶ンリ:yyg  104 : CVDe化M2O
1:基板加熱用ヒータ 202:第2の弾状の移動ヒータ 203:試 料 工業技術院長 躬 1 図 射 2 図
FIG. 1 is a schematic cross-sectional view of the sample, and FIG. 2 is an overview of the heater annealing apparatus. Figure 3 (a) (b) (C1
(d) is the condition (5) (Bl (C1
■) After annealing and removing the surface oxide film, 5ecco
This is an optical micrograph of an etched sample surface. In the figure 101: Silicon substrate 102: Thermal oxide film 103:
Polycrystalline: yyg 104: CVDe M2O
1: Substrate heating heater 202: Second elastic movable heater 203: National Institute of Materials Science and Technology 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 少なくともその表面の一部がアモルファス絶縁膜でおお
われた基板上にル成された多結晶あるいは非晶質シリコ
ン薄膜を備えた基板を第1のヒーターで60 O” C
から800°Cに加熱した状態で、基板表面から離して
設けた棒状の第2のヒータを移動させつつ前記多結晶あ
るいは非晶質シリコン薄膜を加熱、浴融して再結晶化し
、その後、基板ト面を第2のヒータが通シ過きた後も少
なくとも10分間基板に度を600°Cから80υ0C
に保持し、その後10分以上かけて室温まで徐冷するこ
とを特徴とする単結晶シリコン薄膜の製造方法。
A substrate having a polycrystalline or amorphous silicon thin film formed on a substrate whose surface is at least partially covered with an amorphous insulating film is heated to 60 O”C using a first heater.
The polycrystalline or amorphous silicon thin film is heated to 800° C. while moving a rod-shaped second heater provided apart from the substrate surface, and recrystallized by bath melting. After the second heater passes over the substrate surface, keep the temperature between 600°C and 80υ°C for at least 10 minutes.
1. A method for producing a single crystal silicon thin film, the method comprising: holding the film at a temperature of 100.degree. C. and then slowly cooling it to room temperature over 10 minutes or more.
JP57227589A 1982-12-28 1982-12-28 Fabrication of single crystal silicon thin film Pending JPS59121829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227589A JPS59121829A (en) 1982-12-28 1982-12-28 Fabrication of single crystal silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227589A JPS59121829A (en) 1982-12-28 1982-12-28 Fabrication of single crystal silicon thin film

Publications (1)

Publication Number Publication Date
JPS59121829A true JPS59121829A (en) 1984-07-14

Family

ID=16863282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227589A Pending JPS59121829A (en) 1982-12-28 1982-12-28 Fabrication of single crystal silicon thin film

Country Status (1)

Country Link
JP (1) JPS59121829A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870031A (en) * 1985-10-07 1989-09-26 Kozo Iizuka, Director General, Agency Of Industrial Science And Technology Method of manufacturing a semiconductor device
US5231052A (en) * 1991-02-14 1993-07-27 Industrial Technology Research Institute Process for forming a multilayer polysilicon semiconductor electrode
EP0656664A1 (en) * 1993-11-30 1995-06-07 Canon Kabushiki Kaisha Polycrystalline silicon photoelectric transducer and process for its production
JP2007300028A (en) * 2006-05-02 2007-11-15 Tokyo Institute Of Technology Method of producing crystalline silicon thin film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPL.PHYS.LETT.40-2=1981 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870031A (en) * 1985-10-07 1989-09-26 Kozo Iizuka, Director General, Agency Of Industrial Science And Technology Method of manufacturing a semiconductor device
US5231052A (en) * 1991-02-14 1993-07-27 Industrial Technology Research Institute Process for forming a multilayer polysilicon semiconductor electrode
EP0656664A1 (en) * 1993-11-30 1995-06-07 Canon Kabushiki Kaisha Polycrystalline silicon photoelectric transducer and process for its production
US5575862A (en) * 1993-11-30 1996-11-19 Canon Kabushiki Kaisha Polycrystalline silicon photoelectric conversion device and process for its production
JP2007300028A (en) * 2006-05-02 2007-11-15 Tokyo Institute Of Technology Method of producing crystalline silicon thin film

Similar Documents

Publication Publication Date Title
US4725561A (en) Process for the production of mutually electrically insulated monocrystalline silicon islands using laser recrystallization
JP4103447B2 (en) Manufacturing method of large area single crystal silicon substrate
JPH0258779B2 (en)
Vu et al. Halogen lamp recrystallization of silicon on insulating substrates
JPS61244020A (en) Oriented monocrystalline silicon film with restricted defecton insulation support
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
TWI280292B (en) Method of fabricating a poly-silicon thin film
JPS59121829A (en) Fabrication of single crystal silicon thin film
Celler et al. Seeded recrystallization of thick polysilicon films on oxidized 3‐in. wafers
JPH0249276B2 (en)
JPS5918196A (en) Preparation of thin film of single crystal
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JPS621220A (en) Manufacture of defect localized orientation silicon monocrystalline film on insulation support
JPS6119116A (en) Manufacture of semiconductor device
JPS59121823A (en) Fabrication of single crystal silicon film
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JPS62130510A (en) Manufacture of semiconductor substrate
JPS58172238A (en) Processing and treatment of glass
JPS5835916A (en) Manufacture of semiconductor device
JPS60164316A (en) Formation of semiconductor thin film
JP2569402B2 (en) Manufacturing method of semiconductor thin film crystal layer
JPS6055614A (en) Manufacture of film of semiconductor single crystal
JPS5856365A (en) Manufacture of semiconductor device
JPH05315362A (en) Manufacture of semiconductor device and liquid crystal display device
JPS6066416A (en) Manufacture of semiconductor integrated-circuit base body