JPS60154318A - Manufacture of magnetic head - Google Patents

Manufacture of magnetic head

Info

Publication number
JPS60154318A
JPS60154318A JP1018484A JP1018484A JPS60154318A JP S60154318 A JPS60154318 A JP S60154318A JP 1018484 A JP1018484 A JP 1018484A JP 1018484 A JP1018484 A JP 1018484A JP S60154318 A JPS60154318 A JP S60154318A
Authority
JP
Japan
Prior art keywords
processing
resistor
parallelism
straight line
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1018484A
Other languages
Japanese (ja)
Inventor
Koji Takeshita
竹下 幸二
Yoshiki Hagiwara
萩原 芳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Computer Basic Technology Research Association Corp
Original Assignee
Computer Basic Technology Research Association Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Computer Basic Technology Research Association Corp filed Critical Computer Basic Technology Research Association Corp
Priority to JP1018484A priority Critical patent/JPS60154318A/en
Publication of JPS60154318A publication Critical patent/JPS60154318A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/1871Shaping or contouring of the transducing or guiding surface
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • G11B5/3166Testing or indicating in relation thereto, e.g. before the fabrication is completed

Abstract

PURPOSE:To process lots of magnetic heads at the same time with high accuracy by providing a resistance to both sides of the magnetic heads, adjusting the slope of processing so that the margin of the resistor is identical to the parallelism between the conversion gap and the resistor and processing the head in parallel with the conversion gap. CONSTITUTION:Two resistor 2 are arranged so as to be in parallel with a straight line A tying each gap zero position of a thin film element 1. The parallelism delta between the straight line A and the straight line B tying the two resistors 2 is detected by a high magnification and processing is attained so that the slope DELTAW on the basis of the two resistors is equal to the parallelism delta. Thus, the slope DELTAW is given by DELTAW=W0(R1/r1-R2/r2)=delta, where R1, R2 are initial resistance of each resistor, r1, r2 are resistance on the way of processing and W0 is a know value. Since the W0 and delta are known, the slope is decided by calculating the ratio of the initial resistance R1, R2 to the resistance r1, r2 on the way of processing. Thus, lots of magnetic heads are processed at the same time with high accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁気ヘッドの製造法に係り、特に薄膜磁気ヘ
ッドの電磁変換ギャップのギャップ深さ点 を高精度に加工するのに好適な裏書法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a magnetic head, and in particular to an endorsement method suitable for processing the gap depth point of an electromagnetic conversion gap of a thin film magnetic head with high precision. Regarding.

〔発明の背景〕[Background of the invention]

従来の実施例を第1〜3図により説明する。 A conventional embodiment will be explained with reference to FIGS. 1 to 3.

第1図は薄膜ヘッド素子部1の夫々のギャップ零位置を
結ぶ直線Aに対して平行となる様マスク合せを行ない、
別工程にて形成した2個の抵抗体2の配置状態を示す。
In FIG. 1, the masks are aligned so that they are parallel to the straight line A connecting the respective zero gap positions of the thin film head element section 1.
The arrangement of two resistors 2 formed in separate steps is shown.

直線Bは、2個の抵抗体2を結ぶ線を示す。Straight line B indicates a line connecting two resistors 2.

第2図は、第1図素子1のP−P断面を示す。FIG. 2 shows a PP cross section of the device 1 shown in FIG.

最終的にこのギャップ深さGを、夫々の素子にて等しく
なるように、加工する゛必要がある。第1図の直線Aは
、第2図のギャップ位置3の部分を結んだ直線である。
Ultimately, it is necessary to process the gap depth G so that it becomes equal for each element. A straight line A in FIG. 1 is a straight line connecting the gap position 3 in FIG.

第3図は、抵抗体2が加工される途中の図で、抵抗体幅
が、夫々Wl 、WIとなった状態を示す。
FIG. 3 is a diagram showing the resistor 2 in the process of being processed, and shows a state in which the resistor widths are Wl and WI, respectively.

従って、この場合、加工の傾きは、WI とWIの差で
あるΔWであり、この部分の傾きを補正する必要がある
。ここで、各抵抗体の初期抵抗’!1−fLt。
Therefore, in this case, the machining inclination is ΔW, which is the difference between WI and WI, and it is necessary to correct the inclination in this part. Here, the initial resistance of each resistor'! 1-fLt.

R2とし第3図のときの抵抗’!I”11”2 とする
と、VVl、 VJzは、 となり、従って傾き量ΔWは、 とカリ、WOは既知の値であるため、初期抵抗と、加工
途上の抵抗値との比を算出することによp1傾き補正′
!iを決定していた。
Assuming R2, the resistance when shown in Figure 3'! If I"11"2, then VVl and VJz are as follows, and therefore, the amount of inclination ΔW is as follows.As Kali and WO are known values, it is necessary to calculate the ratio between the initial resistance and the resistance value during machining. yo p1 tilt correction'
! i was determined.

ところで、第4図に示す様に、素子部1ギャップ零位置
を結ぶ直線Aと2個の抵抗体を結ぶ直線Bは、別工程に
て形成されるため平行度δが0.5〜1.0μm/20
mm生じてしまい、従って抵抗の比が等しくなるように
加工したままでは、直線Aと直線Bの平行度δがそのま
まギャップ深さのばらつきとして発生する欠点があった
By the way, as shown in FIG. 4, the straight line A connecting the element part 1 gap zero position and the straight line B connecting the two resistors are formed in separate processes, so the parallelism δ is 0.5 to 1. 0μm/20
Therefore, if processing is continued so that the resistance ratio is equal, the parallelism δ between straight line A and straight line B will directly occur as a variation in the gap depth.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、磁気ヘッドの先端部ギャップ深さを、
多数個同時に加工するため、加工中の傾きを高精度で横
出し、ギャップ深さ制御用抵抗体と素子部ギヤツブ零並
びに平行度に見合って補正する手法を提供することにあ
る。
An object of the present invention is to increase the tip gap depth of a magnetic head by
In order to process a large number of devices at the same time, it is an object of the present invention to provide a method for correcting the inclination during processing with high accuracy and commensurate with the gap depth control resistor, the element gear gear zero, and the parallelism.

〔発明の概要〕[Summary of the invention]

本発明は、多数個の磁気ヘッドの両サイド、あるいは、
その中間等に、磁気ヘッドの変換ギャップとほぼ平行に
、別途単独に、抵抗体を設け、この抵抗体の残り代が変
換ギャップと抵抗体の平行度に等しくなるように、加工
の傾きを調整し、変換ギャップと平行に加工することに
より、多数個のヘッド夫々が、高精度に加工できるもの
である、〔発明の実施例〕 以下、本発明の一実施例を第4図〜第6図によシ説明す
る。
The present invention applies to both sides of a large number of magnetic heads, or
A separate resistor is provided in the middle, approximately parallel to the transducer gap of the magnetic head, and the inclination of the machining is adjusted so that the remainder of this resistor is equal to the parallelism between the transducer gap and the resistor. However, by machining parallel to the conversion gap, each of a large number of heads can be machined with high precision. [Embodiment of the Invention] An embodiment of the present invention is shown in Figs. 4 to 6 below. I will explain it to you.

第4図は、第1図同様、薄膜素子1の夫々のギャップ零
位置を結ぶ直iv1glAと平行になるよう、2個の抵
抗体2を形成した図を示すが、別工程にて形成されるた
め、直線Aと2個の抵抗体2を結ぶ直線Bの平行度はδ
たけ生じている。
Similar to FIG. 1, FIG. 4 shows two resistors 2 formed in parallel with the straight line iv1glA connecting the zero gap positions of the thin film elements 1, but they are formed in separate steps. Therefore, the parallelism of straight line A and straight line B connecting two resistors 2 is δ
It's happening a lot.

従来の実施例では、2個の抵抗体を基準とした加工の傾
き量ΔWは、 ( で表わされ、ΔW=0となるよう、傾き補正量を決定し
ていた。
In the conventional embodiment, the inclination amount ΔW of machining with two resistors as a reference is expressed as ( , and the inclination correction amount was determined so that ΔW=0.

本実施例では、めらかしめギャップ零位置を結ぶ直mA
と、2個の抵抗体2を結ぶ直線Bの平行度δを2000
倍〜4000倍の高倍率で測定した後加工の傾き量ΔW
が平行度δと等しくなるように加工する。従って、傾き
量ΔWは、 となり、WOおよびδは、既知の値であるため、初期抵
抗と加工途上の抵抗値の比を、算出することにより、傾
き補正量を決定することができる。
In this example, the straight line mA connecting the zero position of the smooth tightening gap is
and the parallelism δ of the straight line B connecting the two resistors 2 is 2000.
Post-processing tilt amount ΔW measured at high magnification of 2x to 4000x
is processed so that it becomes equal to the parallelism δ. Therefore, the amount of inclination ΔW is as follows. Since WO and δ are known values, the amount of inclination correction can be determined by calculating the ratio of the initial resistance and the resistance value during processing.

第5図に、立型のスピンドル5と、左右に動くテーブル
6を有する研削盤7のテーブル6上に、傾き量補正装置
8を具備した加工装置9による一実施例を示す。
FIG. 5 shows an embodiment of a processing device 9 having an inclination correction device 8 on a table 6 of a grinding machine 7 having a vertical spindle 5 and a table 6 that moves left and right.

傾き量補正装置8は、10〜20個の薄膜ヘッド素子部
1を有す4アブロツク10をワックス等で接着した加工
治具11を取付けるチャックテーブル12の下に、パル
スモータ−13,1/200〜1/40Oi度の勾配を
有すクサビ140球15などを有し、パルスモータ−1
3の回転によりクサビ14を左右移動させ球15を介し
て、チャックテーブル12を上下動させコアブロック1
0部で微少に傾き補正させる機構となっている。
The tilt amount correction device 8 has a pulse motor 13, 1/200 below a chuck table 12 on which is mounted a processing jig 11 in which four abrasions 10 each having 10 to 20 thin film head elements 1 are bonded with wax or the like. It has a wedge 140 balls 15 with a slope of ~1/40 Oi degree, and a pulse motor 1.
3, the wedge 14 is moved left and right, and the chuck table 12 is moved up and down via the ball 15.
It is a mechanism that slightly corrects the tilt at 0 parts.

例えば、クサビ14の勾配が1/200で、コアブロッ
ク10とチャックテーブル12の長さ比が175の場合
では、クサビ14を左の方向に0.05mm移動するこ
とにより、コアブロック10は、半時針方向に微少量回
転し、0.05mm/1000=0.05μmの傾き補
正が可能である。
For example, if the slope of the wedge 14 is 1/200 and the length ratio of the core block 10 and the chuck table 12 is 175, by moving the wedge 14 to the left by 0.05 mm, the core block 10 can be moved in half. It rotates a small amount in the direction of the hour hand and can correct the inclination by 0.05 mm/1000 = 0.05 μm.

本実施例では、あらかじめ平行度δをインプロセス制御
部16に入力した後スピンドル5下端に取付けた砥石1
7でコアブロック10の加工を行ないガから、コアブロ
ック10の左右に設けた抵抗体2からの抵抗値をFPC
l 8などでインプロセスにて測定し、先の計算式・ に力るよう、インプロセス制御部16から)くルスモー
ター13へ信号を与える方式となっている。
In this embodiment, after inputting the parallelism δ into the in-process control unit 16 in advance, the grinding wheel 1 is attached to the lower end of the spindle 5.
After processing the core block 10 in step 7, the resistance values from the resistors 2 provided on the left and right sides of the core block 10 are measured on the FPC.
The method is such that the in-process control unit 16 gives a signal to the pulse motor 13 so that the measurement is performed in-process using the in-process controller 18, etc., and applied to the calculation formula shown above.

インプロセス制御部16は、研削盤制御部19とも信号
のやυ取りを行なっており、加工、抵抗値の計測、傾き
補正、加工をタイミング良くくり返し行なっている。
The in-process control unit 16 also performs signal correction with the grinding machine control unit 19, and repeats machining, resistance value measurement, inclination correction, and machining in a well-timed manner.

第6図に、実施後の状態を示す。加工後は、ギャップ零
位置を結ぶ直線Aと2個の抵抗体2を結ぶ直iBの平行
度δは、δ=WI W!だけ生じているが、加工面Cと
は平行になシ、多数個同時に、等しいギャップ深さGで
加工することが可能となシ、高精度なギャップ深さを全
ての素子で達成できることになる。
FIG. 6 shows the state after implementation. After processing, the parallelism δ of the straight line A connecting the zero gap position and the straight line iB connecting the two resistors 2 is δ=WI W! However, it is possible to machine many elements at the same time with the same gap depth G parallel to the processing surface C, and it is possible to achieve highly accurate gap depths for all elements. .

尚、本実施例でに、スピンドル5が立型となシ傾き量補
正装置8はクサビ方式となっているが、横型のスピンド
ルでも、圧電素子などを組み合せ利用する傾き量補正装
置であっても良いことは、言うまでもない。
In this embodiment, the spindle 5 is of a vertical type and the tilt amount correction device 8 is of a wedge type, but even if it is a horizontal spindle or a tilt amount correction device that uses a combination of piezoelectric elements etc. Needless to say, it's a good thing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、素子ギヤツブ零を結ぶ直線Aと2個の
抵抗体2を結ぶ直線Bの平行度に応じて、加工中の傾き
を高精度にめることができるので、磁気ヘッドを、多数
個同時に、高精度に加工することができる。
According to the present invention, the inclination during processing can be set with high precision according to the parallelism of the straight line A connecting the element gear zero and the straight line B connecting the two resistors 2, so that the magnetic head can be Many pieces can be processed simultaneously with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、薄膜ヘッド素子と抵抗体の位置関係図、第2
図は、第1図の薄膜ヘッド素子1のP−P線断面図、第
3図は、従来の加工途上での抵抗体の形状図、第4図は
、第1図同様薄膜ヘッド素子と抵抗体の位置関係図、第
5図は、本発明の一実施状態を示す構成図、第6図は、
本発明実施後の薄膜ヘッド素子と抵抗体の位置関係図で
ある。 1・・・薄膜ヘッド素子部、2・・・抵抗体、4・・・
薄膜磁性体、5・・・スピンドル、6・・・テーブル、
7・・・研削盤、8・・・傾き量補正装置、9・・・加
工装置、1o・・・コアブロック、11・・・加工治具
、12・・・チャックテーブル、13・・・パルスモー
タ−114・・・クサビ、15°°°球・ 16゛°°
イ′プ°七制御部・ 17−°°砥 7゜隼1図 82図 午 v′)3 図 第4閃 第5図 第ろ図
Figure 1 is a diagram showing the positional relationship between the thin film head element and the resistor;
The figure shows a sectional view taken along the line P-P of the thin film head element 1 in Fig. 1, Fig. 3 shows the shape of a resistor in the process of conventional processing, and Fig. 4 shows the thin film head element and the resistor as in Fig. 1. Figure 5 is a diagram showing the positional relationship of the body, and Figure 6 is a configuration diagram showing one implementation state of the present invention.
FIG. 3 is a positional relationship diagram between a thin film head element and a resistor after implementing the present invention. DESCRIPTION OF SYMBOLS 1... Thin film head element part, 2... Resistor, 4...
Thin film magnetic material, 5... spindle, 6... table,
7... Grinding machine, 8... Inclination amount correction device, 9... Processing device, 1o... Core block, 11... Processing jig, 12... Chuck table, 13... Pulse Motor 114... Wedge, 15°°° ball, 16°°
I'p°7 control section・17-°°grid

Claims (1)

【特許請求の範囲】[Claims] 1、加工量と相関を有する抵抗体の抵抗値を検出し、加
工量を制御する加工方式において、複数個の薄膜ヘッド
の夫々の変換ギャップと、複数個設置した抵抗体の平行
度をあらかじめ測定した後、前記平行度に見合う値を設
定し、加工することを特徴とし、抵抗体の加工途上の抵
抗値と加工される前の初期抵抗値との比を測定し、各抵
抗体の比の差よりめられる加工アンバランス量を前記設
定値に等しくなるように加工の傾きを補正しながら、磁
気ヘッドの先端部を高精度に加工することを特徴とする
磁気ヘッド製造法。
1. In a processing method that detects the resistance value of a resistor that has a correlation with the amount of processing and controls the amount of processing, the conversion gap of each of multiple thin film heads and the parallelism of multiple resistors installed are measured in advance. After that, a value corresponding to the parallelism is set and processed, and the ratio of the resistance value of the resistor during processing and the initial resistance value before processing is measured, and the ratio of each resistor is determined. A method for manufacturing a magnetic head, characterized in that the tip of the magnetic head is machined with high precision while correcting the slope of the process so that the amount of machining imbalance determined from the difference is equal to the set value.
JP1018484A 1984-01-25 1984-01-25 Manufacture of magnetic head Pending JPS60154318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1018484A JPS60154318A (en) 1984-01-25 1984-01-25 Manufacture of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018484A JPS60154318A (en) 1984-01-25 1984-01-25 Manufacture of magnetic head

Publications (1)

Publication Number Publication Date
JPS60154318A true JPS60154318A (en) 1985-08-14

Family

ID=11743195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018484A Pending JPS60154318A (en) 1984-01-25 1984-01-25 Manufacture of magnetic head

Country Status (1)

Country Link
JP (1) JPS60154318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315061U (en) * 1990-06-28 1991-02-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315061U (en) * 1990-06-28 1991-02-15
JPH0513487Y2 (en) * 1990-06-28 1993-04-09

Similar Documents

Publication Publication Date Title
JP4921444B2 (en) Method for correcting the position of a grinding spindle in a double-sided grinder for simultaneous double-side machining of semiconductor wafers and apparatus for carrying out the method
US6370763B1 (en) Manufacturing method for magnetic heads
US6081991A (en) Manufacturing method of magnetic head apparatus
JPS60154318A (en) Manufacture of magnetic head
JPH08174320A (en) Device and method for machining up to fixed depth
JP2861291B2 (en) Method for manufacturing thin-film magnetic head and apparatus for manufacturing thin-film magnetic head
JP2005063074A (en) Method and device for machining curved surface
JP3412208B2 (en) Tool cutting machine
JP2004337995A (en) Corrective machining method and corrective machining device
JPH0740233A (en) Thickness measuring device of work
JP3809670B2 (en) Grinding machine and control method thereof
JPS61252069A (en) Device for controlling surface grinding machine
JPS6010407A (en) Production of magnetic head
JPS6331877Y2 (en)
JPH0899254A (en) Spindle device
JPH0671687B2 (en) Electric discharge machine
JP2005007571A (en) Lapping machine and lapping method
JP2001179621A (en) Displacement measurement device and grinding attachment
JPH07136801A (en) Mobile turning tool type cutter
JPS5938972Y2 (en) Finishing face milling cutter
JPS59148113A (en) Production of thin film magnetic head
JP3582953B2 (en) Wire electric discharge machine
JPS63278868A (en) Production of thermal head
JPH106182A (en) Machining method and device
JPH0144470B2 (en)