JPS60158667A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60158667A
JPS60158667A JP1190684A JP1190684A JPS60158667A JP S60158667 A JPS60158667 A JP S60158667A JP 1190684 A JP1190684 A JP 1190684A JP 1190684 A JP1190684 A JP 1190684A JP S60158667 A JPS60158667 A JP S60158667A
Authority
JP
Japan
Prior art keywords
drain
mob
fet
layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1190684A
Other languages
Japanese (ja)
Inventor
Masahiro Shigeniwa
昌弘 茂庭
Masanobu Miyao
正信 宮尾
Hideo Sunami
英夫 角南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1190684A priority Critical patent/JPS60158667A/en
Publication of JPS60158667A publication Critical patent/JPS60158667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To obtain a MOSFET, in which a short channel effect is difficult to be generated, by making the thickness of an insulator layer inserted under an element thinner than that of a depletion layer at drain voltage in an element into which the insulator layer is not inserted. CONSTITUTION:An oxide film 13 is formed on a P type silicon wafer 12 through a thermal oxidation method. Polycrystalline silicon 14 is deposited, and the polycrystalline silicon 14 is changed into a single crystal through lateral epitaxial technique by CW laser projection. A MOSFET is prepared to the single crystal by using a normal process. B is doped to the silicon layer 17 turned into the single crystal through ion implantation, and P type silicon is formed. A gate oxide film 7 is 25nm thick, a gate electrode 8 consists of high impurity-concentration polycrystalline silicon, and As is doped through ion implantation using the gate electrode 8 as a mask to shape a source region 5 and a drain region 6. The silicon layer 17 changed into the single crystal not used for an element is removed through etching for isolating elements.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明の利用分野は、高速で動作しかつ集積度のきわめ
て高いMOB−LSIである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The field of application of the present invention is a MOB-LSI that operates at high speed and has an extremely high degree of integration.

〔発明の背景〕[Background of the invention]

超大型コンピューター、マイクロプロセッサ等の高性能
化の要求が高まっている。その実現手法としてLSI中
の素子を微細化する事が進められてきた。これにより、
LSIの集積度の向上と高速化が可能となる。しかし、
近年、素子の微細化だけでは不充分になりつつあり・素
子の直下に縁物層を挿入する手法の検討が開始された。
There is an increasing demand for higher performance in ultra-large computers, microprocessors, etc. As a method for realizing this, progress has been made to miniaturize elements in LSIs. This results in
It becomes possible to improve the degree of integration and increase the speed of LSI. but,
In recent years, miniaturization of elements alone has become insufficient, and studies have begun on methods of inserting a border layer directly below the element.

いわゆル80B (Silicon On 5apI)
hire ) −SOI(5ilicon Qn In
5ulator )である。このような構造とすると、
素子および配線の寄生容量が低減され、素子の高速動作
が可能となる。
So-called 80B (Silicon On 5apI)
hire ) -SOI(5ilicon Qn In
5ulator). With a structure like this,
The parasitic capacitance of the element and wiring is reduced, allowing the element to operate at high speed.

〔発明の目的〕[Purpose of the invention]

MOS−FETを微細化してチャネル長を短くすると、
「短チヤネル効果」が観測されるようになる。これは、
チャネル長が、ドレインの空乏層幅と同程度になってく
ると・チャネル長の変化にともなってしきいlft4圧
も変化するという現象である。このようすを第1図に示
す。第1図における領域(a)が短チヤネル効果のおき
ている領域である〇短チャネル効果のおきるチャネル長
でMOSFETを作製すると、たとえばゲート電極のエ
ツチングの過不足等のプロセスの変動によるチャネル長
のわずかなばらつきで・しきい値電圧が大きくばらつく
ことになる。LSIを作製するにあたっては素子特注に
ばらつきがあってはならない。したがって・微細な素子
をLSIに使うには・そのチャネル長で短チヤネル効果
がおきないことが不可欠である。ところが、素子の直下
に絶縁物層の挿入されであるMOSFET は、絶縁物
層の挿入されてないのと比べて短チヤネル効果がおきや
すい。
When miniaturizing MOS-FET and shortening the channel length,
"Short channel effect" begins to be observed. this is,
When the channel length becomes comparable to the width of the drain depletion layer, the threshold lft4 pressure also changes as the channel length changes. This situation is shown in Figure 1. Region (a) in Figure 1 is the region where the short channel effect occurs. If a MOSFET is manufactured with a channel length where the short channel effect occurs, the channel length may change due to process variations such as over-etching or under-etching the gate electrode. A small variation can cause a large variation in threshold voltage. When manufacturing LSIs, there must be no variation in custom-made elements. Therefore, in order to use minute elements in LSIs, it is essential that short channel effects do not occur within the channel length. However, in a MOSFET in which an insulating layer is inserted directly below the element, a short channel effect is more likely to occur than in a MOSFET in which an insulating layer is not inserted.

挿入されである絶縁層がドレイン空乏層のポテンシャル
分布を乱すからである。このため、素子の微細化が困難
であった。本発明の目的は、上記従来の問題点を解決し
、高速動作に好適な素子の直下に絶縁物層の挿入された
MOSFETの微細化、ひいては該FETを用いたLS
Iの大規模化を可能とするMOSFETの構造を提供す
ることにあるO 〔発明の概要〕 素子の直下に挿入された絶縁層が、絶縁層を挿入しない
MOSFETのドレインバイアス下のドレイン空乏層幅
よりも厚い場合。絶縁層を直下に持ったMOSFETの
ドレイン空乏層幅は深さ方向に関して絶縁層厚さにまで
広がってしまう。絶縁物に電圧をかけると絶縁物全域に
わたって同じ電界強度となるためである。この様子を第
2図に示す。ドレイン領域6下の等電位線1が深さ方向
に関して絶縁物層3中で等間隔ならんでおり、そのため
ドレイン領域6下のドレイン空乏層幅11が絶縁物層3
厚さと一致している。比較のため、絶縁物層の挿入され
てない従来のMOSFETの縦断面の電位分布を第3図
に示す。第2図と第3図を比較すると、ドレイン空乏層
のソース領域5への張り出し10が絶縁層の挿入された
MOSFETにおいてより大きい事がわかる。ドレイン
空乏層幅11が深さ方向に関して広げられた影響を受け
、横方向の空乏層幅(張り出し10)も広がってしまっ
たのである。この張り出しlOがチャネル長9と同権i
1の長さになると短チヤネル効果はおきるのであるから
、絶縁層の挿入されであるMOSFETでは比較的長い
チャネル長でも短チヤネル効果のおきる事が理解される
。一方、素子下に挿入された絶縁物層3の厚さが、従来
の素子のドレイン空乏層幅11よりも薄い場合の縦断面
における電位分布を第4図に示した。このような素子で
は、ドレイン空乏層がドレイン領域6下で絶縁物層3を
越え、その下の半導体領域2まで漏れている。そのため
、挿入された絶縁物層3がドレイン空乏層の1位分布1
に及ぼす影響はほとんどなくなり、ドレイン空乏層のソ
ース領域5側への張り出し10も従来のMOSFETと
同じとなる0以上の理由から、素子下に挿入する絶縁物
層厚さを従来(たとえばSO8はサファイアウニ・・の
厚さである)よりも薄く形成することにより・具体的に
は絶縁物層を挿入しない素子のドレイン亀圧下の空乏層
幅より薄くすることにより・短チヤネル効果のおきにく
い直下に絶縁物層の挿入されたMOSFETを得ること
ができるのである。
This is because the inserted insulating layer disturbs the potential distribution of the drain depletion layer. For this reason, it has been difficult to miniaturize the element. The purpose of the present invention is to solve the above-mentioned conventional problems, to miniaturize a MOSFET in which an insulating layer is inserted directly under an element suitable for high-speed operation, and to develop an LS using the FET.
[Summary of the Invention] The purpose of the present invention is to provide a structure of a MOSFET that enables a large-scale I. If thicker than . The width of the drain depletion layer of a MOSFET having an insulating layer directly below it extends to the thickness of the insulating layer in the depth direction. This is because when a voltage is applied to an insulator, the electric field strength is the same across the entire area of the insulator. This situation is shown in FIG. The equipotential lines 1 under the drain region 6 are arranged at regular intervals in the insulating layer 3 in the depth direction, so that the drain depletion layer width 11 under the drain region 6 is equal to the width of the insulating layer 3.
Consistent with thickness. For comparison, FIG. 3 shows the potential distribution in the longitudinal section of a conventional MOSFET in which no insulating layer is inserted. Comparing FIG. 2 with FIG. 3, it can be seen that the overhang 10 of the drain depletion layer toward the source region 5 is larger in the MOSFET in which an insulating layer is inserted. Under the influence of the drain depletion layer width 11 being widened in the depth direction, the lateral depletion layer width (overhang 10) has also been widened. This overhang lO has the same authority as the channel length 9
Since the short channel effect occurs when the channel length becomes 1, it is understood that the short channel effect occurs even with a relatively long channel length in a MOSFET in which an insulating layer is inserted. On the other hand, FIG. 4 shows the potential distribution in the longitudinal section when the thickness of the insulating layer 3 inserted under the element is thinner than the drain depletion layer width 11 of the conventional element. In such a device, the drain depletion layer crosses the insulating layer 3 under the drain region 6 and leaks to the semiconductor region 2 below. Therefore, the inserted insulator layer 3 has a first-order distribution 1 of the drain depletion layer.
The influence on the MOSFET is almost eliminated, and the overhang 10 of the drain depletion layer toward the source region 5 side is also the same as that of conventional MOSFETs. By forming the layer thinner than the width of the depletion layer under the drain pressure of an element without inserting an insulating layer, the short channel effect is difficult to occur. A MOSFET with an insulating layer inserted can be obtained.

〔発明の実施例〕[Embodiments of the invention]

基板絶縁層厚さが、絶縁物層の挿入されていないMOS
FETのドレインバイアス下のドレイン空乏層幅よりも
厚い素子、該空乏層幅と同じ素子、該空乏層幅より薄い
素子を作製し、その「しきい[直屯圧−チャネル長特性
」を測定した。ソース・ドレイン接合深さは0.35μ
mであり、能動領域2の不純物濃度Fi1016an−
3である。このとき、ドレイン空乏層幅は0.35μI
n程度である。したがって、絶縁物層厚さはそれぞれ2
.45μm、0.35μin、0.05μmに選んだ。
The substrate insulating layer thickness is MOS with no insulating layer inserted.
We fabricated a device that was thicker than the width of the drain depletion layer under the drain bias of the FET, a device that was the same as the width of the depletion layer, and a device that was thinner than the width of the depletion layer, and measured their "threshold [normal pressure - channel length characteristics]" . Source/drain junction depth is 0.35μ
m, and the impurity concentration Fi1016an- of the active region 2 is
It is 3. At this time, the drain depletion layer width is 0.35μI
It is about n. Therefore, the insulator layer thickness is 2
.. They were selected to be 45 μm, 0.35 μin, and 0.05 μm.

以下、本発明の実殉例を図面第5図〜第7図をまじえて
詳細に説明する。
Hereinafter, practical examples of the present invention will be explained in detail with reference to FIGS. 5 to 7.

比抵抗約10Ωcmのp型シリコンウェハ12に熱j浚
化法で酸化膜13を形成する0この時・酸化時間を変え
ることにより酸化膜厚が2.45μIn、0.35 t
tm、 0.05 μInの3種類のウェハを作製する
。これに通常のフォトリソグラフィーを用いて酸化膜の
一部を除去する。次に多結晶シリコン14を0.35μ
m堆蹟し・これをCWレーザ照射15走査16による溝
方向エピタキシ技術により単結晶化する(第5図)。こ
れに通常のプロセスを用いてMOSFETを作製する(
第6図)。単結晶化したシリコン層17にイオン打込み
でBをドープし、不純物濃度1016crr1−”のp
型シリコンとする。ゲー)if化膜7厚は25 n m
 、ゲートホ極8は高不純物濃度多結晶シリコンであり
、これをマスクとしたイオン打込みでAsをドープし。
An oxide film 13 is formed on a p-type silicon wafer 12 with a specific resistance of about 10 Ωcm by a thermal dredging method.At this time, by changing the oxidation time, the oxide film thickness is 2.45μIn and 0.35T.
Three types of wafers are prepared: tm and 0.05 μIn. Then, a part of the oxide film is removed using normal photolithography. Next, polycrystalline silicon 14 is 0.35μ
This is deposited and made into a single crystal by groove direction epitaxy technology using CW laser irradiation 15 and scanning 16 (FIG. 5). A MOSFET is manufactured using a normal process (
Figure 6). The monocrystalline silicon layer 17 is doped with B by ion implantation, and the p
Use mold silicon. Game) If film 7 thickness is 25 nm
The gate electrode 8 is made of polycrystalline silicon with high impurity concentration, and is doped with As by ion implantation using this as a mask.

ソース領域5.ドレイン領域6を形成する。このとき不
純物濃度は10”Crn−”である。次に素子間分離の
ため、素子に用いなかった単結晶化されたシリコン層1
7はエツチングにより除去した(第7図)。ゲート幅を
15μmで作製し、チャネル長は0,8μm、1,3μ
m、2μm、4μmのものを作った。これらの素子のし
きい値電圧の測定結果を第8図に示す。図中△で示した
測定結果18が挿入された絶縁膜13厚さが0.05μ
mの素子のもので、 印19が絶縁膜厚0,35μmの
もの、○印20が2.45μmのものである。絶縁物層
13厚さが0.05μm、0.35μmの素子はチャネ
ル長が1.3μmであっても短チヤネル効果はまだあま
り起きていないこと、一方、絶縁物層13厚さが2.4
5μmの素子ではチャネル長1.3μmあたりで短チヤ
ネル効果が顕著である事がわかる。
Source area 5. A drain region 6 is formed. At this time, the impurity concentration is 10"Crn-". Next, for isolation between elements, a single crystal silicon layer 1 that was not used in the element
7 was removed by etching (Fig. 7). Manufactured with a gate width of 15 μm, and channel lengths of 0.8 μm and 1.3 μm.
2 μm and 4 μm were made. FIG. 8 shows the measurement results of the threshold voltages of these elements. The thickness of the insulating film 13 inserted with the measurement result 18 indicated by △ in the figure is 0.05μ
For the elements of m, mark 19 is the one with the insulating film thickness of 0.35 μm, and circle mark 20 is the one with the insulating film thickness of 2.45 μm. In devices with insulating layer 13 thickness of 0.05 μm and 0.35 μm, the short channel effect does not occur much even if the channel length is 1.3 μm; on the other hand, when the insulating layer 13 thickness is 2.4 μm
It can be seen that in a 5 μm element, the short channel effect is significant around a channel length of 1.3 μm.

〔発明の効果〕〔Effect of the invention〕

以上の説明よりわかるように、本発明によれば。 As can be seen from the above description, according to the present invention.

素子の直下に絶縁層のある短チャネルで動作するMOS
FETの作製が可能となり、超高速・超高集積度LSI
実現の可能性かたかまった。
MOS that operates in a short channel with an insulating layer directly below the element
It is now possible to manufacture FETs, and ultra-high speed and ultra-high integration LSI
The possibility of realization has increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は短チヤネル効果の概念図、第2図はドレイン空
乏層幅より厚い絶縁物層が素子の直下に挿入されである
MOSFETの縦断面図兼電位分布図・第3図は絶縁物
層が素子下に挿入されてない従来のMOSFETの縦断
面図兼電位分布図。 第4図はドレイン空乏層幅より薄い絶縁物層が素子の直
下に挿入されであるMOSFETの縦断面図兼電位分布
図、第5図は横方向エピタキシャル成長により絶縁物層
上に単結晶シリコンを形成する様子の縦断面図、第6図
は絶縁物層上シリコンにMOSFETを形成した様子の
縦断面図、第7図は素子領域以外の絶縁物層上シリコン
を除去して素子間分離を行った様子の縦断面図、第8図
は本実施例で作製した直下に絶縁物層が挿入されである
MOSFETのしきい値電圧、チャネル長特性を示す図
である。 l・・・等(位線、2・・・半導体層、3・・・絶縁物
層、5・°°ンソー領域、6・・・ドレイン領域、7・
・・ゲート酸化膜・8・・・ゲート電罹、9・・・チャ
ネル長、1o・・・ドレイン空乏層のソース領域への張
出し、11・・・ドレイン領域下ドレイン空乏層幅、1
2・・・シリコンウェハ、13・・・二酸化シリコン、
14・・・多結晶シリコン、15・・・CWアルゴンレ
ーザ照射、16・パレーザスキャン方向・17・・・単
結晶化された堆積シリコン、18・・・挿入されである
絶縁物層厚さが0.05μmのMO8FET+7) 「
しきい値N圧−チャネル長」特性、19・・・挿入され
である絶縁物層厚さが0.35 μrrl)MOS F
ETの「しきい値電圧−チャネル長」特性、20・・・
挿入されである絶縁物層厚さが2.45μ+r+のMO
SFETのll。 猶 1 図 ■ Z 図 第3図 百 4 図 第 5 図 第を図 冨 7 図 第3図 0 1234 +ヤオル畏 OI 771ノ
Figure 1 is a conceptual diagram of the short channel effect, Figure 2 is a longitudinal cross-sectional view and potential distribution diagram of a MOSFET in which an insulating layer thicker than the width of the drain depletion layer is inserted directly under the element, and Figure 3 is a diagram of the insulating layer. This is a longitudinal cross-sectional view and potential distribution diagram of a conventional MOSFET in which the metal is not inserted under the element. Figure 4 is a vertical cross-sectional view and potential distribution diagram of a MOSFET in which an insulator layer thinner than the width of the drain depletion layer is inserted directly below the device, and Figure 5 is a monocrystalline silicon layer formed on the insulator layer by lateral epitaxial growth. Figure 6 is a vertical cross-sectional view of a MOSFET formed on silicon on an insulating layer, and Figure 7 is a vertical cross-sectional view of a MOSFET formed on silicon on an insulating layer, and Figure 7 shows isolation between elements by removing silicon on an insulating layer other than the element area. FIG. 8, which is a vertical cross-sectional view, shows the threshold voltage and channel length characteristics of the MOSFET manufactured in this example, in which an insulating layer is inserted directly below. l... etc. (position line, 2... semiconductor layer, 3... insulator layer, 5... °° source region, 6... drain region, 7...
... Gate oxide film 8... Gate voltage coverage, 9... Channel length, 1o... Drain depletion layer overhang to source region, 11... Drain depletion layer width below drain region, 1
2... Silicon wafer, 13... Silicon dioxide,
14...Polycrystalline silicon, 15...CW argon laser irradiation, 16. Paralaser scan direction, 17... Single crystallized deposited silicon, 18... Insulator layer thickness that is inserted 0.05μm MO8FET+7)
"Threshold N pressure - channel length" characteristic, 19...Inserted insulator layer thickness is 0.35 μrrl) MOS F
"Threshold voltage-channel length" characteristics of ET, 20...
MO with an inserted insulator layer thickness of 2.45μ+r+
ll of SFET. 1 Figure ■ Z Figure 3 100 4 Figure 5 Figure 3 0 1234 + Yaoru OI 771 no

Claims (1)

【特許請求の範囲】 1、 ドレイン・ソースの少なくとも一方の直下に厚さ
がバイアス下のドレイン空乏層幅以下の誘電体が位置す
るMOB−FETを有することを特徴とする半導体装置
。 2、半導体ウニ・・の片面もしくは両面の全面もしくは
部分的に絶縁膜が形成してあり・その上に堆積した半導
体の下部に絶縁膜が埋っている領域にMOB−FETを
形成しである構造において・上記絶縁膜の厚さが・上記
MOB−FBTの能動領域の不純物濃度の半導体ウェー
・に作製したMOB−FETのドレイン・バイアス下の
ドレイン深さ方向空乏層幅以下であるMOB・FETを
有することを特徴とする特許請求の範囲第1項記載の半
導体装置。 3、半導体ウニ・・の片面もしくは両面上に部分的に絶
縁膜が形成してあり、その上に堆積した半導体に・ドレ
インのみが絶縁膜上となるようにMOB−FETを形成
しである構造において、上記絶縁膜の厚さが、上記MO
8−FETの能動領域の不純物濃度の半導体ウニI・に
作製したMOB−FETのドレイン・バイアス下のドレ
イン深さ方向空乏層幅以下であるMOB−FETを有す
ることを特徴とする特許請求の範囲第1項記載の半導体
装置0
[Claims] 1. A semiconductor device comprising a MOB-FET in which a dielectric material having a thickness equal to or less than the width of the drain depletion layer under bias is located directly under at least one of the drain and source. 2. A structure in which an insulating film is formed entirely or partially on one or both sides of a semiconductor sea urchin, and a MOB-FET is formed in the region where the insulating film is buried under the semiconductor deposited on it. In the MOB-FET, the thickness of the insulating film is less than the depletion layer width in the drain depth direction under the drain bias of the MOB-FET fabricated in the semiconductor wafer with the impurity concentration of the active region of the MOB-FBT. A semiconductor device according to claim 1, characterized in that the semiconductor device has: 3. A structure in which an insulating film is partially formed on one or both sides of a semiconductor, and a MOB-FET is formed on the semiconductor deposited on top of it so that only the drain is on the insulating film. In this case, the thickness of the insulating film is the same as that of the MO
Claims characterized by having a MOB-FET whose impurity concentration in the active region of the MOB-FET is less than or equal to the width of the depletion layer in the drain depth direction under the drain bias of the MOB-FET manufactured in the semiconductor urchin I. Semiconductor device 0 described in item 1
JP1190684A 1984-01-27 1984-01-27 Semiconductor device Pending JPS60158667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190684A JPS60158667A (en) 1984-01-27 1984-01-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190684A JPS60158667A (en) 1984-01-27 1984-01-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60158667A true JPS60158667A (en) 1985-08-20

Family

ID=11790764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190684A Pending JPS60158667A (en) 1984-01-27 1984-01-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60158667A (en)

Similar Documents

Publication Publication Date Title
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH05160396A (en) Mos field effect transistor
JP2002299620A (en) Method for manufacturing silicon carbide semiconductor device
JPH10107267A (en) Field-effect transistor and its manufacture
JPS59121976A (en) Semiconductor device
US5523605A (en) Semiconductor device and method for forming the same
JP3049496B2 (en) Method of manufacturing MOSFET
JPS60158667A (en) Semiconductor device
JP2695843B2 (en) Semiconductor device
JPS63227059A (en) Semiconductor device and manufacture thereof
US4458259A (en) Etched-source static induction transistor
JP2869653B2 (en) Semiconductor device and manufacturing method thereof
JPS58200554A (en) Manufacture of semiconductor device
JPS59119870A (en) Manufacture of semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
KR100573274B1 (en) Field effect transistor and fabrication method thereof
JPH01143358A (en) Manufacture of mos semiconductor integrated circuit device
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
KR0170513B1 (en) Mos transistor and its fabrication
JPS5834951B2 (en) Manufacturing method of semiconductor device
JPH04109630A (en) Manufacture of mos type semiconductor device
JPS5810857A (en) Complementary type mos semiconductor device
JPH0426132A (en) Manufacture of semiconductor device
KR20010005300A (en) Forming method for non-symmetrical transistor of semiconductor device
JPH0330307B2 (en)