JP3582953B2 - Wire electric discharge machine - Google Patents

Wire electric discharge machine Download PDF

Info

Publication number
JP3582953B2
JP3582953B2 JP09449797A JP9449797A JP3582953B2 JP 3582953 B2 JP3582953 B2 JP 3582953B2 JP 09449797 A JP09449797 A JP 09449797A JP 9449797 A JP9449797 A JP 9449797A JP 3582953 B2 JP3582953 B2 JP 3582953B2
Authority
JP
Japan
Prior art keywords
wire
electrode
wire electrode
electric discharge
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09449797A
Other languages
Japanese (ja)
Other versions
JPH10277843A (en
Inventor
弘生 金子
小新 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP09449797A priority Critical patent/JP3582953B2/en
Publication of JPH10277843A publication Critical patent/JPH10277843A/en
Application granted granted Critical
Publication of JP3582953B2 publication Critical patent/JP3582953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ワイヤ電極とワークとを相対移動させてワークに所望形状を加工するワイヤ放電加工機に関する。
【0002】
【従来の技術】
一般に、ワイヤ放電加工機では、ワークに加工すべき所望形状に応じてワイヤ電極の中心位置の移動軌跡である加工軌跡プログラムを作成して、使用するワイヤ電極の半径と荒加工や仕上加工の加工条件等に応じた放電ギャップ(加工間隙)とを合せた量をオフセット量とし、ワイヤ電極またはワークの加工軌跡プログラムに応じた移動量に前記オフセット量を加味した移動量をワイヤ電極またはワークの移動手段に指令するようにしている。
【0003】
しかし、ワイヤ電極の電極径には製作誤差があるばかりでなく、各箇所でバラツキがあり、これがワイヤ電極のオフセット量の指令時に悪影響を与えてしまい、ひいては加工精度の低下をまねいてしまう。また、要求されているワークの加工精度が高い場合には、寸法精度の高いワイヤ電極を使用すればよいが、こうした寸法精度の高いワイヤ電極を製作することにはかなりのコストアップを伴ってしまう。また、ワイヤ電極の走行中の張力により延伸され、線径に変化を生ずる可能性もある。
【0004】
こうした問題を解決する従来技術として、所望の放電加工後に測定した放電加工後のワイヤ電極の電極径と、予め記憶された最適加工条件における放電加工後のワイヤ電極の電極径とを比較することにより、所望の加工条件を最適加工条件の放電電圧または放電電流、ワーク移動速度に調整するようにしたものが、特開平7−60551号公報に開示されている。
【0005】
【発明が解決しようとする課題】
しかし、ワイヤ電極は放電加工により均一に消耗するとは限らず、その断面形状は不均一な形状となることが多く、上記の従来技術のように放電加工後のワイヤ電極の電極径を測定しても測定する位置によりその電極径には形状寸法差があり、正確なワイヤ電極の電極径が得られず、ワイヤ電極の電極径の誤差としてオフセット量に取り込むことが困難である。
【0006】
そこで、本発明は、放電加工前のワイヤ電極の電極径を測定して電極径の形状誤差をオフセット量に反映させることにより加工精度の向上を図ることができるワイヤ放電加工機を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
ワイヤ電極の放電加工前の電極径を測定する電極径測定手段、好ましくは、測定部がワイヤ電極の中心軸線回りに360°割出、回転可能であり、加工進行方向に対して垂直方向からワイヤ電極の電極径を測定できる電極径測定手段と、加工プログラムに記憶したワイヤ電極の電極径と前記電極径測定手段で測定したワイヤ電極の電極径とからオフセット量の補正量であるワイヤ電極の電極径の誤差を演算するオフセット補正量演算手段と、を設けるようにしたもので、下記のような構成を備えている。
【0008】
(1) ワイヤ電極を走行させるとともに前記ワイヤ電極とワークとを相対移動させて前記ワークに所望形状を加工するワイヤ電極加工機において、
前記ワイヤ電極と前記ワークとを相対移動させる相対移動手段と、
前記ワイヤ電極の電極径、前記ワイヤ電極の電極径及び放電間隙に応じたオフセット量、前記所望形状に応じた加工形状プログラムからなる放電加工プログラムを読み込む放電加工プログラム読込手段と、
前記放電加工プログラムの前記加工形状プログラムに前記オフセット量を加味し、前記
ワイヤ電極と前記ワークとの相対移動量を演算し、前記相対移動手段へ送出する移動量演算手段と、
前記ワイヤ電極と前記ワークとの放電加工部の前段に設けられ、前記ワイヤ電極の放電加工前の電極径を測定するため、測定部を前記ワイヤ電極の中心軸周りに割出、回転させる割出回転手段を備え、加工進行方向に対して常に垂直な方向からの前記ワイヤ電極の電極径を測定する電極径測定手段と、
前記読み込んだワイヤ電極の電極径及び前記測定したワイヤ電極の電極径から前記ワイヤ電極の電極径の誤差を演算し、前記オフセット量の補正量として前記移動量演算手段へ送出するオフセット補正量演算手段と、
を具備し、前記ワイヤ電極と前記ワークとの相対移動時に放電加工前の前記ワイヤ電極の形状誤差を補正するワイヤ電極加工機。
【0009】
【作用】
ワイヤ放電加工機によりワークに所望形状を加工するにあたって、放電加工プログラム読込手段に、ワイヤ電極の電極径、ワイヤ電極の電極径及び放電間隙に応じたオフセット量、前記所望形状に応じた加工形状プログラム等からなる放電加工プログラムを読み込む。移動量演算手段で放電加工プログラムの加工形状プログラムにオフセット量を加味し、ワイヤ電極とワークとの相対移動量を演算して、ワイヤ電極とワークとの相対移動手段へ送出する。
【0010】
そして、ワイヤ電極とワークとを相対移動させながらワーク加工すると同時に、ワイヤ電極とワークとの放電加工部の前段に設けられた電極径測定手段でワイヤ電極の放電加工前の電極径を測定し、オフセット補正量演算手段で放電加工プログラム読込手段に読み込んだワイヤ電極の電極径との差からワイヤ電極の電極径の誤差を演算し、オフセット量の補正量として移動量演算手段へ送出するようにしたので、加工に用いられるワイヤ電極の形状寸法誤差をオフセット量の補正量として取り込むことができる。
【0011】
【発明の実施の形態】
図1は本発明による実施形態を示す加工制御ブロック図を含むワイヤ放電加工機の要部拡大図、図2は本発明のワイヤ放電加工機のワイヤ電極径測定手段を示す図で、(a)は正面図、(b)はそのA−A断面図、図3は本発明のワイヤ放電加工機におけるワイヤ電極の形状寸法に対するオフセット量補正制御方法を示すフローチャートである。
【0012】
図1に示すように、ワイヤボビン等のワイヤ供給手段(図示せず)から供給されたワイヤ電極(以下ワイヤと云う)1は、ワイヤ張力発生手段(図示せず)で所望の張力が付与され、上ガイドローラ3で方向転換され、ワーク5に対する放電加工部7を通過して、下ガイドローラ9で方向転換され、ワイヤ回収手段(図示せず)で回収される。なお、ワーク5の上下には、給電子11、上ワイヤガイド13を備えた上ヘッド15、及び、給電子17、下ワイヤガイド19を備えた下ヘッド21が設けられており、上ヘッド15の給電子11と下ヘッド21の給電子17を介してワイヤ1に給電するよう構成されている。また、ワーク5に対してはワイヤ1と逆の電圧が供給され、上ワイヤガイド13と下ワイヤガイド19とにより経路を規制されたワイヤ1とワーク5との間で放電加工が行われる。
【0013】
ところで、ワイヤ放電加工機の電極となるワイヤ1には、例えば、0.1 mm、0.2 mm、0.25mm、0.3 mm等各種径のものが用いられるが、ワイヤ径には製作誤差があり、その誤差を少なくしようとすると、コストアップが避けられず、それでもワイヤ全長にわたって誤差のない均一なものが得られ難い。
【0014】
前記した従来の技術についての記載部分で、ワイヤ放電加工機では、ワークに加工すべき所望形状に応じてワイヤ電極の中心位置の移動軌跡である加工軌跡プログラムを作成して、使用するワイヤ電極の半径と荒加工や仕上加工の加工条件等に応じた放電ギャップ(加工間隙)とを合せた量をオフセット量とし、ワイヤ電極またはワークの加工軌跡プログラムに応じた移動量に前記オフセット量を加味した移動量をワイヤ電極またはワークの移動手段に指令するようにしている旨述べたが、ワイヤ電極径に誤差があれば、加工製品に加工誤差として現われることになり、精密な加工ができなくなる。
【0015】
そこで本発明においては、ワーク5に対する放電加工部7の前段に、放電加工前のワイヤ1の電極径を測定するワイヤ径測定装置23を設け、ワイヤ1の電極径を測定し、その測定結果をワイヤ1またはワーク5の加工軌跡プログラムに応じた移動量に反映させることにより、加工精度の向上を図るよう構成させてある。
【0016】
なお、ワイヤ1の電極径の測定は、一定時間ごとに行うようにしてもよく、また、ワイヤ径測定装置23をワイヤ1の中心軸線回りに360°割り出し、回転可能に構成し、常にワイヤ1によるワーク5に対する加工進行方向とワイヤ走行方向と対して垂直方向のワイヤ1の電極径を測定できるようにすることにより、ワイヤ電極断面が真円となっていない場合でも正確な加工を行うことができる。
【0017】
次に、ワイヤ径測定装置23の構成について図2に従って説明する。
図2において、(a)は正面図、(b)はそのA−A断面図で、適宜支承板25により回転自在に支承された歯車27には、歯車27中心軸部を貫通するワイヤ1のワイヤ通孔29が設けられており、そのワイヤ1の走行方向に対し垂直平面上に、多数本の光線31を投光する投光素子群33とこれにワイヤ1を挾んで対面する受光素子群35が同歯車27上のベース37に設けられている。
【0018】
受光素子群35は、投光素子群33の投光する多数本の光線に対応した状態で多数の受光素子が配列されており、(b)図に示すように、ワイヤ1によりその受光素子を幾つ遮ったかを数えることでワイヤ1の電極径を測定する。もっとも、受光数によらずに受光量を測定するようにしてもよい。このようにして測定されたワイヤ径は、ワイヤ断面が真円となっていなくても、その光の投光された線幅を測定したことになる。なお、本実施形態では、電極径の測定に投影する光線の影を利用しているが、投影光以外の測定手段を用いてもよい。
【0019】
それ故、その線幅の半分を放電ギャップ量に加えたものを放電加工におけるオフセット量とすれば、ワイヤ電極径に誤差があっても常に正確な加工が行えることになる。
【0020】
しかし、図1に示すように、放電加工による加工形状軌跡39は常に一定方向にあるのではないので、ワイヤ1の加工仕上面に対面する場所は変化することになる。そこで、ワイヤ径測定装置23により測定された線幅の半分を放電ギャップ量に常に加えることにより正確な仕上げ面が得られるよう、ワーク5の加工形状軌跡39に対応してワイヤ径測定装置23をワイヤ1の周りに回動するようにすることにより、加工仕上面に対する側を一側とするワイヤ1の線幅を測定し、その結果を利用して、ワイヤ径の誤差によるオフセット量を常に正確な値とすることができるようにする。
【0021】
すなわち、図2に示すように、支承板25に回転自在に支承されたワイヤ径測定装置23の歯車27は、同じく支承板25に支承されたサーボモータ41の歯車43と噛み合っていて、サーボモータ41の制御回転によりワイヤ径測定装置23が回動されるよう構成されている。そして、予め設定された加工形状軌跡39のXY方向移動量からその加工進行方向を求め、常に加工進行方向に対し垂直方向からのワイヤ径を測定
する。例えば、円を加工するのであれば、ワイヤ径測定装置23は回転することになる。
【0022】
なお、放電加工機のワイヤ径測定装置23による検出値を放電加工機の加工に利用するブロック図は図1に記載されているので、これについて簡単に説明する。
【0023】
ワイヤ電極径測定装置を備えていない従来の放電加工機においては、放電加工プログラム読込手段45からの信号(ワイヤ電極径の数値も考慮済)が、鎖線で示すように、ワイヤ1とワーク5との移動量演算手段47に伝えられ、これよりワイヤ1とワーク5との相対移動手段49を作動させてワーク5の放電加工が行われている。勿論、相対移動は、ワイヤ1を移動させてもよいし、ワーク5を移動させるようにしてもよい。
【0024】
本発明においては、ワイヤ径測定装置23を設けて、その測定値を、放電加工プログラム読込手段45と移動量演算手段47との間に設けたオフセット量演算手段53において、放電加工プログラム読込手段45よりの信号とを掛け合わせることにより、ワイヤ径の誤差に基づくオフセット補正量を演算し、その結果を従来よりある移動量演算手段47に伝え、さらに相対移動手段49を作動させるよう構成されている。なお、ワイヤ放電加工機におけるワイヤ1の形状寸法に対するオフセット量補正制御方法は、フローチャートとして図3に示してあるので参照されたい。
【0025】
さらに、ワイヤ径測定装置23をワイヤ1の走行方向を軸心として回動可能とすることにより、ワイヤ1の真円度誤差を排除するよう構成することもできる。すなわち、図2に示すように、ワイヤ径測定装置23に対するサーボモータ41、歯車43よりなる回転駆動手段を設け、図1にブロック図として示す割出回転手段51として、放電加工プログラム読込手段45よりの信号を利用して、ワーク5の加工形状軌跡39に沿って移動する加工仕上面に対面する方向のワイヤ1の線幅を測定し、ワイヤ電極径の真円誤差によるオフセット補正量を考慮できるよう、オフセット補正量演算手段53に測定結果を入力するようにする。
【0026】
また、ワーク5の加工形状軌跡39に対応してワイヤ径測定装置23をワイヤ1の周りに回動するようにすることにより、加工仕上面に対面する方向のワイヤ1の線幅を測定し、その結果を利用して、ワイヤ電極径誤差及び真円誤差によるオフセット補正量を常に正確な値とすることができる
【0027】
すなわち、ワイヤ径測定手段23によるワイヤ1の電極径の測定位置が、ワーク5との間の放電加工位置と一致するように制御されることになる。
【0028】
【発明の効果】
上記したように、放電加工前のワイヤ電極の電極径を測定するようにしたので、ワークの加工時における正確なワイヤ電極の電極径を得ることができ、その測定値を利用して正確な放電加工を行うことができる。すなわち、測定したワイヤ電極の放電加工前の電極径と放電加工プログラムのワイヤ電極の電極径との差からオフセット量の補正量を演算し、取り込み、移動量を演算するようにしたので、ワイヤ電極の電極径にバラツキがあっても、また、寸法精度の高いワイヤ電極を使用することなく、加工精度の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明による実施形態を示す加工制御ブロック図を含むワイヤ放電加工機の要部拡大図である。
【図2】本発明のワイヤ放電加工機のワイヤ径測定手段を示す図で、(a)は正面図、(b)はそのA−A断面図である。
【図3】本発明のワイヤ放電加工機におけるワイヤ電極の形状寸法に対するオフセット量補正制御方法を示すフローチャートである。
【符号の説明】
1 ワイヤ電極
3 上ガイドローラ
5 ワーク
7 放電加工部
9 下ガイドローラ
23 ワイヤ径測定装置
27 歯車
29 ワイヤ通孔
31 光線
33 投光素子
35 受光素子
39 加工形状軌跡
41 サーボモータ
43 歯車
45 放電加工プログラム読込手段
47 移動量演算手段
49 相対移動手段
53 オフセット補正量演算手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wire electric discharge machine for processing a desired shape on a workpiece by relatively moving a wire electrode and the workpiece.
[0002]
[Prior art]
Generally, in a wire electric discharge machine, a machining trajectory program which is a movement trajectory of a center position of a wire electrode is created according to a desired shape to be machined on a workpiece, and a radius of a wire electrode to be used and machining of rough machining and finish machining are performed. The amount obtained by combining the discharge gap (machining gap) according to the conditions and the like is defined as the offset amount, and the movement amount obtained by adding the offset amount to the movement amount according to the machining path program of the wire electrode or the work is moved. It is instructed to the means.
[0003]
However, not only is there a manufacturing error in the electrode diameter of the wire electrode, but there is also a variation in each location, which has an adverse effect on the command of the offset amount of the wire electrode, which leads to a reduction in processing accuracy. If the required processing accuracy of the workpiece is high, a wire electrode with high dimensional accuracy may be used, but manufacturing such a wire electrode with high dimensional accuracy involves a considerable increase in cost. . In addition, the wire electrode may be stretched by the tension during traveling, causing a change in the wire diameter.
[0004]
As a conventional technique for solving such a problem, by comparing the electrode diameter of the wire electrode after the electric discharge machining measured after the desired electric discharge machining with the electrode diameter of the wire electrode after the electric discharge machining under the optimal machining conditions stored in advance. Japanese Patent Application Laid-Open No. 7-60551 discloses a technique in which desired processing conditions are adjusted to discharge voltage or discharge current and work moving speed under optimum processing conditions.
[0005]
[Problems to be solved by the invention]
However, the wire electrode is not always consumed uniformly by electric discharge machining, and its cross-sectional shape is often uneven, and the electrode diameter of the wire electrode after electric discharge machining is measured as in the above-described conventional technique. Also, there is a difference in the shape and dimension of the electrode diameter depending on the position to be measured, so that an accurate electrode diameter of the wire electrode cannot be obtained, and it is difficult to incorporate the error in the electrode diameter of the wire electrode into the offset amount.
[0006]
Therefore, the present invention provides a wire electric discharge machine capable of improving machining accuracy by measuring the electrode diameter of a wire electrode before electric discharge machining and reflecting a shape error of the electrode diameter in an offset amount. Aim.
[0007]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
An electrode diameter measuring means for measuring an electrode diameter of the wire electrode before electric discharge machining, preferably, the measuring unit is rotatable 360 ° around a central axis of the wire electrode and rotatable, and the wire is perpendicular to the machining direction. An electrode diameter measuring means capable of measuring the electrode diameter of the electrode; and a wire electrode electrode which is a correction amount of the offset amount from the electrode diameter of the wire electrode stored in the processing program and the electrode diameter of the wire electrode measured by the electrode diameter measuring means. And an offset correction amount calculating means for calculating a diameter error, and has the following configuration.
[0008]
(1) In a wire electrode processing machine that runs a wire electrode and relatively moves the wire electrode and a workpiece to process a desired shape on the workpiece.
Relative movement means for relatively moving the wire electrode and the work,
Electrode diameter of the wire electrode, an offset amount according to the electrode diameter of the wire electrode and a discharge gap, an electric discharge machining program reading means for reading an electric discharge machining program comprising a machining shape program according to the desired shape,
In consideration of the offset amount in the machining shape program of the electric discharge machining program, a relative movement amount between the wire electrode and the work is calculated, and a movement amount calculation unit to send to the relative movement unit,
Indexing is provided before the electric discharge machining part of the wire electrode and the work, and the measuring part is indexed around the central axis of the wire electrode and rotated to measure an electrode diameter of the wire electrode before electric discharge machining. Equipped with a rotating means, electrode diameter measuring means for measuring the electrode diameter of the wire electrode from a direction always perpendicular to the processing progress direction ,
An error of the electrode diameter of the wire electrode is calculated from the read electrode diameter of the wire electrode and the measured electrode diameter of the wire electrode, and the offset correction amount calculating means is sent to the moving amount calculating means as a correction amount of the offset amount. When,
A wire electrode machine for correcting a shape error of the wire electrode before electric discharge machining when the wire electrode and the workpiece are relatively moved.
[0009]
[Action]
When machining a desired shape on a work by a wire electric discharge machine, an electric discharge machining program reading means includes an electrode diameter of a wire electrode, an offset amount according to an electrode diameter of a wire electrode and a discharge gap, and a machining shape program according to the desired shape. And the like. The movement amount calculating means calculates the relative movement amount between the wire electrode and the work by taking the offset amount into consideration into the machining shape program of the electric discharge machining program, and sends it to the relative movement means between the wire electrode and the work.
[0010]
Then, at the same time as the workpiece is processed while the wire electrode and the workpiece are relatively moved, the electrode diameter before the electrical discharge machining of the wire electrode is measured by an electrode diameter measuring means provided in a stage preceding the electrical discharge machining part of the wire electrode and the workpiece, The error of the electrode diameter of the wire electrode is calculated from the difference from the electrode diameter of the wire electrode read into the electric discharge machining program reading means by the offset correction amount calculation means, and is sent to the movement amount calculation means as a correction amount of the offset amount. Therefore, it is possible to take in the dimensional error of the wire electrode used for processing as a correction amount of the offset amount.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an enlarged view of a main part of a wire electric discharge machine including a machining control block diagram showing an embodiment according to the present invention, and FIG. 2 is a diagram showing a wire electrode diameter measuring means of the wire electric discharge machine of the present invention. FIG. 3B is a front view, FIG. 3B is a cross-sectional view taken along the line AA, and FIG.
[0012]
As shown in FIG. 1, a desired tension is applied to a wire electrode (hereinafter, referred to as a wire) 1 supplied from a wire supply means (not shown) such as a wire bobbin by a wire tension generating means (not shown). The direction is changed by the upper guide roller 3, passes through the electric discharge machining section 7 for the work 5, is changed by the lower guide roller 9, and is collected by a wire collecting means (not shown). In addition, an upper head 15 provided with a power supply 11 and an upper wire guide 13 and a lower head 21 provided with a power supply 17 and a lower wire guide 19 are provided above and below the work 5. The power is supplied to the wire 1 via the power supply 11 and the power supply 17 of the lower head 21. Further, a voltage opposite to that of the wire 1 is supplied to the work 5, and electric discharge machining is performed between the wire 1 and the work 5 whose paths are regulated by the upper wire guide 13 and the lower wire guide 19.
[0013]
By the way, as the wire 1 serving as an electrode of a wire electric discharge machine, various diameters such as 0.1 mm, 0.2 mm, 0.25 mm, and 0.3 mm are used. There is an error, and an attempt to reduce the error inevitably increases the cost. However, it is difficult to obtain a uniform wire having no error over the entire length of the wire.
[0014]
In the above description of the conventional technique, in the wire electric discharge machine, a machining path program which is a movement path of the center position of the wire electrode is created according to a desired shape to be machined into a work, and a wire path of a wire electrode to be used is created. The amount obtained by adding the radius and the discharge gap (machining gap) according to the machining conditions of rough machining or finish machining is defined as the offset amount, and the offset amount is added to the movement amount according to the machining path program of the wire electrode or the work. It has been described that the moving amount is instructed to the wire electrode or the moving means of the work. However, if there is an error in the wire electrode diameter, it will appear as a processing error in the processed product, and precise processing cannot be performed.
[0015]
Therefore, in the present invention, a wire diameter measuring device 23 for measuring an electrode diameter of the wire 1 before the electric discharge machining is provided at a stage preceding the electric discharge machining section 7 for the workpiece 5, and the electrode diameter of the wire 1 is measured. The processing accuracy is improved by reflecting the movement amount of the wire 1 or the work 5 in accordance with the processing locus program.
[0016]
The measurement of the electrode diameter of the wire 1 may be performed every predetermined time, also, the wire diameter measurement device 23 indexing 360 ° about the central axis of the wire 1, and rotatable in, always wire 1 performed by for to the machining direction of travel and the wire traveling direction with respect to the workpiece 5 to be able to measure the electrode diameter of the vertical direction of the wire 1, a precise machining even when the wire electrode section is not the perfect circle by be able to.
[0017]
Next, the configuration of the wire diameter measuring device 23 will be described with reference to FIG.
In FIG. 2, (a) is a front view, and (b) is a cross-sectional view taken along the line AA. A gear 27 rotatably supported by a support plate 25 is provided with a wire 1 passing through a central shaft portion of the gear 27. A wire through hole 29 is provided, and a light emitting element group 33 for projecting a large number of light beams 31 on a plane perpendicular to the traveling direction of the wire 1 and a light receiving element group facing the light emitting element 33 with the wire 1 interposed therebetween. 35 is provided on a base 37 on the gear 27.
[0018]
In the light receiving element group 35, a large number of light receiving elements are arranged in a state corresponding to the large number of light beams emitted by the light emitting element group 33, and as shown in FIG. The electrode diameter of the wire 1 is measured by counting the number of blocks. However, the amount of received light may be measured regardless of the number of received light. The wire diameter measured in this way means that the line width of the projected light is measured even if the wire cross section is not a perfect circle. In the present embodiment, the shadow of the projected light beam is used for the measurement of the electrode diameter, but a measuring unit other than the projected light may be used.
[0019]
Therefore, if a value obtained by adding half of the line width to the discharge gap amount is used as the offset amount in the electric discharge machining, accurate machining can always be performed even if there is an error in the wire electrode diameter.
[0020]
However, as shown in FIG. 1, since the machining shape trajectory 39 by the electric discharge machining is not always in a fixed direction, the place where the wire 1 faces the machined surface changes. Therefore, the wire diameter measuring device 23 is required to correspond to the machining shape trajectory 39 of the workpiece 5 so that an accurate finished surface can be obtained by always adding half of the line width measured by the wire diameter measuring device 23 to the discharge gap amount. by so rotates around the wire 1, the side on which pairs toward the finishing operation surface by measuring the line width of the wires 1, one side, by utilizing the result, the offset amount due to the error in wire diameter Can always be an accurate value.
[0021]
That is, as shown in FIG. 2, the gear 27 of the wire diameter measuring device 23 rotatably supported on the support plate 25 meshes with the gear 43 of the servomotor 41 also supported on the support plate 25, and The wire diameter measuring device 23 is rotated by the control rotation of 41. Then, the processing proceeding direction determined from the XY direction movement of the machining shape trajectory 39 which is set in advance, always measure the wire diameter from a direction perpendicular to the processing direction of travel. For example, when processing a circle, the wire diameter measuring device 23 rotates.
[0022]
Note that a block diagram for using the detected value by the wire diameter measuring device 23 of the electric discharge machine for processing of the electric discharge machine is shown in FIG. 1 and will be briefly described.
[0023]
In a conventional electric discharge machine without a wire electrode diameter measuring device, the signal from the electric discharge machining program reading means 45 (the numerical value of the wire electrode diameter is also taken into account) indicates the connection between the wire 1 and the work 5 as shown by a chain line. The electric discharge machining of the work 5 is performed by operating the relative movement means 49 between the wire 1 and the work 5. Of course, the relative movement may be to move the wire 1 or to move the work 5.
[0024]
In the present invention, the wire diameter measuring device 23 is provided, and the measured value is transferred to the electric discharge machining program reading means 45 by the offset amount computing means 53 provided between the electric discharge machining program reading means 45 and the moving amount computing means 47. The signal is multiplied by a signal from the controller to calculate an offset correction amount based on an error in the wire diameter, the result is transmitted to a conventional moving amount calculating unit 47, and a relative moving unit 49 is further operated. . It should be noted that the offset amount correction control method for the shape and size of the wire 1 in the wire electric discharge machine is shown in a flowchart of FIG.
[0025]
Further, by making the wire diameter measuring device 23 rotatable around the traveling direction of the wire 1, it is possible to eliminate the roundness error of the wire 1. That is, as shown in FIG. 2, a rotary drive unit including a servomotor 41 and a gear 43 for the wire diameter measuring device 23 is provided, and as an indexing rotary unit 51 shown as a block diagram in FIG. Is used to measure the line width of the wire 1 in the direction facing the processing surface moving along the processing shape trajectory 39 of the workpiece 5, and the offset correction amount due to the perfect circular error of the wire electrode diameter can be considered. Thus, the measurement result is input to the offset correction amount calculating means 53.
[0026]
Further, by turning the wire diameter measuring device 23 around the wire 1 in accordance with the machining shape trajectory 39 of the work 5, the wire width of the wire 1 in the direction facing the machining surface is measured, Using the result, the offset correction amount due to the wire electrode diameter error and the perfect circle error can always be set to an accurate value.
That is, the position where the electrode diameter of the wire 1 is measured by the wire diameter measuring means 23 is controlled so as to coincide with the position of the electric discharge machining between the workpiece 5 and the electric wire.
[0028]
【The invention's effect】
As described above, since the electrode diameter of the wire electrode before the electric discharge machining is measured, it is possible to obtain an accurate electrode diameter of the wire electrode at the time of machining the work, and to use the measured value to make an accurate discharge. Processing can be performed. That is, the offset amount correction amount is calculated from the difference between the measured electrode diameter of the wire electrode before the electric discharge machining and the electrode diameter of the wire electrode in the electric discharge machining program, taken in, and the movement amount is calculated. Even if the electrode diameter varies, the processing accuracy can be improved without using a wire electrode having high dimensional accuracy.
[Brief description of the drawings]
FIG. 1 is an enlarged view of a main part of a wire electric discharge machine including a machining control block diagram showing an embodiment according to the present invention.
FIGS. 2A and 2B are diagrams showing a wire diameter measuring means of the wire electric discharge machine according to the present invention, wherein FIG. 2A is a front view and FIG.
FIG. 3 is a flowchart showing a method of controlling offset amount correction for the shape and dimensions of a wire electrode in the wire electric discharge machine of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wire electrode 3 Upper guide roller 5 Work 7 Electric discharge machining part 9 Lower guide roller 23 Wire diameter measuring device 27 Gear 29 Wire through hole 31 Light beam 33 Light emitting element 35 Light receiving element 39 Processing shape locus 41 Servo motor 43 Gear 45 Electric discharge machining program Reading means 47 Moving amount calculating means 49 Relative moving means 53 Offset correction amount calculating means

Claims (1)

ワイヤ電極を走行させるとともに前記ワイヤ電極とワークとを相対移動させて前記ワークに所望形状を加工するワイヤ電極加工機において、
前記ワイヤ電極と前記ワークとを相対移動させる相対移動手段と、
前記ワイヤ電極の電極径、前記ワイヤ電極の電極径及び放電間隙に応じたオフセット量、前記所望形状に応じた加工形状プログラムからなる放電加工プログラムを読み込む放電加工プログラム読込手段と、
前記放電加工プログラムの前記加工形状プログラムに前記オフセット量を加味し、前記ワイヤ電極と前記ワークとの相対移動量を演算し、前記相対移動手段へ送出する移動量演算手段と、
前記ワイヤ電極と前記ワークとの放電加工部の前段に設けられ、前記ワイヤ電極の放電加工前の電極径を測定するため、測定部を前記ワイヤ電極の中心軸周りに割出、回転させる割出回転手段を備え、加工進行方向に対して常に垂直な方向からの前記ワイヤ電極の電極径を測定する電極径測定手段と、
前記読み込んだワイヤ電極の電極径及び前記測定したワイヤ電極の電極径から前記ワイヤ電極の電極径の誤差を演算し、前記オフセット量の補正量として前記移動量演算手段へ送出するオフセット補正量演算手段と、
を具備し、前記ワイヤ電極と前記ワークとの相対移動時に放電加工前の前記ワイヤ電極の形状誤差を補正することを特徴としたワイヤ電極加工機。
In a wire electrode processing machine that runs a wire electrode and relatively moves the wire electrode and the work to form a desired shape on the work.
Relative movement means for relatively moving the wire electrode and the work,
Electrode diameter of the wire electrode, an offset amount according to the electrode diameter of the wire electrode and a discharge gap, an electric discharge machining program reading means for reading an electric discharge machining program comprising a machining shape program according to the desired shape,
In consideration of the offset amount in the machining shape program of the electric discharge machining program, a relative movement amount between the wire electrode and the work is calculated, and a movement amount calculation unit to send to the relative movement unit,
Indexing is provided before the electric discharge machining part of the wire electrode and the work, and the measuring part is indexed around the central axis of the wire electrode and rotated to measure an electrode diameter of the wire electrode before electric discharge machining. Equipped with a rotating means, electrode diameter measuring means for measuring the electrode diameter of the wire electrode from a direction always perpendicular to the processing progress direction ,
An error of the electrode diameter of the wire electrode is calculated from the read electrode diameter of the wire electrode and the measured electrode diameter of the wire electrode, and the offset correction amount calculating means is sent to the moving amount calculating means as a correction amount of the offset amount. When,
Wherein the wire electrode machine corrects a shape error of the wire electrode before electric discharge machining when the wire electrode and the workpiece move relative to each other.
JP09449797A 1997-03-31 1997-03-31 Wire electric discharge machine Expired - Lifetime JP3582953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09449797A JP3582953B2 (en) 1997-03-31 1997-03-31 Wire electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09449797A JP3582953B2 (en) 1997-03-31 1997-03-31 Wire electric discharge machine

Publications (2)

Publication Number Publication Date
JPH10277843A JPH10277843A (en) 1998-10-20
JP3582953B2 true JP3582953B2 (en) 2004-10-27

Family

ID=14111953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09449797A Expired - Lifetime JP3582953B2 (en) 1997-03-31 1997-03-31 Wire electric discharge machine

Country Status (1)

Country Link
JP (1) JP3582953B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638053B2 (en) 2012-11-13 2014-12-10 ファナック株式会社 Wire electric discharge machine control device, wire electric discharge machine, and wire electric discharge machining method

Also Published As

Publication number Publication date
JPH10277843A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
US5171966A (en) Method of and apparatus for controlling a welding robot
US4584795A (en) Numerical control grinding machine for grinding a taper portion of a workpiece
JPH0451959Y2 (en)
US4353785A (en) Method of and apparatus for wire-cut machining workpieces of non-planar surface contours
JPS6348654B2 (en)
JP2849387B2 (en) Method and apparatus for grinding a workpiece with a conductive grinding tool
US4970362A (en) Wire-cutting electric discharge machining device
JP3582953B2 (en) Wire electric discharge machine
JPH11138392A (en) Nc machine tool furnished with tool size measuring function
JPH0160377B2 (en)
JPH04348869A (en) Correction device for angular grinding wheel
JP2009226502A (en) Detector for abnormal rotation of workpiece in imperfect circle part grinding machine
GB2057952A (en) Wire-cut electroerosion machining with contour-following wire
JPH09309068A (en) Revising method for grinding wheel and device thereof
GB1590640A (en) Method and apparatus for erosive sparking
JPH0985621A (en) Machine tool
JPS61219529A (en) System of controlling form of wire electric discharge machining
JPH07136903A (en) Free curved surface machining method
JPH06155055A (en) Laser beam machine
JPH0191966A (en) High speed rotating arc welding method
JPH08229792A (en) Grinding device and grinding method
JPH10109250A (en) Method and device for milling
JPS6325892B2 (en)
JPH06210566A (en) Grinding device
JP2717595B2 (en) Rotary electrode repair device for dressing in grinding machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

EXPY Cancellation because of completion of term