JPS60154567A - Manufacture of insulated gate type field-effect transistor - Google Patents

Manufacture of insulated gate type field-effect transistor

Info

Publication number
JPS60154567A
JPS60154567A JP1069384A JP1069384A JPS60154567A JP S60154567 A JPS60154567 A JP S60154567A JP 1069384 A JP1069384 A JP 1069384A JP 1069384 A JP1069384 A JP 1069384A JP S60154567 A JPS60154567 A JP S60154567A
Authority
JP
Japan
Prior art keywords
source
gate electrode
drain regions
electrode
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1069384A
Other languages
Japanese (ja)
Inventor
Akinori Shimizu
了典 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP1069384A priority Critical patent/JPS60154567A/en
Publication of JPS60154567A publication Critical patent/JPS60154567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To form source-drain regions in a self-alignment manner by an Al gate electrode by executing the introduction of an impurity and activation to the source-drain regions by using plasma. CONSTITUTION:A field oxide film 2 is formed to a field section in an N type Si substrate 1 and a gate oxide film 5 in an element region, a gate electrode 6 consisting of Al is deposited, and the film 5 is left only under the electrode 6 through etching using the electrode 6 as a mask. Shallow boron implanting regions 9 are shaped to sections to which source-drain regions must be formed while using the electrode 6 and the film 2 as masks by exposing the surface of the substrate 1 to plasma containing boron ions. An implanting impurity to the regions is activated at a low temperature by exposing the substrate 1 to Ar gas plasma, thus forming the source-drain regions 41, 42. According to the manufacture, the source-drain regions can be shaped in a self-alignment manner by the Al gate electrode because the treatment of impurity introduction and activation to the regions 41, 42 can be executed at the low temperature.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はソース、ドレイン領域を金属ゲート電Jlit
z−y2hL−1イ6コ齢ΔI11/−IIr嘉士j9
mJaAJト型電界効果トランジスタ(以下MISFK
Tと記す)に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention provides source and drain regions with metal gate electrodes.
z-y2hL-1 6th year old ΔI11/-IIr Yoshij9
mJaAJ type field effect transistor (hereinafter MISFK)
(denoted as T).

〔従来技術とその問題点〕[Prior art and its problems]

この種の技術としては、従来第1図(a)乃至(d)に
示すような製造方法によるのが一般的であった。
Conventionally, this type of technology has generally been based on a manufacturing method as shown in FIGS. 1(a) to 1(d).

すなわち、第1図(、)は素子形成領域を除くシリコン
基板1表面を選択的に厚いフィールド酸化膜2で被う工
程、第1図(+、)は、化学的気相成長法(以下CVD
法と記す)による酸化膜の堆積とOVD酸化膜の選択エ
ツチングによシゲート電極予定領域にCVD酸化膜3を
積層形成し、フィールド酸化膜2とCVD酸化膜3をマ
スクとして熱拡散法もしくはイオン注入法によシソース
、ドレイン領域41.42を形成する工程、第1図(c
)は、CVD酸化膜3のゲート電極およびソース、ドレ
イン電極形成領域をエツチング除去した後、ゲート酸化
膜5を熱酸化法によシ成長させる工程、第1図(d)は
、ソース。
That is, FIG. 1 (,) shows the step of selectively covering the surface of the silicon substrate 1 except the element formation region with a thick field oxide film 2, and FIG. 1 (+,) shows the process of chemical vapor deposition (CVD).
A CVD oxide film 3 is layered in the area where the siggate electrode is to be formed by depositing an oxide film (described as method) and selective etching of the OVD oxide film, and then thermal diffusion method or ion implantation is performed using the field oxide film 2 and CVD oxide film 3 as a mask. Step of forming source and drain regions 41 and 42 by method, FIG.
) is a step in which the gate electrode, source, and drain electrode forming regions of the CVD oxide film 3 are etched away, and then the gate oxide film 5 is grown by a thermal oxidation method; FIG.

ドレイン電極形成領域にコンタクトホールを開孔しアル
ミニウム、もしくはアルミニウムを主成分とする合金忙
より、ゲート電極6およrJ:配m1を形成する工程と
パッシベーション膜8を堆積する工程とである。上記の
方法ではアルミニウムの融点が660℃と低いため、ア
ルミニウムゲート電極の形成をソース、ドレイン領域拡
散工程後に行なっている。この場合、ケート電極形成の
際マスク合わせ精度の余裕を考慮しなければならず、そ
のためにケート電極とソース、ドレイン領域との重なり
が大きくなシ、すなわち寄生容量が増大する欠点があっ
た。そこで、上記の寄生容量を低減させるために、多結
晶シリコンゲート電極による自己整合的なソース、ドレ
イン領域形成法がとられる場合が多1い。しかし、この
方法では、線幅の微細化とともに多結晶シリコン配線の
抵抗が高くなシ、寄生容量が低減するにもかかわらず動
作速度が向上しないという問題が新たに生じてきた。
These steps are a step of opening a contact hole in the drain electrode forming region and forming a gate electrode 6 and a gate electrode 6 using aluminum or an alloy layer mainly composed of aluminum, and a step of depositing a passivation film 8. In the above method, since the melting point of aluminum is as low as 660° C., the aluminum gate electrode is formed after the source and drain region diffusion process. In this case, when forming the gate electrode, it is necessary to take into account the margin of mask alignment accuracy, which has the disadvantage that the gate electrode and the source and drain regions overlap greatly, that is, the parasitic capacitance increases. Therefore, in order to reduce the above-mentioned parasitic capacitance, a method of forming self-aligned source and drain regions using polycrystalline silicon gate electrodes is often used. However, with this method, a new problem has arisen: the resistance of the polycrystalline silicon wiring increases as the line width becomes finer, and the operating speed does not improve even though the parasitic capacitance is reduced.

〔発明の目的〕 本発明り、上記の欠点を除去して、寄生容量。[Purpose of the invention] The present invention eliminates the above drawbacks and reduces the parasitic capacitance.

配線抵抗をともに低減するためアルミニウムゲート電極
による自己整合的なソース、ドレイン領域形成が可能と
なるようなM工5yICTの製造方法を提供することを
目的とする。
It is an object of the present invention to provide a method for manufacturing an M-type ICT that enables formation of self-aligned source and drain regions using an aluminum gate electrode in order to reduce wiring resistance.

〔発明の要点〕[Key points of the invention]

本発明によれば、−導電型の半導体基板の一主表面から
絶縁膜と介して設けられた金属からなるゲート電極なら
びにフィールド絶縁膜に覆われない領域に不純物を添加
し、他導電型のソース、ドレイン領域を形成する方法に
おいて、半導体基板の−1表面上にゲート電極およびフ
ィールド絶縁膜を設は圧抜、その両者をマスクとして不
純物を含むプラズマにさらすことにより前記主表面から
不純物を導入し、その主表面をガスプラズマにさらすこ
とによシ活性化することによって自己整合的にソース、
ドレイン領域を形成するものである。
According to the present invention, an impurity is added to a gate electrode made of a metal provided from one main surface of a semiconductor substrate of a conductivity type via an insulating film and a region not covered with a field insulating film, and a source of a conductivity type of another conductivity type is added. In a method for forming a drain region, a gate electrode and a field insulating film are formed on the -1 surface of a semiconductor substrate, pressure is removed, and impurities are introduced from the main surface by exposing both of them to plasma containing impurities as a mask. , the source in a self-aligned manner by activating it by exposing its major surface to a gas plasma,
This forms a drain region.

〔発明の実施例〕[Embodiments of the invention]

以下、図を引用して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図(a)乃至(d)は本発明の一実施例の工程を示
す断面図であり、ゲート金属としてアルミニウムを用い
た例である。まず第2図(a)は、n型シリコン基板l
のフィールド部に1μm程度の厚い酸化膜2を、素子領
域には、300Xのゲート酸化M5を形成した後、アル
ミニウムから成るゲート電極6を堆積し、ゲート電極6
をマスクとするエツチングによシゲート酸化膜5をゲー
ト電極6の下にのみ残す工程である。アルミニウムゲー
ト電極6の厚さはao、ooiである。第2図(b)お
よび(0)の工程が本発明の適用工程であシ、第2図(
b)ではほう素イオンを含むプラズマに上記半導体基板
1の表面をさらすことによシ、ゲート電極6とフィール
ド酸化膜2とをマスクとして、ソース、ドレイン領域と
すべき部分に浅いほう未注入領域9を形成する。
FIGS. 2(a) to 2(d) are cross-sectional views showing the steps of an embodiment of the present invention, and are an example in which aluminum is used as the gate metal. First, Fig. 2(a) shows an n-type silicon substrate l.
After forming a thick oxide film 2 of approximately 1 μm in the field area and a gate oxide M5 of 300× in the element region, a gate electrode 6 made of aluminum is deposited.
This is a step in which the silicate oxide film 5 is left only under the gate electrode 6 by etching using as a mask. The thickness of the aluminum gate electrode 6 is ao and ooi. The steps shown in FIG. 2(b) and (0) are the steps to which the present invention is applied;
In b), by exposing the surface of the semiconductor substrate 1 to plasma containing boron ions, using the gate electrode 6 and the field oxide film 2 as masks, a shallower unimplanted region is formed in the portions to be the source and drain regions. form 9.

具体的には、半導体基板lを300℃の陰極板の上に配
置し、チャンバー内に水素でlooOppmに希釈した
B2Haガスを導入してガス圧力2Torr、直流印加
電圧500vでプラズマを発生させ、表面からほう素を
注入する。注入時間1分で、表面濃度l〜QXIOcm
、深さ0.1μmの浅い注入層9が形成される。つづい
て同じチャンバー内にアルゴンガスを導入バア“゛″′
を発生させ・半一体系板”の表面をそれにさらすことに
よシ、低温で注入不純物を活性化して、ソース、ドレイ
ン領域41、42を形成する。基板の温度は300℃程
度の低温である丸め接合深さは01μmのままである。
Specifically, a semiconductor substrate l is placed on a cathode plate at 300°C, B2Ha gas diluted with hydrogen to looOppm is introduced into the chamber, and plasma is generated at a gas pressure of 2 Torr and a DC applied voltage of 500 V, and the surface Inject boron. Injection time of 1 minute, surface concentration l~QXIOcm
, a shallow injection layer 9 with a depth of 0.1 μm is formed. Next, introduce argon gas into the same chamber.
By generating and exposing the surface of the semi-integrated substrate to it, the implanted impurities are activated at a low temperature to form source and drain regions 41 and 42.The temperature of the substrate is as low as about 300°C. The rounding junction depth remains at 01 μm.

さらに、OVD法によJ)5oooXの厚さの酸化膜を
眉間絶縁膜10として被着させる(第2図(C))。第
2図(d)は周知の工程であシ、ソース、ドレイン領域
41.42の上にコンタクトホールを開孔し、金属配線
、例えば5oooX厚のアルミニウム・シリコン合金膜
配線を形成した後、1μm厚のプラズマ窒化膜8でパッ
シベーションを施す工程である。
Furthermore, an oxide film having a thickness of J) 500X is deposited as the glabellar insulating film 10 by the OVD method (FIG. 2(C)). FIG. 2(d) shows a well-known process in which contact holes are formed above the source and drain regions 41 and 42, and a metal wiring, for example, an aluminum-silicon alloy film wiring with a thickness of 500X is formed, and then a 1 μm thick aluminum-silicon alloy film wiring is formed. This is a process of passivating with a thick plasma nitride film 8.

〔発明の効果〕〔Effect of the invention〕

本発明ハ、M工SF’FiTのソース、ドレイン領域へ
の不純物導入および活性化をプラズマを用いて行うもの
で、これらの処理が低温で実施できるため、寄生容量低
減法として有°効なゲートによる自己整合的な不純物導
入をアルミニウムのような低融点金属ゲートの場合でも
適用でき、アルミニウムの低抵抗性と相まって動作速度
の大幅な改善が可能となった。さらにソース、ドレイン
領域の深さを0.1μm程度に浅くできるため、寄生容
量の一層の低減と短チヤネル効果の防lト2いう二つの
効果本合わせて得られた。また、本発明によればイオン
注入装置のような複雑、高価な設備を用いる必要がなく
、また同一チャンバーで不純物注入と活性化を連続して
行うことができるため、高濃度不純物導入を短時間に効
率よく行うことができる。なおゲート電極としてはアル
ミニウムだけでなく、他の種々の金属も用いることがで
きることは言うまでもない。
In the present invention, plasma is used to introduce impurities into the source and drain regions of the MFC SF'FiT and to activate them, and these processes can be carried out at low temperatures, making it an effective method for reducing parasitic capacitance. This self-aligned impurity introduction can be applied even to gates made of low-melting-point metals such as aluminum, and combined with aluminum's low resistance, it has become possible to significantly improve operating speed. Furthermore, since the depth of the source and drain regions can be made shallow to about 0.1 .mu.m, two effects can be obtained: a further reduction in parasitic capacitance and prevention of the short channel effect. In addition, according to the present invention, there is no need to use complicated and expensive equipment such as an ion implanter, and impurity implantation and activation can be performed continuously in the same chamber, so high concentration impurity can be introduced in a short time. can be done efficiently. It goes without saying that not only aluminum but also various other metals can be used for the gate electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の絶縁アルミゲートa電界効果トランジ
スタの製造工程を示す断面図、第2図は、本発明の一実
施例の工程を示す断面図である。 l・・・シリコン基板、2・・・フィールド酸化膜、5
・・・ゲート酸化膜、6・・・アルミニウムゲート電極
、9・・・不純物注入領域、41、42・・・ソース、
ドレイン領域。 4142 第1図 4142 第2図
FIG. 1 is a sectional view showing the manufacturing process of a conventional insulated aluminum gate a field effect transistor, and FIG. 2 is a sectional view showing the process of an embodiment of the present invention. l...Silicon substrate, 2...Field oxide film, 5
... Gate oxide film, 6 ... Aluminum gate electrode, 9 ... Impurity implantation region, 41, 42 ... Source,
drain area. 4142 Figure 1 4142 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)−導電型の半導体基板の−1表面から絶縁膜を介し
て設けられた金属からなるゲート電極ならびにフィール
ド絶縁膜に覆われない領域に不純物を添加し、他導電型
のソース、ドレイン領域を形成する方法において、半導
体基板の一主表面上にゲート電極およびフィールド絶縁
膜を設けた後、該ゲート電極およびフィールド絶縁膜を
マスクとして不純物を含むプラズマにさらすことによシ
、前記主表面から不純物を導入し、該主表面をガスプラ
ズマにさらすことにより導入された不純物を活性化する
ことを特徴とする絶縁ゲート型電界効果トランジスタの
製造方法。
1) Impurities are added to the gate electrode made of metal provided through the insulating film from the -1 surface of the -1 conductivity type semiconductor substrate and the region not covered by the field insulating film, and the source and drain regions of the other conductivity type are added. In the forming method, after providing a gate electrode and a field insulating film on one main surface of a semiconductor substrate, impurities are removed from the main surface by exposing the gate electrode and field insulating film to plasma containing impurities using the gate electrode and field insulating film as a mask. 1. A method for manufacturing an insulated gate field effect transistor, comprising introducing impurities and activating the introduced impurities by exposing the main surface to gas plasma.
JP1069384A 1984-01-24 1984-01-24 Manufacture of insulated gate type field-effect transistor Pending JPS60154567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069384A JPS60154567A (en) 1984-01-24 1984-01-24 Manufacture of insulated gate type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069384A JPS60154567A (en) 1984-01-24 1984-01-24 Manufacture of insulated gate type field-effect transistor

Publications (1)

Publication Number Publication Date
JPS60154567A true JPS60154567A (en) 1985-08-14

Family

ID=11757360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069384A Pending JPS60154567A (en) 1984-01-24 1984-01-24 Manufacture of insulated gate type field-effect transistor

Country Status (1)

Country Link
JP (1) JPS60154567A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202726A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202726A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
KR20050094474A (en) Method of manufacturing a semiconductor device with mos transistors comprising gate electrodes formed in a packet of metal layers deposited upon one another
JPH0558257B2 (en)
JPS6360549B2 (en)
JPS60154567A (en) Manufacture of insulated gate type field-effect transistor
JPS5817673A (en) Field-effect transistor
JPS61241974A (en) Manufacture of semiconductor device
JPS60138973A (en) Manufacture of insulated gate type field effect transistor
JPH01205569A (en) Manufacture of mos-type semiconductor device
JPS6197975A (en) Manufacture of semiconductor device
KR920004913B1 (en) Manufacturing method of semiconductor device
JPH0127589B2 (en)
JPH0227769A (en) Semiconductor device
JPS5961182A (en) Manufacture of semiconductor device
KR20000045854A (en) Method of forming silicide layer of semiconductor device
JPS5836505B2 (en) Method for manufacturing semiconductor memory device
KR880001956B1 (en) Method of producing semiconductor integrated circuit
JPS5940306B2 (en) Denkai Koukahandou Taisouchinoseizouhouhou
JPS628028B2 (en)
JPS63244884A (en) Semiconductor device and manufacture thereof
JPS62137869A (en) Manufacture of field-effect transistor
JPH0352238A (en) Manufacture of compound semiconductor device
JPH0335533A (en) Manufacture of semiconductor device
JPH025411A (en) Manufacture of semiconductor device
JPS6038876A (en) Manufacture of semiconductor device